Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1657. doi: 10.1107/S1600536809023241

2,2′-[1,1′-(Propane-1,3-diyldioxy­dinitrilo)diethyl­idyne]di-1-naphthol

Wen-Kui Dong a,*, Jian-Chao Wu a, Yin-Xia Sun a, Li Li a, Jian Yao a
PMCID: PMC2969260  PMID: 21582919

Abstract

The mol­ecule of the title compound, C27H26N2O4, lies across a crystallographic inversion centre and adopts an l-shaped configuration. Within the mol­ecule, the two naphthalene units are approximately perpendicular, making a dihedral angle of 80.24 (5)°. The two intramolecular O—H⋯N hydrogen bonds, generate S(6) ring motifs. In the crystal structure, every mol­ecule links five other mol­ecules into an infinite cross-linked layered supra­molecular structure via inter­molecular C—H⋯O hydrogen bonds, C—H⋯π inter­actions and π–π stacking inter­actions [centroid–centroid distance = 3.956 (4) Å].

Related literature

For the steric and electronic properties of Schiff bases, see: Yamada (1999). For background to this study, see: Dong et al. (2006). For related structures, see: Dong & Duan (2008); Dong et al. (2008a ,b ,c ,d ); Duan et al. (2007); He et al. (2008).graphic file with name e-65-o1657-scheme1.jpg

Experimental

Crystal data

  • C27H26N2O4

  • M r = 442.50

  • Triclinic, Inline graphic

  • a = 7.4411 (10) Å

  • b = 8.8911 (16) Å

  • c = 18.106 (2) Å

  • α = 100.645 (1)°

  • β = 94.331 (1)°

  • γ = 106.329 (2)°

  • V = 1119.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.42 × 0.37 mm

Data collection

  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.957, T max = 0.968

  • 5800 measured reflections

  • 3876 independent reflections

  • 2325 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.145

  • S = 1.04

  • 3876 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023241/hg2527sup1.cif

e-65-o1657-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023241/hg2527Isup2.hkl

e-65-o1657-Isup2.hkl (190KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.82 1.83 2.543 (2) 145
O4—H4⋯N2 0.82 1.82 2.540 (2) 146
C12—H12⋯O3i 0.93 2.68 3.588 (3) 166
C1—H1BCg1ii 0.97 2.78 3.480 (2) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C6–C15 ring.

Acknowledgments

The authors acknowledge finanicial support from the ‘Jing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University.

supplementary crystallographic information

Comment

Schiff bases are compounds containing the azomethine group, –R,R'C=N, prepared by the condensation reaction of a primary amine with active carbonyl group. Due to the versatility of their steric and electronic properties (Yamada, 1999), which can be fine tuned by choosing the appropriate amine and the substituents on an aromatic ring of the carbonyl compound, Schiff base bisoxime compounds have gained increased interest in the field of coordination chemistry (Dong et al., 2008a; He et al., 2008). As a part of our ongoing research (Dong et al., 2006; Duan et al., 2007), the synthesis and crystal structure of the title compound was reported (Fig. 1).

The molecule of the title compound lies across a crystallographic inversion centre (symmetry code: -x, -y, -z) and adopts an L-shaped configuration. This structure is not similar to what was observed in our previously reported series oxime compounds containing four-methene bridge, which always adopt a V-shaped configurations (Dong et al., 2006; Duan et al., 2007; Dong et al., 2008a; Dong & Duan, 2008; Dong et al., 2008b; Dong et al., 2008d; Dong et al., 2008c; He et al., 2008). Within the molecule, the dihedral angle between the plane of oxime functional groups and naphthalene ring is 8.93 (3)° for C6—C15 ring and O1—N1—C5, 5.30 (3)° for C18—C27 ring and O2—N2—C17, respectively. And the two naphthalene units are approximately vertical with the dihedral angle of 80.24 (5)°. The two intramolecular hydrogen bonds, O3—H3···N1 and O4—H4···N2,generate S(6) ring motifs helping to the stabilization of the title molecule.

In the crystal structure, the crystals are held together by an intermolecular C—H···π interaction and C12—H12···O3 hydrogen bonds between the phenolic-oxygen atom and the hydrogen of the naphthalene ring, in which the C1—H1B···π centroid separations are equal 2.782 Å involving the naphthalene ring C6—C15 (centroid, Cg1). In addition, the adjacent aromatic rings are further linked by the intermolecular π–π stacking interactions [centroid-to-centroid distance = 3.596 (4) Å]. Thus, every title compound molecule links five other molecules into an infinite crosslinked layer supramolecular structure via intermolecular C—H···O hydrogen bonds, C—H···π and π–π stacking interactions (Fig. 2).

Experimental

2,2'-[(Propane-1,3-diyldioxy)bis(nitriloethylidyne)]dinaphthol was synthesized according to an analogous method reported earlier (Dong et al., 2008 e). To an ethanol solution (5 ml) of 2-acetyl-1-naphthol (388.5 mg, 2.06 mmol) was added dropwise an ethanol solution (3 ml) of 1,3-bis(aminooxy)propane (109.7 mg, 1.03 mmol). The mixture solution was stirred at 328–333 K for 72 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 320.4 mg (Yield, 70.0%) of powder; m.p. 439–441 K. Colorless block-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of ethyl acetate of 2,2'-[(propane-1,3-diyldioxy)bis(nitriloethylidyne)]dinaphthol at room temperature for about one month. Anal. Calcd. for C27H26N2O4: C, 73.28; H, 5.92; N, 6.33; Found: C, 73.25; H, 5.97; N, 6.29.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), C—H = 0.96 (CH3), 0.93 Å (CH), 0.82 Å (OH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the supramolecular structure of the title compound. intra- and intermolecular hydrogen bonds, C—H···π interaction and π–π stacking interactions are shown as dashed lines.

Crystal data

C27H26N2O4 Z = 2
Mr = 442.50 F(000) = 468
Triclinic, P1 Dx = 1.313 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4411 (10) Å Cell parameters from 1962 reflections
b = 8.8911 (16) Å θ = 2.3–26.3°
c = 18.106 (2) Å µ = 0.09 mm1
α = 100.645 (1)° T = 298 K
β = 94.331 (1)° Block-like, colorless
γ = 106.329 (2)° 0.50 × 0.42 × 0.37 mm
V = 1119.4 (3) Å3

Data collection

Siemens SMART 1000 CCD area-detector diffractometer 3876 independent reflections
Radiation source: fine-focus sealed tube 2325 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→8
Tmin = 0.957, Tmax = 0.968 k = −10→10
5800 measured reflections l = −20→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.1652P] where P = (Fo2 + 2Fc2)/3
3876 reflections (Δ/σ)max < 0.001
298 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.4304 (3) 0.3291 (2) 0.39356 (10) 0.0472 (5)
N2 0.5352 (3) 0.4359 (2) 0.09736 (10) 0.0490 (5)
O1 0.3227 (2) 0.35088 (19) 0.33130 (9) 0.0531 (5)
O2 0.6102 (2) 0.55995 (19) 0.16190 (9) 0.0568 (5)
O3 0.7381 (2) 0.38979 (19) 0.48069 (9) 0.0567 (5)
H3 0.6693 0.3990 0.4453 0.085*
O4 0.2690 (2) 0.2606 (2) −0.00541 (9) 0.0589 (5)
H4 0.3176 0.3292 0.0332 0.088*
C1 0.4460 (3) 0.4646 (3) 0.29743 (12) 0.0444 (6)
H1A 0.5504 0.4264 0.2822 0.053*
H1B 0.4971 0.5663 0.3336 0.053*
C2 0.3361 (3) 0.4864 (3) 0.22958 (12) 0.0494 (6)
H2A 0.2300 0.5216 0.2451 0.059*
H2B 0.2864 0.3843 0.1936 0.059*
C3 0.4578 (4) 0.6083 (3) 0.19140 (13) 0.0557 (7)
H3A 0.3795 0.6253 0.1503 0.067*
H3B 0.5088 0.7097 0.2278 0.067*
C4 0.1200 (3) 0.1930 (3) 0.42415 (14) 0.0608 (7)
H4A 0.0746 0.2444 0.3878 0.091*
H4B 0.0718 0.2184 0.4710 0.091*
H4C 0.0779 0.0789 0.4052 0.091*
C5 0.3322 (3) 0.2511 (2) 0.43736 (12) 0.0421 (5)
C6 0.6336 (3) 0.2932 (2) 0.52118 (12) 0.0409 (5)
C7 0.4391 (3) 0.2236 (2) 0.50250 (11) 0.0385 (5)
C8 0.3456 (3) 0.1201 (3) 0.54803 (13) 0.0488 (6)
H8 0.2156 0.0725 0.5366 0.059*
C9 0.4393 (4) 0.0885 (3) 0.60760 (13) 0.0510 (6)
H9 0.3730 0.0189 0.6356 0.061*
C10 0.6365 (3) 0.1598 (3) 0.62776 (12) 0.0445 (6)
C11 0.7339 (3) 0.2654 (2) 0.58449 (12) 0.0413 (5)
C12 0.9311 (3) 0.3417 (3) 0.60585 (14) 0.0552 (7)
H12 0.9972 0.4118 0.5781 0.066*
C13 1.0230 (4) 0.3126 (3) 0.66666 (16) 0.0673 (8)
H13 1.1520 0.3636 0.6803 0.081*
C14 0.9279 (4) 0.2076 (3) 0.70901 (16) 0.0667 (8)
H14 0.9933 0.1888 0.7504 0.080*
C15 0.7397 (4) 0.1326 (3) 0.69001 (14) 0.0585 (7)
H15 0.6777 0.0621 0.7185 0.070*
C16 0.8658 (4) 0.4430 (3) 0.09754 (15) 0.0681 (8)
H16A 0.8829 0.5187 0.1447 0.102*
H16B 0.9350 0.4952 0.0620 0.102*
H16C 0.9112 0.3557 0.1058 0.102*
C17 0.6600 (3) 0.3798 (3) 0.06659 (12) 0.0449 (6)
C18 0.4008 (3) 0.1992 (3) −0.03454 (12) 0.0419 (5)
C19 0.5894 (3) 0.2506 (3) −0.00192 (12) 0.0419 (5)
C20 0.7126 (3) 0.1727 (3) −0.03704 (14) 0.0518 (6)
H20 0.8390 0.2047 −0.0161 0.062*
C21 0.6529 (3) 0.0533 (3) −0.10000 (14) 0.0552 (6)
H21 0.7382 0.0044 −0.1209 0.066*
C22 0.4635 (3) 0.0022 (3) −0.13423 (13) 0.0460 (6)
C23 0.3358 (3) 0.0756 (3) −0.10137 (12) 0.0422 (5)
C24 0.1464 (4) 0.0254 (3) −0.13600 (14) 0.0582 (7)
H24 0.0612 0.0739 −0.1147 0.070*
C25 0.0862 (4) −0.0921 (3) −0.19974 (16) 0.0677 (8)
H25 −0.0393 −0.1237 −0.2217 0.081*
C26 0.2131 (4) −0.1659 (3) −0.23247 (15) 0.0669 (8)
H26 0.1715 −0.2467 −0.2761 0.080*
C27 0.3962 (4) −0.1200 (3) −0.20072 (14) 0.0604 (7)
H27 0.4792 −0.1697 −0.2231 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0453 (12) 0.0502 (11) 0.0435 (11) 0.0087 (9) 0.0039 (9) 0.0134 (9)
N2 0.0551 (13) 0.0511 (12) 0.0396 (11) 0.0148 (10) 0.0066 (10) 0.0086 (9)
O1 0.0478 (10) 0.0605 (10) 0.0468 (9) 0.0058 (8) 0.0015 (8) 0.0198 (8)
O2 0.0626 (11) 0.0590 (11) 0.0434 (10) 0.0119 (9) 0.0087 (8) 0.0069 (8)
O3 0.0413 (9) 0.0685 (11) 0.0573 (10) 0.0017 (8) 0.0116 (8) 0.0277 (9)
O4 0.0453 (10) 0.0706 (12) 0.0605 (11) 0.0237 (9) 0.0085 (8) 0.0031 (9)
C1 0.0471 (14) 0.0396 (12) 0.0447 (13) 0.0090 (11) 0.0113 (11) 0.0087 (10)
C2 0.0585 (16) 0.0495 (14) 0.0412 (13) 0.0188 (12) 0.0078 (11) 0.0081 (11)
C3 0.0747 (19) 0.0512 (15) 0.0442 (14) 0.0223 (13) 0.0116 (13) 0.0113 (11)
C4 0.0441 (15) 0.0763 (18) 0.0544 (16) 0.0052 (13) 0.0058 (12) 0.0158 (14)
C5 0.0420 (13) 0.0375 (12) 0.0426 (13) 0.0075 (10) 0.0103 (11) 0.0034 (10)
C6 0.0445 (13) 0.0351 (12) 0.0408 (13) 0.0067 (10) 0.0145 (11) 0.0071 (10)
C7 0.0403 (13) 0.0343 (11) 0.0376 (12) 0.0070 (10) 0.0084 (10) 0.0053 (9)
C8 0.0430 (13) 0.0431 (13) 0.0539 (15) 0.0020 (11) 0.0112 (12) 0.0102 (11)
C9 0.0600 (16) 0.0413 (13) 0.0504 (15) 0.0067 (12) 0.0157 (13) 0.0164 (11)
C10 0.0529 (15) 0.0363 (12) 0.0448 (14) 0.0150 (11) 0.0103 (12) 0.0054 (10)
C11 0.0424 (13) 0.0393 (12) 0.0417 (13) 0.0127 (10) 0.0088 (10) 0.0052 (10)
C12 0.0428 (14) 0.0619 (16) 0.0589 (16) 0.0134 (12) 0.0089 (12) 0.0107 (13)
C13 0.0509 (16) 0.0782 (19) 0.0696 (19) 0.0214 (14) −0.0028 (14) 0.0092 (16)
C14 0.076 (2) 0.0709 (18) 0.0596 (17) 0.0337 (16) −0.0010 (15) 0.0152 (14)
C15 0.0749 (19) 0.0511 (15) 0.0553 (16) 0.0245 (14) 0.0129 (14) 0.0161 (12)
C16 0.0544 (17) 0.083 (2) 0.0582 (17) 0.0127 (14) 0.0003 (13) 0.0089 (14)
C17 0.0450 (14) 0.0517 (14) 0.0406 (13) 0.0115 (11) 0.0052 (11) 0.0213 (11)
C18 0.0390 (13) 0.0483 (13) 0.0447 (13) 0.0163 (11) 0.0123 (11) 0.0180 (11)
C19 0.0415 (13) 0.0496 (13) 0.0389 (13) 0.0142 (11) 0.0081 (10) 0.0187 (10)
C20 0.0400 (14) 0.0594 (16) 0.0589 (16) 0.0165 (12) 0.0073 (12) 0.0170 (13)
C21 0.0497 (16) 0.0591 (16) 0.0639 (17) 0.0251 (13) 0.0170 (13) 0.0137 (13)
C22 0.0502 (15) 0.0424 (13) 0.0500 (14) 0.0145 (11) 0.0118 (12) 0.0182 (11)
C23 0.0428 (13) 0.0426 (13) 0.0447 (13) 0.0129 (10) 0.0072 (11) 0.0175 (10)
C24 0.0511 (16) 0.0580 (16) 0.0629 (17) 0.0149 (13) 0.0031 (13) 0.0110 (13)
C25 0.0582 (17) 0.0597 (17) 0.074 (2) 0.0070 (14) −0.0095 (15) 0.0113 (15)
C26 0.083 (2) 0.0475 (15) 0.0576 (17) 0.0083 (15) −0.0031 (16) 0.0039 (13)
C27 0.074 (2) 0.0469 (15) 0.0600 (17) 0.0194 (14) 0.0116 (15) 0.0090 (12)

Geometric parameters (Å, °)

N1—C5 1.284 (3) C10—C11 1.413 (3)
N1—O1 1.408 (2) C11—C12 1.422 (3)
N2—C17 1.287 (3) C12—C13 1.356 (3)
N2—O2 1.404 (2) C12—H12 0.9300
O1—C1 1.426 (2) C13—C14 1.391 (4)
O2—C3 1.427 (3) C13—H13 0.9300
O3—C6 1.350 (2) C14—C15 1.357 (4)
O3—H3 0.8200 C14—H14 0.9300
O4—C18 1.345 (3) C15—H15 0.9300
O4—H4 0.8200 C16—C17 1.498 (3)
C1—C2 1.497 (3) C16—H16A 0.9600
C1—H1A 0.9700 C16—H16B 0.9600
C1—H1B 0.9700 C16—H16C 0.9600
C2—C3 1.514 (3) C17—C19 1.473 (3)
C2—H2A 0.9700 C18—C19 1.393 (3)
C2—H2B 0.9700 C18—C23 1.424 (3)
C3—H3A 0.9700 C19—C20 1.417 (3)
C3—H3B 0.9700 C20—C21 1.355 (3)
C4—C5 1.502 (3) C20—H20 0.9300
C4—H4A 0.9600 C21—C22 1.408 (3)
C4—H4B 0.9600 C21—H21 0.9300
C4—H4C 0.9600 C22—C23 1.405 (3)
C5—C7 1.469 (3) C22—C27 1.414 (3)
C6—C7 1.392 (3) C23—C24 1.410 (3)
C6—C11 1.418 (3) C24—C25 1.356 (3)
C7—C8 1.420 (3) C24—H24 0.9300
C8—C9 1.356 (3) C25—C26 1.401 (4)
C8—H8 0.9300 C25—H25 0.9300
C9—C10 1.414 (3) C26—C27 1.355 (4)
C9—H9 0.9300 C26—H26 0.9300
C10—C15 1.412 (3) C27—H27 0.9300
C5—N1—O1 114.40 (18) C13—C12—C11 120.2 (2)
C17—N2—O2 113.84 (19) C13—C12—H12 119.9
N1—O1—C1 107.51 (15) C11—C12—H12 119.9
N2—O2—C3 108.21 (17) C12—C13—C14 121.1 (3)
C6—O3—H3 109.5 C12—C13—H13 119.4
C18—O4—H4 109.5 C14—C13—H13 119.4
O1—C1—C2 108.60 (18) C15—C14—C13 120.1 (3)
O1—C1—H1A 110.0 C15—C14—H14 119.9
C2—C1—H1A 110.0 C13—C14—H14 119.9
O1—C1—H1B 110.0 C14—C15—C10 121.1 (2)
C2—C1—H1B 110.0 C14—C15—H15 119.4
H1A—C1—H1B 108.4 C10—C15—H15 119.4
C1—C2—C3 111.5 (2) C17—C16—H16A 109.5
C1—C2—H2A 109.3 C17—C16—H16B 109.5
C3—C2—H2A 109.3 H16A—C16—H16B 109.5
C1—C2—H2B 109.3 C17—C16—H16C 109.5
C3—C2—H2B 109.3 H16A—C16—H16C 109.5
H2A—C2—H2B 108.0 H16B—C16—H16C 109.5
O2—C3—C2 112.91 (19) N2—C17—C19 116.1 (2)
O2—C3—H3A 109.0 N2—C17—C16 122.3 (2)
C2—C3—H3A 109.0 C19—C17—C16 121.5 (2)
O2—C3—H3B 109.0 O4—C18—C19 123.0 (2)
C2—C3—H3B 109.0 O4—C18—C23 115.8 (2)
H3A—C3—H3B 107.8 C19—C18—C23 121.2 (2)
C5—C4—H4A 109.5 C18—C19—C20 117.3 (2)
C5—C4—H4B 109.5 C18—C19—C17 122.1 (2)
H4A—C4—H4B 109.5 C20—C19—C17 120.6 (2)
C5—C4—H4C 109.5 C21—C20—C19 122.4 (2)
H4A—C4—H4C 109.5 C21—C20—H20 118.8
H4B—C4—H4C 109.5 C19—C20—H20 118.8
N1—C5—C7 116.2 (2) C20—C21—C22 120.9 (2)
N1—C5—C4 122.4 (2) C20—C21—H21 119.6
C7—C5—C4 121.34 (19) C22—C21—H21 119.6
O3—C6—C7 122.7 (2) C23—C22—C21 118.9 (2)
O3—C6—C11 116.03 (19) C23—C22—C27 118.5 (2)
C7—C6—C11 121.28 (19) C21—C22—C27 122.6 (2)
C6—C7—C8 117.5 (2) C22—C23—C24 118.9 (2)
C6—C7—C5 122.24 (19) C22—C23—C18 119.4 (2)
C8—C7—C5 120.3 (2) C24—C23—C18 121.7 (2)
C9—C8—C7 122.2 (2) C25—C24—C23 121.2 (3)
C9—C8—H8 118.9 C25—C24—H24 119.4
C7—C8—H8 118.9 C23—C24—H24 119.4
C8—C9—C10 120.9 (2) C24—C25—C26 120.0 (3)
C8—C9—H9 119.5 C24—C25—H25 120.0
C10—C9—H9 119.5 C26—C25—H25 120.0
C15—C10—C11 118.6 (2) C27—C26—C25 120.2 (2)
C15—C10—C9 123.0 (2) C27—C26—H26 119.9
C11—C10—C9 118.4 (2) C25—C26—H26 119.9
C10—C11—C6 119.6 (2) C26—C27—C22 121.2 (3)
C10—C11—C12 118.8 (2) C26—C27—H27 119.4
C6—C11—C12 121.6 (2) C22—C27—H27 119.4
C5—N1—O1—C1 168.65 (19) C13—C14—C15—C10 −0.5 (4)
C17—N2—O2—C3 −178.59 (18) C11—C10—C15—C14 1.0 (4)
N1—O1—C1—C2 178.37 (17) C9—C10—C15—C14 −177.7 (2)
O1—C1—C2—C3 178.99 (18) O2—N2—C17—C19 −179.28 (16)
N2—O2—C3—C2 72.6 (2) O2—N2—C17—C16 −0.2 (3)
C1—C2—C3—O2 63.2 (3) O4—C18—C19—C20 178.18 (19)
O1—N1—C5—C7 179.14 (16) C23—C18—C19—C20 −1.3 (3)
O1—N1—C5—C4 −1.8 (3) O4—C18—C19—C17 −1.4 (3)
O3—C6—C7—C8 178.1 (2) C23—C18—C19—C17 179.14 (19)
C11—C6—C7—C8 −1.7 (3) N2—C17—C19—C18 4.1 (3)
O3—C6—C7—C5 −0.5 (3) C16—C17—C19—C18 −175.1 (2)
C11—C6—C7—C5 179.8 (2) N2—C17—C19—C20 −175.5 (2)
N1—C5—C7—C6 7.2 (3) C16—C17—C19—C20 5.4 (3)
C4—C5—C7—C6 −171.8 (2) C18—C19—C20—C21 0.3 (3)
N1—C5—C7—C8 −171.3 (2) C17—C19—C20—C21 179.9 (2)
C4—C5—C7—C8 9.7 (3) C19—C20—C21—C22 0.8 (4)
C6—C7—C8—C9 −0.1 (3) C20—C21—C22—C23 −0.9 (3)
C5—C7—C8—C9 178.5 (2) C20—C21—C22—C27 178.8 (2)
C7—C8—C9—C10 0.8 (4) C21—C22—C23—C24 179.4 (2)
C8—C9—C10—C15 178.9 (2) C27—C22—C23—C24 −0.3 (3)
C8—C9—C10—C11 0.2 (3) C21—C22—C23—C18 −0.1 (3)
C15—C10—C11—C6 179.3 (2) C27—C22—C23—C18 −179.8 (2)
C9—C10—C11—C6 −1.9 (3) O4—C18—C23—C22 −178.33 (19)
C15—C10—C11—C12 −0.8 (3) C19—C18—C23—C22 1.2 (3)
C9—C10—C11—C12 178.0 (2) O4—C18—C23—C24 2.2 (3)
O3—C6—C11—C10 −177.05 (19) C19—C18—C23—C24 −178.3 (2)
C7—C6—C11—C10 2.7 (3) C22—C23—C24—C25 0.3 (3)
O3—C6—C11—C12 3.1 (3) C18—C23—C24—C25 179.8 (2)
C7—C6—C11—C12 −177.2 (2) C23—C24—C25—C26 −0.1 (4)
C10—C11—C12—C13 0.2 (3) C24—C25—C26—C27 −0.1 (4)
C6—C11—C12—C13 −179.9 (2) C25—C26—C27—C22 0.2 (4)
C11—C12—C13—C14 0.3 (4) C23—C22—C27—C26 0.1 (3)
C12—C13—C14—C15 −0.2 (4) C21—C22—C27—C26 −179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···N1 0.82 1.83 2.543 (2) 145
O4—H4···N2 0.82 1.82 2.540 (2) 146
C12—H12···O3i 0.93 2.68 3.588 (3) 166
C1—H1B···Cg1ii 0.97 2.78 3.480 (2) 129

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2527).

References

  1. Dong, W.-K., Ding, Y.-J., Luo, Y.-L., Lv, Z.-W. & Wang, L. (2008a). Acta Cryst. E64, o1324. [DOI] [PMC free article] [PubMed]
  2. Dong, W. K. & Duan, J. G. (2008). J. Coord. Chem.61, 781–788.
  3. Dong, W. K., Feng, J. H. & Yang, X. Q. (2006). Z. Kristallogr. New Cryst. Struct.221, 447–448.
  4. Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008b). Acta Cryst. E64, o1810. [DOI] [PMC free article] [PubMed]
  5. Dong, W.-K., He, X.-N., Zhong, J.-K., Chen, X. & Yu, T.-Z. (2008c). Acta Cryst. E64, o1098. [DOI] [PMC free article] [PubMed]
  6. Dong, W. K., Shi, J. Y., Zhong, J. K., Sun, Y. X. & Duan, J. G. (2008d). Struct. Chem.19, 95–99.
  7. Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704–o2705.
  8. He, X.-N., Dong, W.-K., Bai, W.-J., Yan, H.-B. & Lv, Z.-W. (2008). Acta Cryst. E64, o1532. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  12. Yamada, S. (1999). Coord. Chem. Rev.190–192, 537–555.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023241/hg2527sup1.cif

e-65-o1657-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023241/hg2527Isup2.hkl

e-65-o1657-Isup2.hkl (190KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES