Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):o1481. doi: 10.1107/S1600536809020315

tert-Butyl N-hydr­oxy-N-[(1S*,2R*)-2-(1-naphth­yl)cyclo­pent-3-en-1-yl]carbamate

Alan J Lough a,*, Ben P Machin b, William Tam b
PMCID: PMC2969270  PMID: 21582783

Abstract

The relative stereochemistry of the title compound, C20H23NO3, was established by X-ray analysis. The asymmetric unit contains two independent mol­ecules. In the crystal structure, each type of mol­ecule forms a centrosymmetric dimer via pairs of inter­molecular O—H⋯O hydrogen bonds, resulting in an R 2 2(10) loop in each case.

Related literature

For hydrogen-bond graph sets, see: Bernstein et al. (1995).graphic file with name e-65-o1481-scheme1.jpg

Experimental

Crystal data

  • C20H23NO3

  • M r = 325.39

  • Triclinic, Inline graphic

  • a = 8.4710 (5) Å

  • b = 8.4880 (4) Å

  • c = 26.1836 (12) Å

  • α = 95.980 (3)°

  • β = 95.419 (2)°

  • γ = 111.960 (2)°

  • V = 1718.32 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.22 × 0.18 × 0.14 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.918, T max = 0.989

  • 10769 measured reflections

  • 6622 independent reflections

  • 4089 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.167

  • S = 1.10

  • 6622 reflections

  • 448 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020315/hb2980sup1.cif

e-65-o1481-sup1.cif (27.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020315/hb2980Isup2.hkl

e-65-o1481-Isup2.hkl (324.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯O3Ai 0.96 (4) 1.75 (4) 2.689 (3) 165 (3)
O1B—H1OB⋯O3Bii 0.88 (3) 1.84 (4) 2.714 (3) 179 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors wish to acknowledge NSERC Canada and the University of Toronto for funding.

supplementary crystallographic information

Comment

We have recently studied the addition of aryl groups to a 3-aza-2-oxabicyclo[2.2.1]hept-5-ene system using a [Rh(COD)Cl]2 (COD = cyclooctadiene) catalyst. The reaction produces two stereoisomers, the absolute stereochemistry of the title major isomer,(I), was determined by single-crystal X-ray diffraction.

The asymmetric unit of (I) contains two independent molecules [A and B] which are shown in Figs 1 and 2. In the crystal structure, each type of molecule is linked into a centrosymmetric dimer via intermolecular O—H···O hydrogen bonds (Fig. 3). Each dimer forms a R22(10) graph set (Bernstein et al., 1995).

Experimental

3-aza-2-oxabicyclo[2.2.1]hept-5-ene (I) (see Fig. 4) (99.4 mg, 0.504 mmol) and 1-napthalene boronic acid (103.1 mg, 0.599 mmol) were weighed into a dry vial and purged with nitrogen. Dried MeOH (2.3 ml) was measured out into a dry vial and purged with nitrogen. Inside an inert atmosphere (Ar) dry box, [Rh(COD)Cl]2 (15.6 mg, 0.031 mmol) and (±)-BINAP (41.0 mg, 0.066 mmol) were weighed out and dissolved in methanol (1.0 ml), and stirred for 30 minutes. NaHCO3 (85.4 mg, 1.03 mmol) was added to the vial containing the bicyclic alkene and dissolved in MeOH (1.3 ml) and transferred to the vial with the catalyst. The reaction was heated to 333 K and stirred overnight. The crude product was purified using column chromatography (EtOAc:hexanes = 1:4) to give (II) as the major stereoisomer as an off white solid (58.1 mg, 0.179 mmol, 36%). Colourless blocks of (I) were grown from a solution of the title compound in dichloromethane/hexanes.

Refinement

H atoms bonded to C atoms were placed in calculated positions with C—H = 0.95–1.00 and they were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl C atoms. H atoms bonded to O atoms were located in difference maps and refined independently with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

View of molecule A of (I): displacement ellipsoids are drawn at the 30% probabilty level.

Fig. 2.

Fig. 2.

View of molecule B of (I): displacement ellipsoids are drawn at the 30% probabilty level.

Fig. 3.

Fig. 3.

Part of the crystal structure with hydrogen bonds shown as dashed lines.

Fig. 4.

Fig. 4.

The synthetic scheme

Crystal data

C20H23NO3 Z = 4
Mr = 325.39 F(000) = 696
Triclinic, P1 Dx = 1.258 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4710 (5) Å Cell parameters from 10769 reflections
b = 8.4880 (4) Å θ = 2.6–26.3°
c = 26.1836 (12) Å µ = 0.08 mm1
α = 95.980 (3)° T = 150 K
β = 95.419 (2)° Block, colourless
γ = 111.960 (2)° 0.22 × 0.18 × 0.14 mm
V = 1718.32 (15) Å3

Data collection

Nonius KappaCCD diffractometer 6622 independent reflections
Radiation source: fine-focus sealed tube 4089 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 9 pixels mm-1 θmax = 26.3°, θmin = 2.6°
φ scans and ω scans with κ offsets h = −10→10
Absorption correction: multi-scan (SORTAV; Blessing, 1995) k = −10→10
Tmin = 0.918, Tmax = 0.989 l = −32→30
10769 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.4209P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
6622 reflections Δρmax = 0.33 e Å3
448 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXTL (Version 6.1; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0086 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.6043 (2) 0.4234 (3) 0.45322 (7) 0.0357 (5)
H1OA 0.632 (5) 0.537 (5) 0.4709 (13) 0.077 (12)*
O2A 0.1728 (2) 0.2277 (2) 0.39933 (6) 0.0282 (4)
O3A 0.2995 (2) 0.2761 (2) 0.48346 (7) 0.0330 (5)
N1A 0.4517 (3) 0.3873 (3) 0.41951 (8) 0.0286 (5)
C1A 0.4750 (3) 0.3877 (3) 0.36519 (10) 0.0284 (6)
H2 0.3603 0.3618 0.3446 0.034*
C2A 0.5993 (4) 0.5614 (4) 0.35413 (11) 0.0401 (7)
H3 0.5380 0.6363 0.3455 0.048*
H4 0.6908 0.6217 0.3840 0.048*
C3A 0.6710 (4) 0.5081 (4) 0.30832 (11) 0.0417 (7)
H3A 0.7319 0.5847 0.2864 0.050*
C4A 0.6395 (4) 0.3422 (4) 0.30201 (11) 0.0396 (7)
H4A 0.6735 0.2855 0.2745 0.047*
C5A 0.5439 (3) 0.2528 (3) 0.34302 (10) 0.0297 (6)
H5 0.6280 0.2422 0.3705 0.036*
C6A 0.4023 (3) 0.0765 (3) 0.32410 (9) 0.0286 (6)
C7A 0.3103 (4) 0.0433 (4) 0.27530 (10) 0.0326 (7)
H6 0.3390 0.1303 0.2537 0.039*
C8A 0.1752 (4) −0.1155 (4) 0.25649 (10) 0.0363 (7)
H7 0.1135 −0.1342 0.2227 0.044*
C9A 0.1323 (4) −0.2427 (4) 0.28649 (11) 0.0367 (7)
H8 0.0412 −0.3500 0.2733 0.044*
C10A 0.2221 (3) −0.2172 (3) 0.33715 (10) 0.0306 (6)
C11A 0.1782 (4) −0.3471 (4) 0.36895 (11) 0.0372 (7)
H11A 0.0884 −0.4553 0.3558 0.045*
C12A 0.2619 (4) −0.3208 (4) 0.41804 (12) 0.0406 (7)
H12A 0.2302 −0.4096 0.4389 0.049*
C13A 0.3959 (4) −0.1609 (4) 0.43766 (11) 0.0374 (7)
H13A 0.4550 −0.1427 0.4718 0.045*
C14A 0.4416 (4) −0.0323 (3) 0.40817 (10) 0.0312 (6)
H14A 0.5312 0.0750 0.4223 0.037*
C15A 0.3582 (3) −0.0552 (3) 0.35665 (9) 0.0280 (6)
C16A 0.3056 (3) 0.2920 (3) 0.43773 (10) 0.0268 (6)
C17A −0.0021 (3) 0.1253 (3) 0.40984 (9) 0.0295 (6)
C18A −0.1061 (4) 0.0807 (4) 0.35615 (10) 0.0396 (7)
H18A −0.0993 0.1866 0.3429 0.059*
H18B −0.2264 0.0099 0.3581 0.059*
H18C −0.0597 0.0167 0.3327 0.059*
C19A −0.0044 (4) −0.0364 (3) 0.42982 (11) 0.0375 (7)
H19A 0.0770 −0.0054 0.4619 0.056*
H19B 0.0289 −0.1049 0.4037 0.056*
H19C −0.1204 −0.1036 0.4367 0.056*
C20A −0.0614 (4) 0.2358 (4) 0.44690 (11) 0.0369 (7)
H20A 0.0147 0.2710 0.4802 0.055*
H20B −0.1794 0.1694 0.4524 0.055*
H20C −0.0576 0.3381 0.4319 0.055*
O1B 0.4907 (3) 0.6687 (2) 0.05737 (8) 0.0385 (5)
H1OB 0.557 (5) 0.667 (5) 0.0335 (13) 0.071 (12)*
O2B 0.3481 (2) 0.2662 (2) 0.09741 (6) 0.0301 (4)
O3B 0.3099 (2) 0.3398 (2) 0.01728 (7) 0.0352 (5)
N1B 0.4828 (3) 0.5352 (3) 0.08597 (8) 0.0306 (5)
C1B 0.5343 (3) 0.5915 (3) 0.14138 (10) 0.0296 (6)
H10 0.5293 0.4885 0.1576 0.036*
C2B 0.7184 (4) 0.7273 (4) 0.15626 (11) 0.0381 (7)
H11 0.8036 0.6735 0.1596 0.046*
H12 0.7483 0.8080 0.1307 0.046*
C3B 0.7070 (4) 0.8157 (3) 0.20804 (11) 0.0380 (7)
H3B 0.8040 0.8856 0.2328 0.046*
C4B 0.5462 (4) 0.7841 (3) 0.21470 (11) 0.0369 (7)
H13 0.5138 0.8284 0.2450 0.044*
C5B 0.4195 (3) 0.6695 (3) 0.16871 (10) 0.0310 (6)
H14 0.3883 0.7435 0.1457 0.037*
C6B 0.2554 (3) 0.5356 (3) 0.18060 (10) 0.0276 (6)
C7B 0.2584 (4) 0.4624 (4) 0.22474 (10) 0.0351 (7)
H15 0.3642 0.4970 0.2472 0.042*
C8B 0.1108 (4) 0.3382 (4) 0.23788 (11) 0.0394 (7)
H16 0.1174 0.2898 0.2687 0.047*
C9B −0.0427 (4) 0.2871 (4) 0.20617 (11) 0.0404 (7)
H17 −0.1429 0.2046 0.2155 0.049*
C10B −0.0543 (4) 0.3553 (3) 0.15974 (11) 0.0349 (7)
C11B −0.2113 (4) 0.2982 (4) 0.12554 (12) 0.0440 (8)
H11B −0.3122 0.2162 0.1348 0.053*
C12B −0.2198 (4) 0.3590 (4) 0.07978 (12) 0.0459 (8)
H12B −0.3258 0.3179 0.0571 0.055*
C13B −0.0730 (4) 0.4820 (4) 0.06591 (11) 0.0422 (8)
H13B −0.0803 0.5254 0.0341 0.051*
C14B 0.0808 (4) 0.5398 (4) 0.09798 (10) 0.0330 (7)
H14B 0.1796 0.6218 0.0877 0.040*
C15B 0.0967 (3) 0.4806 (3) 0.14624 (10) 0.0292 (6)
C16B 0.3713 (3) 0.3763 (3) 0.06313 (10) 0.0286 (6)
C17B 0.2321 (4) 0.0831 (3) 0.08300 (10) 0.0312 (6)
C18B 0.2446 (4) 0.0185 (4) 0.13454 (10) 0.0426 (8)
H18D 0.3636 0.0327 0.1454 0.064*
H18E 0.1692 −0.1034 0.1307 0.064*
H18F 0.2091 0.0845 0.1608 0.064*
C19B 0.0503 (4) 0.0681 (4) 0.06712 (11) 0.0376 (7)
H19D 0.0130 0.1225 0.0958 0.056*
H19E −0.0263 −0.0535 0.0585 0.056*
H19F 0.0463 0.1255 0.0367 0.056*
C20B 0.2987 (4) −0.0052 (4) 0.04207 (11) 0.0381 (7)
H20D 0.4169 0.0097 0.0546 0.057*
H20E 0.2969 0.0455 0.0102 0.057*
H20F 0.2255 −0.1280 0.0349 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0266 (11) 0.0377 (12) 0.0348 (11) 0.0093 (9) −0.0081 (9) −0.0052 (9)
O2A 0.0224 (10) 0.0306 (10) 0.0256 (9) 0.0043 (8) 0.0011 (8) 0.0027 (8)
O3A 0.0349 (12) 0.0330 (11) 0.0258 (10) 0.0084 (9) 0.0014 (8) 0.0020 (8)
N1A 0.0230 (13) 0.0302 (12) 0.0263 (11) 0.0061 (10) −0.0029 (10) −0.0014 (9)
C1A 0.0262 (15) 0.0256 (14) 0.0287 (14) 0.0057 (12) 0.0013 (12) 0.0023 (11)
C2A 0.0356 (18) 0.0331 (16) 0.0432 (17) 0.0037 (14) 0.0048 (14) 0.0074 (13)
C3A 0.0304 (17) 0.0429 (19) 0.0475 (18) 0.0056 (15) 0.0090 (14) 0.0191 (15)
C4A 0.0335 (17) 0.051 (2) 0.0355 (16) 0.0153 (15) 0.0111 (13) 0.0087 (14)
C5A 0.0280 (15) 0.0317 (15) 0.0286 (14) 0.0103 (13) 0.0044 (12) 0.0049 (12)
C6A 0.0297 (16) 0.0320 (15) 0.0264 (14) 0.0150 (13) 0.0065 (12) 0.0003 (12)
C7A 0.0386 (17) 0.0340 (16) 0.0282 (14) 0.0178 (14) 0.0053 (13) 0.0031 (12)
C8A 0.0387 (18) 0.0415 (18) 0.0286 (15) 0.0192 (15) −0.0006 (13) −0.0048 (13)
C9A 0.0325 (17) 0.0327 (16) 0.0392 (16) 0.0102 (14) 0.0029 (13) −0.0074 (13)
C10A 0.0328 (16) 0.0265 (15) 0.0338 (15) 0.0138 (13) 0.0059 (13) 0.0002 (12)
C11A 0.0404 (18) 0.0241 (15) 0.0459 (18) 0.0119 (14) 0.0068 (15) 0.0020 (13)
C12A 0.049 (2) 0.0292 (16) 0.0482 (18) 0.0181 (15) 0.0119 (16) 0.0112 (14)
C13A 0.0421 (18) 0.0396 (17) 0.0337 (15) 0.0205 (15) 0.0026 (13) 0.0037 (13)
C14A 0.0332 (16) 0.0282 (15) 0.0318 (15) 0.0119 (13) 0.0033 (12) 0.0041 (12)
C15A 0.0291 (16) 0.0304 (15) 0.0282 (14) 0.0156 (13) 0.0068 (12) 0.0018 (12)
C16A 0.0265 (15) 0.0235 (14) 0.0276 (15) 0.0085 (12) −0.0004 (12) 0.0004 (11)
C17A 0.0230 (15) 0.0308 (15) 0.0284 (14) 0.0042 (12) 0.0030 (12) 0.0020 (12)
C18A 0.0299 (17) 0.0461 (18) 0.0353 (16) 0.0081 (14) 0.0022 (13) 0.0021 (14)
C19A 0.0388 (18) 0.0296 (16) 0.0397 (16) 0.0078 (14) 0.0090 (14) 0.0035 (13)
C20A 0.0299 (16) 0.0363 (16) 0.0429 (16) 0.0115 (14) 0.0085 (13) 0.0013 (13)
O1B 0.0491 (14) 0.0319 (11) 0.0389 (11) 0.0159 (10) 0.0155 (10) 0.0143 (9)
O2B 0.0367 (11) 0.0238 (10) 0.0248 (9) 0.0076 (9) −0.0009 (8) 0.0031 (8)
O3B 0.0370 (12) 0.0413 (12) 0.0261 (10) 0.0137 (10) 0.0046 (9) 0.0057 (8)
N1B 0.0369 (14) 0.0251 (12) 0.0304 (12) 0.0104 (11) 0.0089 (11) 0.0098 (10)
C1B 0.0288 (15) 0.0280 (15) 0.0300 (14) 0.0089 (13) 0.0053 (12) 0.0023 (12)
C2B 0.0279 (16) 0.0349 (16) 0.0458 (17) 0.0061 (13) 0.0072 (13) 0.0028 (14)
C3B 0.0324 (17) 0.0270 (15) 0.0453 (17) 0.0044 (13) 0.0003 (14) −0.0021 (13)
C4B 0.0405 (19) 0.0273 (15) 0.0360 (16) 0.0086 (14) 0.0044 (14) −0.0059 (12)
C5B 0.0291 (16) 0.0257 (15) 0.0374 (15) 0.0097 (13) 0.0050 (12) 0.0040 (12)
C6B 0.0276 (15) 0.0247 (14) 0.0309 (14) 0.0103 (12) 0.0077 (12) 0.0016 (11)
C7B 0.0342 (17) 0.0375 (17) 0.0350 (16) 0.0154 (14) 0.0082 (13) 0.0032 (13)
C8B 0.046 (2) 0.0403 (17) 0.0395 (16) 0.0207 (16) 0.0191 (15) 0.0131 (14)
C9B 0.0358 (18) 0.0336 (17) 0.0531 (19) 0.0122 (14) 0.0190 (16) 0.0054 (14)
C10B 0.0296 (17) 0.0305 (15) 0.0434 (17) 0.0112 (13) 0.0093 (14) −0.0013 (13)
C11B 0.0298 (17) 0.0405 (18) 0.058 (2) 0.0112 (15) 0.0101 (15) −0.0036 (16)
C12B 0.0288 (18) 0.053 (2) 0.054 (2) 0.0198 (16) −0.0016 (15) −0.0103 (17)
C13B 0.042 (2) 0.0512 (19) 0.0394 (17) 0.0276 (17) 0.0021 (15) 0.0004 (15)
C14B 0.0312 (16) 0.0338 (16) 0.0363 (16) 0.0154 (13) 0.0066 (13) 0.0031 (13)
C15B 0.0282 (16) 0.0256 (14) 0.0352 (15) 0.0126 (13) 0.0070 (12) −0.0003 (12)
C16B 0.0302 (16) 0.0331 (16) 0.0249 (14) 0.0143 (13) 0.0068 (12) 0.0054 (12)
C17B 0.0356 (17) 0.0216 (14) 0.0306 (14) 0.0062 (13) 0.0033 (12) −0.0006 (11)
C18B 0.057 (2) 0.0305 (16) 0.0341 (16) 0.0111 (15) 0.0031 (15) 0.0036 (13)
C19B 0.0315 (17) 0.0350 (16) 0.0384 (16) 0.0064 (14) 0.0063 (13) −0.0050 (13)
C20B 0.0380 (18) 0.0313 (16) 0.0429 (16) 0.0133 (14) 0.0045 (14) −0.0019 (13)

Geometric parameters (Å, °)

O1A—N1A 1.405 (3) O1B—N1B 1.407 (3)
O1A—H1OA 0.96 (4) O1B—H1OB 0.88 (3)
O2A—C16A 1.337 (3) O2B—C16B 1.337 (3)
O2A—C17A 1.480 (3) O2B—C17B 1.479 (3)
O3A—C16A 1.223 (3) O3B—C16B 1.222 (3)
N1A—C16A 1.363 (3) N1B—C16B 1.357 (3)
N1A—C1A 1.454 (3) N1B—C1B 1.450 (3)
C1A—C2A 1.534 (4) C1B—C2B 1.536 (4)
C1A—C5A 1.554 (3) C1B—C5B 1.553 (3)
C1A—H2 1.0000 C1B—H10 1.0000
C2A—C3A 1.497 (4) C2B—C3B 1.509 (4)
C2A—H3 0.9900 C2B—H11 0.9900
C2A—H4 0.9900 C2B—H12 0.9900
C3A—C4A 1.321 (4) C3B—C4B 1.319 (4)
C3A—H3A 0.9500 C3B—H3B 0.9500
C4A—C5A 1.503 (4) C4B—C5B 1.510 (4)
C4A—H4A 0.9500 C4B—H13 0.9500
C5A—C6A 1.521 (4) C5B—C6B 1.515 (4)
C5A—H5 1.0000 C5B—H14 1.0000
C6A—C7A 1.375 (4) C6B—C7B 1.371 (4)
C6A—C15A 1.436 (4) C6B—C15B 1.431 (4)
C7A—C8A 1.404 (4) C7B—C8B 1.402 (4)
C7A—H6 0.9500 C7B—H15 0.9500
C8A—C9A 1.361 (4) C8B—C9B 1.366 (4)
C8A—H7 0.9500 C8B—H16 0.9500
C9A—C10A 1.418 (4) C9B—C10B 1.410 (4)
C9A—H8 0.9500 C9B—H17 0.9500
C10A—C11A 1.411 (4) C10B—C11B 1.417 (4)
C10A—C15A 1.427 (4) C10B—C15B 1.428 (4)
C11A—C12A 1.362 (4) C11B—C12B 1.359 (4)
C11A—H11A 0.9500 C11B—H11B 0.9500
C12A—C13A 1.409 (4) C12B—C13B 1.400 (4)
C12A—H12A 0.9500 C12B—H12B 0.9500
C13A—C14A 1.362 (4) C13B—C14B 1.369 (4)
C13A—H13A 0.9500 C13B—H13B 0.9500
C14A—C15A 1.421 (4) C14B—C15B 1.421 (4)
C14A—H14A 0.9500 C14B—H14B 0.9500
C17A—C19A 1.513 (4) C17B—C19B 1.511 (4)
C17A—C18A 1.517 (4) C17B—C20B 1.514 (3)
C17A—C20A 1.526 (3) C17B—C18B 1.518 (4)
C18A—H18A 0.9800 C18B—H18D 0.9800
C18A—H18B 0.9800 C18B—H18E 0.9800
C18A—H18C 0.9800 C18B—H18F 0.9800
C19A—H19A 0.9800 C19B—H19D 0.9800
C19A—H19B 0.9800 C19B—H19E 0.9800
C19A—H19C 0.9800 C19B—H19F 0.9800
C20A—H20A 0.9800 C20B—H20D 0.9800
C20A—H20B 0.9800 C20B—H20E 0.9800
C20A—H20C 0.9800 C20B—H20F 0.9800
N1A—O1A—H1OA 104 (2) N1B—O1B—H1OB 107 (2)
C16A—O2A—C17A 120.66 (19) C16B—O2B—C17B 121.51 (19)
C16A—N1A—O1A 114.3 (2) C16B—N1B—O1B 115.0 (2)
C16A—N1A—C1A 125.8 (2) C16B—N1B—C1B 125.7 (2)
O1A—N1A—C1A 113.7 (2) O1B—N1B—C1B 113.83 (19)
N1A—C1A—C2A 113.2 (2) N1B—C1B—C2B 114.0 (2)
N1A—C1A—C5A 114.6 (2) N1B—C1B—C5B 115.4 (2)
C2A—C1A—C5A 105.8 (2) C2B—C1B—C5B 105.2 (2)
N1A—C1A—H2 107.7 N1B—C1B—H10 107.3
C2A—C1A—H2 107.7 C2B—C1B—H10 107.3
C5A—C1A—H2 107.7 C5B—C1B—H10 107.3
C3A—C2A—C1A 101.8 (2) C3B—C2B—C1B 101.4 (2)
C3A—C2A—H3 111.4 C3B—C2B—H11 111.5
C1A—C2A—H3 111.4 C1B—C2B—H11 111.5
C3A—C2A—H4 111.4 C3B—C2B—H12 111.5
C1A—C2A—H4 111.4 C1B—C2B—H12 111.5
H3—C2A—H4 109.3 H11—C2B—H12 109.3
C4A—C3A—C2A 112.1 (3) C4B—C3B—C2B 111.8 (3)
C4A—C3A—H3A 124.0 C4B—C3B—H3B 124.1
C2A—C3A—H3A 124.0 C2B—C3B—H3B 124.1
C3A—C4A—C5A 112.6 (2) C3B—C4B—C5B 112.3 (2)
C3A—C4A—H4A 123.7 C3B—C4B—H13 123.8
C5A—C4A—H4A 123.7 C5B—C4B—H13 123.8
C4A—C5A—C6A 115.7 (2) C4B—C5B—C6B 116.6 (2)
C4A—C5A—C1A 100.6 (2) C4B—C5B—C1B 100.6 (2)
C6A—C5A—C1A 113.1 (2) C6B—C5B—C1B 113.5 (2)
C4A—C5A—H5 109.0 C4B—C5B—H14 108.6
C6A—C5A—H5 109.0 C6B—C5B—H14 108.6
C1A—C5A—H5 109.0 C1B—C5B—H14 108.6
C7A—C6A—C15A 118.9 (2) C7B—C6B—C15B 118.8 (3)
C7A—C6A—C5A 119.6 (2) C7B—C6B—C5B 119.6 (2)
C15A—C6A—C5A 121.5 (2) C15B—C6B—C5B 121.6 (2)
C6A—C7A—C8A 121.9 (3) C6B—C7B—C8B 122.3 (3)
C6A—C7A—H6 119.1 C6B—C7B—H15 118.9
C8A—C7A—H6 119.1 C8B—C7B—H15 118.9
C9A—C8A—C7A 120.2 (3) C9B—C8B—C7B 119.8 (3)
C9A—C8A—H7 119.9 C9B—C8B—H16 120.1
C7A—C8A—H7 119.9 C7B—C8B—H16 120.1
C8A—C9A—C10A 120.8 (3) C8B—C9B—C10B 120.9 (3)
C8A—C9A—H8 119.6 C8B—C9B—H17 119.5
C10A—C9A—H8 119.6 C10B—C9B—H17 119.5
C11A—C10A—C9A 121.6 (3) C9B—C10B—C11B 121.4 (3)
C11A—C10A—C15A 119.3 (2) C9B—C10B—C15B 119.2 (3)
C9A—C10A—C15A 119.1 (2) C11B—C10B—C15B 119.4 (3)
C12A—C11A—C10A 121.4 (3) C12B—C11B—C10B 121.0 (3)
C12A—C11A—H11A 119.3 C12B—C11B—H11B 119.5
C10A—C11A—H11A 119.3 C10B—C11B—H11B 119.5
C11A—C12A—C13A 119.6 (3) C11B—C12B—C13B 120.3 (3)
C11A—C12A—H12A 120.2 C11B—C12B—H12B 119.8
C13A—C12A—H12A 120.2 C13B—C12B—H12B 119.8
C14A—C13A—C12A 120.7 (3) C14B—C13B—C12B 120.2 (3)
C14A—C13A—H13A 119.7 C14B—C13B—H13B 119.9
C12A—C13A—H13A 119.7 C12B—C13B—H13B 119.9
C13A—C14A—C15A 121.4 (3) C13B—C14B—C15B 121.8 (3)
C13A—C14A—H14A 119.3 C13B—C14B—H14B 119.1
C15A—C14A—H14A 119.3 C15B—C14B—H14B 119.1
C14A—C15A—C10A 117.6 (2) C14B—C15B—C10B 117.2 (3)
C14A—C15A—C6A 123.3 (2) C14B—C15B—C6B 123.6 (3)
C10A—C15A—C6A 119.1 (2) C10B—C15B—C6B 119.1 (2)
O3A—C16A—O2A 126.1 (2) O3B—C16B—O2B 125.9 (2)
O3A—C16A—N1A 123.3 (2) O3B—C16B—N1B 124.1 (2)
O2A—C16A—N1A 110.4 (2) O2B—C16B—N1B 109.9 (2)
O2A—C17A—C19A 109.8 (2) O2B—C17B—C19B 109.9 (2)
O2A—C17A—C18A 101.86 (19) O2B—C17B—C20B 110.5 (2)
C19A—C17A—C18A 110.2 (2) C19B—C17B—C20B 113.5 (2)
O2A—C17A—C20A 109.7 (2) O2B—C17B—C18B 100.9 (2)
C19A—C17A—C20A 113.1 (2) C19B—C17B—C18B 109.6 (2)
C18A—C17A—C20A 111.5 (2) C20B—C17B—C18B 111.6 (2)
C17A—C18A—H18A 109.5 C17B—C18B—H18D 109.5
C17A—C18A—H18B 109.5 C17B—C18B—H18E 109.5
H18A—C18A—H18B 109.5 H18D—C18B—H18E 109.5
C17A—C18A—H18C 109.5 C17B—C18B—H18F 109.5
H18A—C18A—H18C 109.5 H18D—C18B—H18F 109.5
H18B—C18A—H18C 109.5 H18E—C18B—H18F 109.5
C17A—C19A—H19A 109.5 C17B—C19B—H19D 109.5
C17A—C19A—H19B 109.5 C17B—C19B—H19E 109.5
H19A—C19A—H19B 109.5 H19D—C19B—H19E 109.5
C17A—C19A—H19C 109.5 C17B—C19B—H19F 109.5
H19A—C19A—H19C 109.5 H19D—C19B—H19F 109.5
H19B—C19A—H19C 109.5 H19E—C19B—H19F 109.5
C17A—C20A—H20A 109.5 C17B—C20B—H20D 109.5
C17A—C20A—H20B 109.5 C17B—C20B—H20E 109.5
H20A—C20A—H20B 109.5 H20D—C20B—H20E 109.5
C17A—C20A—H20C 109.5 C17B—C20B—H20F 109.5
H20A—C20A—H20C 109.5 H20D—C20B—H20F 109.5
H20B—C20A—H20C 109.5 H20E—C20B—H20F 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1A—H1OA···O3Ai 0.96 (4) 1.75 (4) 2.689 (3) 165 (3)
O1B—H1OB···O3Bii 0.88 (3) 1.84 (4) 2.714 (3) 179 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2980).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  4. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020315/hb2980sup1.cif

e-65-o1481-sup1.cif (27.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020315/hb2980Isup2.hkl

e-65-o1481-Isup2.hkl (324.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES