Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):o1454. doi: 10.1107/S1600536809020091

6-Phenyl-5a,6,6a,7,12,13a-hexa­hydro-5H-benzo[6,7]indolizino[3,2-a]pyrrolizine

B Gunasekaran a, S Kathiravan b, R Raghunathan b, V Renuga c, V Manivannan d,*
PMCID: PMC2969265  PMID: 21582758

Abstract

In the title compound, C23H22N2, the central pyrrolidine ring adopts an envelope conformation. The benzene ring of the hexa­hydro­pyrroloisoquinoline ring system makes dihedral angles of 83.43 (6) and 61.99 (10)°, respectively, with the phenyl and pyrrole rings. In the crystal structure, weak C—H⋯π inter­actions are observed.

Related literature

For biological activity of pyrrolidine derivatives, see: Witherup et al. (1995); Kravchenko et al. (2005). For biological activity of pyrrole derivatives, see: Sobral & Rocha Gonsalves (2001a ,b ); Brockmann & Tour (1995); Suslick et al. (1992); Di Natale et al. (1998). For a related structure, see: Liu et al. (2007).graphic file with name e-65-o1454-scheme1.jpg

Experimental

Crystal data

  • C23H22N2

  • M r = 326.43

  • Monoclinic, Inline graphic

  • a = 14.0694 (14) Å

  • b = 5.9300 (5) Å

  • c = 21.177 (2) Å

  • β = 104.563 (3)°

  • V = 1710.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.985, T max = 0.989

  • 20373 measured reflections

  • 4266 independent reflections

  • 3049 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.149

  • S = 1.01

  • 4266 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020091/is2422sup1.cif

e-65-o1454-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020091/is2422Isup2.hkl

e-65-o1454-Isup2.hkl (204.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg3i 0.93 2.88 3.7250 (3) 152
C13—H13⋯Cg3ii 0.93 2.94 3.5626 (3) 126
C18—H18BCg6iii 0.97 2.79 3.6726 (4) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg3 and Cg6 are the centroids of the N2/C19–C22 and C11–C16 rings, respectively.

Acknowledgments

The authors thank AMET University management, India, for their kind support.

supplementary crystallographic information

Comment

Pyrrolidine containing compounds are of significant importance because of their biological activities and widespread employment in catalysis (Witherup et al., 1995; Kravchenko et al., 2005). Pyrroles are very useful precursors in porphyrin synthesis (Sobral & Rocha Gonsalves, 2001a,b) and as monomers for polymer chemistry (Brockmann & Tour, 1995), with applications ranging from non linear optical materials (Suslick et al., 1992) to electronic noses (Di Natale et al., 1998).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Liu et al., 2007). The phenyl ring (C11—C16) makes a dihedral angle of 83.43 (6)° with C2—C7 ring and 48.72 (6)° with N2/C19—C22 ring, respectively. The sum of the bond angles around N1 [334.71 (32)°] indicate the sp3 hybridized state of atom N1 in the molecule. The pyrrolidine ring [N1/C9/C10/C17/C23] adopts an envelope conformation.

The crystal structure is stabilized by weak C—H···π [C4—H4···Cg3, C13—H13···Cg3 & C18—H18B···Cg6 (Table 1; Cg3 and Cg6 are the centroid of the rings defined by the atoms N2/C19–C22 and C11–C16, respectively.)] interactions.

Experimental

A mixture of N-allyl pyrrole-2-carbaldehyde (1 mmol) and 1,2,3,4-tetrahydroisoquinolinic acid (1 mmol) was refluxed in 1,2-dichloro benzene (10 ml) for 12 h till the completion of the reaction as evidenced by TLC analysis. The crude mixture was subjected to column chromatography to get the pure product.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for C—H, and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2,

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Crystal data

C23H22N2 F(000) = 696
Mr = 326.43 Dx = 1.268 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6264 reflections
a = 14.0694 (14) Å θ = 2.0–28.4°
b = 5.9300 (5) Å µ = 0.07 mm1
c = 21.177 (2) Å T = 293 K
β = 104.563 (3)° Needle, yellow
V = 1710.1 (3) Å3 0.20 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker KappaAPEXII diffractometer 4266 independent reflections
Radiation source: fine-focus sealed tube 3049 reflections with I > 2σ(I)
graphite Rint = 0.032
Detector resolution: 0 pixels mm-1 θmax = 28.4°, θmin = 2.0°
ω and φ scans h = −18→17
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −7→4
Tmin = 0.985, Tmax = 0.989 l = −28→28
20373 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0757P)2 + 0.3733P] where P = (Fo2 + 2Fc2)/3
4266 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.42095 (9) 0.02857 (19) 0.64155 (6) 0.0319 (3)
N2 0.26180 (10) 0.2368 (2) 0.50434 (6) 0.0447 (3)
C9 0.42973 (10) 0.2650 (2) 0.66188 (7) 0.0308 (3)
H9 0.3639 0.3302 0.6548 0.037*
C2 0.38439 (10) −0.0647 (2) 0.74598 (7) 0.0353 (3)
C8 0.48113 (11) 0.2811 (3) 0.73313 (7) 0.0380 (3)
H8A 0.4760 0.4343 0.7480 0.046*
H8B 0.5502 0.2470 0.7390 0.046*
C10 0.48203 (10) 0.3722 (2) 0.61376 (7) 0.0347 (3)
H10 0.4648 0.5326 0.6095 0.042*
C1 0.35781 (11) −0.0995 (2) 0.67344 (7) 0.0367 (3)
H1A 0.3630 −0.2586 0.6642 0.044*
H1B 0.2901 −0.0542 0.6556 0.044*
C23 0.39150 (11) 0.0267 (2) 0.56953 (7) 0.0348 (3)
H23 0.4220 −0.1011 0.5528 0.042*
C17 0.43198 (12) 0.2536 (3) 0.54943 (8) 0.0400 (4)
H17 0.4796 0.2248 0.5236 0.048*
C7 0.43830 (10) 0.1217 (2) 0.77408 (7) 0.0357 (3)
C11 0.59247 (11) 0.3523 (2) 0.63345 (7) 0.0375 (3)
C6 0.45606 (12) 0.1552 (3) 0.84096 (8) 0.0476 (4)
H6 0.4907 0.2820 0.8598 0.057*
C22 0.28437 (11) 0.0379 (3) 0.53632 (7) 0.0392 (3)
C3 0.35068 (12) −0.2155 (3) 0.78562 (8) 0.0479 (4)
H3 0.3141 −0.3403 0.7671 0.057*
C12 0.64174 (12) 0.1645 (3) 0.61992 (8) 0.0472 (4)
H12 0.6062 0.0414 0.5991 0.057*
C14 0.79640 (14) 0.3355 (4) 0.66854 (11) 0.0724 (6)
H14 0.8647 0.3305 0.6796 0.087*
C5 0.42305 (13) 0.0033 (4) 0.87978 (8) 0.0555 (5)
H5 0.4362 0.0266 0.9246 0.067*
C16 0.64758 (13) 0.5309 (3) 0.66614 (9) 0.0531 (4)
H16 0.6158 0.6585 0.6762 0.064*
C4 0.37077 (14) −0.1825 (4) 0.85217 (9) 0.0573 (5)
H4 0.3489 −0.2863 0.8783 0.069*
C21 0.19983 (13) −0.0869 (3) 0.52436 (8) 0.0544 (5)
H21 0.1929 −0.2310 0.5399 0.065*
C20 0.12558 (14) 0.0442 (4) 0.48407 (9) 0.0637 (6)
H20 0.0603 0.0017 0.4683 0.076*
C19 0.16540 (13) 0.2435 (4) 0.47212 (9) 0.0579 (5)
H19 0.1329 0.3616 0.4468 0.069*
C18 0.34333 (14) 0.3849 (3) 0.50884 (10) 0.0663 (6)
H18A 0.3341 0.5246 0.5304 0.080*
H18B 0.3520 0.4195 0.4659 0.080*
C13 0.74311 (14) 0.1569 (4) 0.63685 (10) 0.0634 (5)
H13 0.7754 0.0302 0.6267 0.076*
C15 0.74889 (15) 0.5212 (4) 0.68388 (11) 0.0696 (6)
H15 0.7849 0.6409 0.7063 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0392 (6) 0.0291 (6) 0.0299 (6) −0.0006 (5) 0.0136 (5) 0.0012 (4)
N2 0.0475 (8) 0.0488 (8) 0.0345 (7) −0.0014 (6) 0.0043 (6) 0.0001 (6)
C9 0.0322 (7) 0.0279 (6) 0.0335 (8) 0.0011 (5) 0.0103 (6) 0.0010 (5)
C2 0.0359 (7) 0.0397 (7) 0.0328 (8) 0.0054 (6) 0.0133 (6) 0.0054 (6)
C8 0.0399 (8) 0.0399 (8) 0.0338 (8) −0.0039 (6) 0.0085 (6) −0.0013 (6)
C10 0.0406 (8) 0.0294 (7) 0.0356 (8) −0.0011 (5) 0.0127 (6) 0.0035 (5)
C1 0.0450 (8) 0.0321 (7) 0.0358 (8) −0.0041 (6) 0.0157 (6) 0.0006 (6)
C23 0.0443 (8) 0.0327 (7) 0.0314 (7) −0.0013 (6) 0.0167 (6) −0.0013 (5)
C17 0.0456 (8) 0.0423 (8) 0.0343 (8) −0.0065 (6) 0.0143 (7) 0.0043 (6)
C7 0.0325 (7) 0.0436 (8) 0.0317 (8) 0.0064 (6) 0.0095 (6) 0.0033 (6)
C11 0.0399 (8) 0.0385 (8) 0.0373 (8) −0.0059 (6) 0.0158 (6) 0.0057 (6)
C6 0.0465 (9) 0.0617 (10) 0.0339 (8) −0.0002 (7) 0.0086 (7) −0.0013 (7)
C22 0.0477 (9) 0.0414 (8) 0.0305 (7) −0.0066 (6) 0.0132 (6) −0.0036 (6)
C3 0.0492 (9) 0.0544 (10) 0.0439 (9) −0.0047 (7) 0.0187 (8) 0.0083 (7)
C12 0.0464 (9) 0.0467 (9) 0.0530 (10) −0.0005 (7) 0.0210 (8) 0.0029 (7)
C14 0.0384 (10) 0.1029 (18) 0.0768 (15) −0.0080 (11) 0.0159 (10) 0.0205 (13)
C5 0.0539 (10) 0.0837 (13) 0.0305 (8) 0.0026 (9) 0.0138 (7) 0.0060 (8)
C16 0.0524 (10) 0.0499 (10) 0.0568 (11) −0.0141 (8) 0.0136 (8) −0.0027 (8)
C4 0.0572 (11) 0.0792 (13) 0.0411 (10) −0.0012 (9) 0.0227 (8) 0.0172 (9)
C21 0.0581 (11) 0.0679 (12) 0.0391 (9) −0.0228 (9) 0.0157 (8) −0.0059 (8)
C20 0.0449 (10) 0.1055 (17) 0.0405 (10) −0.0142 (10) 0.0105 (8) −0.0098 (10)
C19 0.0474 (10) 0.0791 (13) 0.0413 (10) 0.0060 (9) 0.0006 (8) −0.0050 (9)
C18 0.0655 (12) 0.0555 (11) 0.0623 (12) −0.0168 (9) −0.0126 (10) 0.0245 (9)
C13 0.0515 (11) 0.0744 (13) 0.0722 (14) 0.0120 (9) 0.0303 (10) 0.0125 (10)
C15 0.0526 (11) 0.0799 (14) 0.0719 (14) −0.0276 (11) 0.0074 (10) 0.0018 (11)

Geometric parameters (Å, °)

N1—C1 1.4574 (17) C11—C12 1.380 (2)
N1—C9 1.4625 (17) C11—C16 1.390 (2)
N1—C23 1.4764 (18) C6—C5 1.377 (2)
N2—C19 1.357 (2) C6—H6 0.9300
N2—C22 1.358 (2) C22—C21 1.369 (2)
N2—C18 1.429 (2) C3—C4 1.380 (2)
C9—C8 1.503 (2) C3—H3 0.9300
C9—C10 1.5366 (19) C12—C13 1.381 (2)
C9—H9 0.9800 C12—H12 0.9300
C2—C7 1.387 (2) C14—C15 1.369 (3)
C2—C3 1.389 (2) C14—C13 1.372 (3)
C2—C1 1.501 (2) C14—H14 0.9300
C8—C7 1.507 (2) C5—C4 1.371 (3)
C8—H8A 0.9700 C5—H5 0.9300
C8—H8B 0.9700 C16—C15 1.381 (3)
C10—C11 1.509 (2) C16—H16 0.9300
C10—C17 1.537 (2) C4—H4 0.9300
C10—H10 0.9800 C21—C20 1.405 (3)
C1—H1A 0.9700 C21—H21 0.9300
C1—H1B 0.9700 C20—C19 1.359 (3)
C23—C22 1.496 (2) C20—H20 0.9300
C23—C17 1.561 (2) C19—H19 0.9300
C23—H23 0.9800 C18—H18A 0.9700
C17—C18 1.537 (2) C18—H18B 0.9700
C17—H17 0.9800 C13—H13 0.9300
C7—C6 1.389 (2) C15—H15 0.9300
C1—N1—C9 112.29 (11) C12—C11—C16 118.18 (15)
C1—N1—C23 115.43 (11) C12—C11—C10 122.81 (14)
C9—N1—C23 106.99 (10) C16—C11—C10 119.01 (14)
C19—N2—C22 110.79 (15) C5—C6—C7 120.94 (17)
C19—N2—C18 134.42 (16) C5—C6—H6 119.5
C22—N2—C18 114.69 (14) C7—C6—H6 119.5
N1—C9—C8 109.89 (11) N2—C22—C21 107.09 (15)
N1—C9—C10 102.73 (11) N2—C22—C23 110.77 (13)
C8—C9—C10 116.72 (12) C21—C22—C23 142.08 (16)
N1—C9—H9 109.1 C4—C3—C2 120.85 (17)
C8—C9—H9 109.1 C4—C3—H3 119.6
C10—C9—H9 109.1 C2—C3—H3 119.6
C7—C2—C3 119.11 (14) C11—C12—C13 120.81 (17)
C7—C2—C1 121.14 (12) C11—C12—H12 119.6
C3—C2—C1 119.67 (14) C13—C12—H12 119.6
C9—C8—C7 112.12 (12) C15—C14—C13 119.86 (18)
C9—C8—H8A 109.2 C15—C14—H14 120.1
C7—C8—H8A 109.2 C13—C14—H14 120.1
C9—C8—H8B 109.2 C4—C5—C6 119.76 (16)
C7—C8—H8B 109.2 C4—C5—H5 120.1
H8A—C8—H8B 107.9 C6—C5—H5 120.1
C11—C10—C9 114.59 (11) C15—C16—C11 120.79 (19)
C11—C10—C17 114.82 (12) C15—C16—H16 119.6
C9—C10—C17 102.09 (11) C11—C16—H16 119.6
C11—C10—H10 108.3 C5—C4—C3 119.97 (16)
C9—C10—H10 108.3 C5—C4—H4 120.0
C17—C10—H10 108.3 C3—C4—H4 120.0
N1—C1—C2 112.25 (12) C22—C21—C20 106.99 (17)
N1—C1—H1A 109.2 C22—C21—H21 126.5
C2—C1—H1A 109.2 C20—C21—H21 126.5
N1—C1—H1B 109.2 C19—C20—C21 108.40 (17)
C2—C1—H1B 109.2 C19—C20—H20 125.8
H1A—C1—H1B 107.9 C21—C20—H20 125.8
N1—C23—C22 118.24 (11) N2—C19—C20 106.73 (17)
N1—C23—C17 104.38 (11) N2—C19—H19 126.6
C22—C23—C17 103.13 (12) C20—C19—H19 126.6
N1—C23—H23 110.2 N2—C18—C17 104.54 (13)
C22—C23—H23 110.2 N2—C18—H18A 110.8
C17—C23—H23 110.2 C17—C18—H18A 110.8
C18—C17—C10 112.99 (14) N2—C18—H18B 110.8
C18—C17—C23 106.78 (13) C17—C18—H18B 110.8
C10—C17—C23 105.64 (11) H18A—C18—H18B 108.9
C18—C17—H17 110.4 C14—C13—C12 120.24 (19)
C10—C17—H17 110.4 C14—C13—H13 119.9
C23—C17—H17 110.4 C12—C13—H13 119.9
C2—C7—C6 119.35 (14) C14—C15—C16 120.1 (2)
C2—C7—C8 120.50 (13) C14—C15—H15 120.0
C6—C7—C8 120.09 (14) C16—C15—H15 120.0
C1—N1—C9—C8 65.15 (15) C17—C10—C11—C16 146.25 (14)
C23—N1—C9—C8 −167.22 (11) C2—C7—C6—C5 1.6 (2)
C1—N1—C9—C10 −169.97 (11) C8—C7—C6—C5 −175.69 (15)
C23—N1—C9—C10 −42.33 (13) C19—N2—C22—C21 −0.11 (19)
N1—C9—C8—C7 −48.57 (15) C18—N2—C22—C21 −177.00 (16)
C10—C9—C8—C7 −164.97 (12) C19—N2—C22—C23 177.62 (13)
N1—C9—C10—C11 −84.82 (14) C18—N2—C22—C23 0.7 (2)
C8—C9—C10—C11 35.46 (17) N1—C23—C22—N2 112.17 (14)
N1—C9—C10—C17 39.94 (13) C17—C23—C22—N2 −2.34 (15)
C8—C9—C10—C17 160.22 (12) N1—C23—C22—C21 −71.4 (3)
C9—N1—C1—C2 −49.38 (16) C17—C23—C22—C21 174.1 (2)
C23—N1—C1—C2 −172.38 (11) C7—C2—C3—C4 −0.4 (2)
C7—C2—C1—N1 20.18 (19) C1—C2—C3—C4 −177.42 (15)
C3—C2—C1—N1 −162.92 (13) C16—C11—C12—C13 −1.7 (2)
C1—N1—C23—C22 38.60 (17) C10—C11—C12—C13 177.70 (15)
C9—N1—C23—C22 −87.17 (14) C7—C6—C5—C4 −0.8 (3)
C1—N1—C23—C17 152.43 (12) C12—C11—C16—C15 0.7 (3)
C9—N1—C23—C17 26.66 (14) C10—C11—C16—C15 −178.73 (16)
C11—C10—C17—C18 −142.72 (14) C6—C5—C4—C3 −0.6 (3)
C9—C10—C17—C18 92.68 (14) C2—C3—C4—C5 1.3 (3)
C11—C10—C17—C23 100.90 (14) N2—C22—C21—C20 −0.04 (19)
C9—C10—C17—C23 −23.71 (14) C23—C22—C21—C20 −176.58 (19)
N1—C23—C17—C18 −121.16 (14) C22—C21—C20—C19 0.2 (2)
C22—C23—C17—C18 3.00 (16) C22—N2—C19—C20 0.2 (2)
N1—C23—C17—C10 −0.62 (14) C18—N2—C19—C20 176.3 (2)
C22—C23—C17—C10 123.53 (12) C21—C20—C19—N2 −0.2 (2)
C3—C2—C7—C6 −1.0 (2) C19—N2—C18—C17 −174.65 (17)
C1—C2—C7—C6 175.95 (13) C22—N2—C18—C17 1.3 (2)
C3—C2—C7—C8 176.34 (14) C10—C17—C18—N2 −118.36 (16)
C1—C2—C7—C8 −6.7 (2) C23—C17—C18—N2 −2.7 (2)
C9—C8—C7—C2 20.92 (19) C15—C14—C13—C12 0.5 (3)
C9—C8—C7—C6 −161.79 (13) C11—C12—C13—C14 1.2 (3)
C9—C10—C11—C12 84.56 (17) C13—C14—C15—C16 −1.5 (3)
C17—C10—C11—C12 −33.18 (19) C11—C16—C15—C14 0.9 (3)
C9—C10—C11—C16 −96.00 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···Cg3i 0.93 2.88 3.7250 (3) 152
C13—H13···Cg3ii 0.93 2.94 3.5626 (3) 126
C18—H18B···Cg6iii 0.97 2.79 3.6726 (4) 152

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2422).

References

  1. Brockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc.117, 4437–4447.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., Goletti, C., Tarizzo, E. & Amico, A. (1998). Sens. Actuators B, 50, 162–168.
  4. Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem.40, 1377–1383. [DOI] [PubMed]
  5. Liu, Y., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o1902–o1903.
  6. Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001a). J. Porphyrins Phthalocyanines, 5, 428–430.
  9. Sobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001b). J. Porphyrins Phthalocyanines, 5, 861–866.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Suslick, K. S., Chen, C. T., Meredith, G. R. & Cheng, L. T. (1992). J. Am. Chem. Soc.114, 6928–6930.
  12. Witherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc.117, 6682–6685.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020091/is2422sup1.cif

e-65-o1454-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020091/is2422Isup2.hkl

e-65-o1454-Isup2.hkl (204.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES