Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1636. doi: 10.1107/S1600536809022818

N′-(5-Bromo-2-methoxy­benzyl­idene)-3,4-methyl­enedioxy­benzohydrazide

Ya-Li Sang a,*, Xue-Song Lin a
PMCID: PMC2969257  PMID: 21582901

Abstract

In the title mol­ecule, C16H13BrN2O4, the two benzene rings form a dihedral angle of 74.9 (2)°. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds into chains propagating along the c axis.

Related literature

For the biological activity of hydrazone derivatives, see: Khattab (2005); Küçükgüzel et al. (2003); Cukurovali et al. (2006). For the crystal structures of related compounds, see: Fun et al. (2008); Wei et al. (2009); Khaledi et al. (2008); Yang et al. (2008).graphic file with name e-65-o1636-scheme1.jpg

Experimental

Crystal data

  • C16H13BrN2O4

  • M r = 377.19

  • Monoclinic, Inline graphic

  • a = 12.678 (1) Å

  • b = 16.217 (2) Å

  • c = 7.846 (2) Å

  • β = 104.804 (3)°

  • V = 1559.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.27 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.503, T max = 0.534 (expected range = 0.460–0.488)

  • 8368 measured reflections

  • 3110 independent reflections

  • 1932 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.096

  • S = 1.04

  • 3110 reflections

  • 212 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022818/cv2572sup1.cif

e-65-o1636-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022818/cv2572Isup2.hkl

e-65-o1636-Isup2.hkl (152.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.89 (3) 1.96 (3) 2.841 (3) 168 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefullly acknowledge Chifeng University for the funding of this study.

supplementary crystallographic information

Comment

Hydrazone compounds have been widely investigated due to their interesting biological properties, such as antibacterial and antitumor activities (Khattab, 2005; Küçükgüzel et al., 2003; Cukurovali et al., 2006). Recently, a number of crystal structures of hydrazone derivatives have been reported (Fun et al., 2008; Wei et al., 2009; Khaledi et al., 2008; Yang et al., 2008). In this paper, the crystal structure of the title new hydrazone compound is reported.

The molecular structure of the title compound is shown inFig. 1. The molecule adopts an E configuration with respect to the C═N bond. The dihedral angle between the two substituted benzene rings is 74.9 (2)°.

In the crystal, the molecules are linked via intermolecular N—H···O hydrogen bonds (Table 1) into chains propagated along c axis.

Experimental

3,4-(Methylenedioxy)benzohydrazide (1.0 mmol, 180.2 mg) and 5-bromo-2-methoxybenzaldehyde (1.0 mmol, 215.0 mg) were mixed and refluxed in ethanol (50 ml). The mixture was stirred for 1 h to give a clear colorless solution. Colourless crystals of the title compound were formed by slow evaporation of the solution in air.

Refinement

Atom H2 attached to N2 was located in a difference map and refined with N–H distance restraint of 0.90 (3) Å. The other H atoms were positioned geometrically [d(C–H) = 0.93–0.97 Å], and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structures of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C16H13BrN2O4 F(000) = 760
Mr = 377.19 Dx = 1.606 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2058 reflections
a = 12.678 (1) Å θ = 2.5–24.5°
b = 16.217 (2) Å µ = 2.66 mm1
c = 7.846 (2) Å T = 298 K
β = 104.804 (3)° Block, colourless
V = 1559.6 (5) Å3 0.30 × 0.28 × 0.27 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3110 independent reflections
Radiation source: fine-focus sealed tube 1932 reflections with I > 2σ(I)
graphite Rint = 0.032
ω scans θmax = 26.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→15
Tmin = 0.503, Tmax = 0.534 k = −19→19
8368 measured reflections l = −9→4

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.3363P] where P = (Fo2 + 2Fc2)/3
3110 reflections (Δ/σ)max < 0.001
212 parameters Δρmax = 0.26 e Å3
1 restraint Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.79365 (3) 0.77734 (2) 0.01187 (6) 0.08050 (19)
O1 0.47896 (16) 0.98772 (12) 0.2718 (3) 0.0551 (6)
O2 0.23491 (16) 0.66086 (12) −0.0682 (3) 0.0495 (5)
O3 −0.13891 (18) 0.56492 (16) 0.0073 (3) 0.0777 (7)
O4 −0.1167 (2) 0.54766 (14) 0.3048 (4) 0.0750 (7)
N1 0.38458 (18) 0.76267 (14) 0.1294 (3) 0.0420 (6)
N2 0.29501 (19) 0.73440 (14) 0.1821 (3) 0.0427 (6)
C1 0.5282 (2) 0.86061 (18) 0.1769 (4) 0.0426 (7)
C2 0.5525 (2) 0.94368 (18) 0.2108 (4) 0.0434 (7)
C3 0.6454 (2) 0.9767 (2) 0.1762 (4) 0.0542 (8)
H3 0.6603 1.0327 0.1944 0.065*
C4 0.7157 (3) 0.9274 (2) 0.1152 (4) 0.0561 (8)
H4 0.7787 0.9498 0.0939 0.067*
C5 0.6934 (2) 0.8455 (2) 0.0857 (4) 0.0504 (8)
C6 0.6000 (2) 0.81226 (19) 0.1145 (4) 0.0482 (8)
H6 0.5848 0.7566 0.0918 0.058*
C7 0.4292 (2) 0.82617 (17) 0.2101 (4) 0.0423 (7)
H7 0.3982 0.8514 0.2922 0.051*
C8 0.2255 (2) 0.68194 (17) 0.0780 (4) 0.0392 (7)
C9 0.1363 (2) 0.64994 (16) 0.1497 (4) 0.0382 (7)
C10 0.0401 (2) 0.62571 (18) 0.0293 (4) 0.0495 (8)
H10 0.0306 0.6312 −0.0917 0.059*
C11 −0.0387 (2) 0.59384 (18) 0.0980 (5) 0.0490 (8)
C12 −0.0262 (2) 0.58422 (18) 0.2737 (5) 0.0521 (8)
C13 0.0667 (3) 0.6066 (2) 0.3945 (4) 0.0583 (9)
H13 0.0750 0.5994 0.5148 0.070*
C14 0.1485 (2) 0.64061 (18) 0.3280 (4) 0.0480 (7)
H14 0.2131 0.6576 0.4060 0.058*
C15 −0.1939 (3) 0.5446 (2) 0.1383 (6) 0.0819 (12)
H15A −0.2524 0.5835 0.1351 0.098*
H15B −0.2250 0.4897 0.1173 0.098*
C16 0.5016 (3) 1.07233 (19) 0.3115 (4) 0.0610 (9)
H16A 0.5691 1.0773 0.4005 0.092*
H16B 0.4437 1.0961 0.3538 0.092*
H16C 0.5073 1.1008 0.2070 0.092*
H2 0.278 (3) 0.7609 (18) 0.271 (3) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0737 (3) 0.0813 (3) 0.1027 (3) 0.0049 (2) 0.0521 (2) −0.0014 (2)
O1 0.0564 (13) 0.0467 (13) 0.0667 (14) −0.0076 (10) 0.0240 (12) −0.0086 (11)
O2 0.0570 (13) 0.0515 (12) 0.0467 (12) −0.0134 (10) 0.0255 (11) −0.0098 (10)
O3 0.0461 (14) 0.0882 (18) 0.098 (2) −0.0217 (13) 0.0169 (14) −0.0130 (15)
O4 0.0626 (15) 0.0723 (17) 0.105 (2) −0.0207 (13) 0.0492 (16) 0.0006 (15)
N1 0.0403 (13) 0.0441 (15) 0.0456 (15) −0.0083 (11) 0.0186 (12) −0.0008 (12)
N2 0.0427 (14) 0.0452 (14) 0.0465 (15) −0.0125 (12) 0.0226 (12) −0.0047 (12)
C1 0.0418 (17) 0.0469 (18) 0.0389 (17) −0.0100 (14) 0.0097 (14) 0.0029 (14)
C2 0.0441 (17) 0.0469 (18) 0.0390 (17) −0.0061 (14) 0.0104 (14) 0.0006 (14)
C3 0.0524 (19) 0.0492 (19) 0.062 (2) −0.0178 (15) 0.0176 (17) −0.0060 (16)
C4 0.0467 (18) 0.064 (2) 0.061 (2) −0.0142 (16) 0.0199 (17) 0.0026 (18)
C5 0.0470 (18) 0.056 (2) 0.0521 (19) −0.0026 (15) 0.0204 (16) 0.0014 (16)
C6 0.0516 (18) 0.0436 (17) 0.0513 (19) −0.0060 (15) 0.0165 (16) 0.0023 (15)
C7 0.0441 (17) 0.0437 (18) 0.0420 (17) −0.0062 (14) 0.0164 (14) −0.0020 (14)
C8 0.0405 (16) 0.0356 (16) 0.0446 (17) −0.0027 (13) 0.0168 (14) 0.0003 (14)
C9 0.0357 (15) 0.0357 (15) 0.0455 (17) −0.0015 (12) 0.0148 (14) 0.0006 (14)
C10 0.0450 (18) 0.055 (2) 0.0494 (19) −0.0050 (15) 0.0141 (16) −0.0023 (16)
C11 0.0330 (16) 0.0450 (18) 0.069 (2) −0.0062 (14) 0.0126 (16) −0.0056 (16)
C12 0.0466 (19) 0.0402 (17) 0.079 (2) −0.0097 (15) 0.0341 (18) −0.0024 (17)
C13 0.070 (2) 0.062 (2) 0.052 (2) −0.0107 (18) 0.0309 (19) 0.0063 (17)
C14 0.0442 (17) 0.0503 (19) 0.0515 (19) −0.0075 (14) 0.0158 (15) 0.0019 (15)
C15 0.048 (2) 0.075 (3) 0.128 (4) −0.0163 (19) 0.031 (3) −0.006 (3)
C16 0.072 (2) 0.047 (2) 0.067 (2) −0.0021 (17) 0.0240 (19) −0.0059 (17)

Geometric parameters (Å, °)

Br1—C5 1.884 (3) C4—H4 0.9300
O1—C2 1.355 (3) C5—C6 1.371 (4)
O1—C16 1.420 (4) C6—H6 0.9300
O2—C8 1.232 (3) C7—H7 0.9300
O3—C11 1.370 (3) C8—C9 1.479 (4)
O3—C15 1.420 (4) C9—C14 1.376 (4)
O4—C12 1.367 (3) C9—C10 1.395 (4)
O4—C15 1.419 (5) C10—C11 1.353 (4)
N1—C7 1.264 (3) C10—H10 0.9300
N1—N2 1.382 (3) C11—C12 1.356 (4)
N2—C8 1.341 (4) C12—C13 1.359 (4)
N2—H2 0.89 (3) C13—C14 1.389 (4)
C1—C6 1.382 (4) C13—H13 0.9300
C1—C2 1.392 (4) C14—H14 0.9300
C1—C7 1.458 (4) C15—H15A 0.9700
C2—C3 1.383 (4) C15—H15B 0.9700
C3—C4 1.372 (4) C16—H16A 0.9600
C3—H3 0.9300 C16—H16B 0.9600
C4—C5 1.366 (4) C16—H16C 0.9600
C2—O1—C16 117.9 (2) C14—C9—C10 120.5 (3)
C11—O3—C15 105.4 (3) C14—C9—C8 121.8 (3)
C12—O4—C15 105.3 (3) C10—C9—C8 117.6 (3)
C7—N1—N2 114.6 (2) C11—C10—C9 116.4 (3)
C8—N2—N1 119.4 (2) C11—C10—H10 121.8
C8—N2—H2 122 (2) C9—C10—H10 121.8
N1—N2—H2 117 (2) C10—C11—C12 122.9 (3)
C6—C1—C2 118.9 (3) C10—C11—O3 127.2 (3)
C6—C1—C7 121.4 (3) C12—C11—O3 109.9 (3)
C2—C1—C7 119.6 (3) C11—C12—C13 122.2 (3)
O1—C2—C3 124.2 (3) C11—C12—O4 110.2 (3)
O1—C2—C1 116.1 (2) C13—C12—O4 127.5 (3)
C3—C2—C1 119.7 (3) C12—C13—C14 116.2 (3)
C4—C3—C2 120.3 (3) C12—C13—H13 121.9
C4—C3—H3 119.8 C14—C13—H13 121.9
C2—C3—H3 119.8 C9—C14—C13 121.7 (3)
C5—C4—C3 120.1 (3) C9—C14—H14 119.2
C5—C4—H4 119.9 C13—C14—H14 119.2
C3—C4—H4 119.9 O4—C15—O3 107.9 (3)
C4—C5—C6 120.3 (3) O4—C15—H15A 110.1
C4—C5—Br1 119.7 (2) O3—C15—H15A 110.1
C6—C5—Br1 119.9 (3) O4—C15—H15B 110.1
C5—C6—C1 120.7 (3) O3—C15—H15B 110.1
C5—C6—H6 119.7 H15A—C15—H15B 108.4
C1—C6—H6 119.7 O1—C16—H16A 109.5
N1—C7—C1 121.2 (3) O1—C16—H16B 109.5
N1—C7—H7 119.4 H16A—C16—H16B 109.5
C1—C7—H7 119.4 O1—C16—H16C 109.5
O2—C8—N2 122.5 (2) H16A—C16—H16C 109.5
O2—C8—C9 121.5 (3) H16B—C16—H16C 109.5
N2—C8—C9 116.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.89 (3) 1.96 (3) 2.841 (3) 168 (3)

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2572).

References

  1. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem.41, 201–207. [DOI] [PubMed]
  3. Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [DOI] [PMC free article] [PubMed]
  4. Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481. [DOI] [PMC free article] [PubMed]
  5. Khattab, S. N. (2005). Molecules, 10, 1218–1228. [DOI] [PMC free article] [PubMed]
  6. Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688. [DOI] [PMC free article] [PubMed]
  10. Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022818/cv2572sup1.cif

e-65-o1636-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022818/cv2572Isup2.hkl

e-65-o1636-Isup2.hkl (152.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES