Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):m831. doi: 10.1107/S1600536809023940

Diaqua­bis{2-[5-(2-pyrid­yl)-2H-tetra­zol-2-yl]acetato-κ2 N 4,N 5}zinc(II)

Bo Wang a,*
PMCID: PMC2969273  PMID: 21582749

Abstract

The title compound, [Zn(C8H6N5O2)2(H2O)2], was synthesized by hydro­thermal reaction of ZnBr2 with 2-[5-(2-pyrid­yl)-2H-tetra­zol-2-yl]acetic acid. The ZnII atom lies on an inversion center in a distorted octa­hedral environment with two planar trans-related N,N′-chelating 2-[5-(2-pyrid­yl)-2H-tetra­zol-2-yl]acetic acid ligands in the equatorial plane and two water mol­ecules in the axial positions. In the crystal, O—H⋯O hydrogen bonds generate an infinite three-dimensional network.

Related literature

For the chemisty of tetra­zoles, see: Fu et al. (2008); Dai & Fu (2008); Wang et al. (2005); Wen (2008); Wittenberger & Donner (1993).graphic file with name e-65-0m831-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H6N5O2)2(H2O)2]

  • M r = 509.76

  • Monoclinic, Inline graphic

  • a = 7.6407 (15) Å

  • b = 8.2583 (17) Å

  • c = 15.155 (3) Å

  • β = 97.17 (3)°

  • V = 948.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 298 K

  • 0.35 × 0.25 × 0.20 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.762, T max = 0.841 (expected range = 0.690–0.762)

  • 9600 measured reflections

  • 2177 independent reflections

  • 1984 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.075

  • S = 1.11

  • 2177 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023940/dn2467sup1.cif

e-65-0m831-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023940/dn2467Isup2.hkl

e-65-0m831-Isup2.hkl (104.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O1i 0.85 1.85 2.6891 (19) 172
O1W—H1WA⋯O2ii 0.85 1.80 2.6365 (17) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

The tetrazole functional group has found a wide range of applications in coordination chemistry as ligands, in medicinal chemistry as a metabolically stable surrogate for a carboxylic acid group, and in materials science as high density energy materials(Wang et al., 2005; Fu et al., 2008; Wittenberger et al.,1993). We report here the crystal structure of the title compound, Bis[2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetic-K2N1,N2]Zinc(II).

In the title compound, the ZnII atom lies on an inversion center. The distorted octahedral ZnII environment contains two planar trans-related N,N-chelating 2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetic acid ligands in the equatorial plane and two water ligands in the axial positions. The pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 7.06 ( 1 )°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Wittenberger et al., 1993; Dai & Fu 2008; Wen 2008).

The O atoms from water molecules are involved in intermolecular O—H···O hydrogen bonds building up an infinite three-dimensional network (Table 1 and Fig.2).

Experimental

A mixture of 2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetic acid (0.2 mmol), ZnBr2 (0.4 mmol), distilled water (1 ml) and a few drops of ethanol sealed in a glass tube was maintained at 110 °C. Colorless block crystals suitable for X-ray analysis were obtained after 3 days.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.93 Å (aromatic) and 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule located in difference Fourier maps and freely refined using restraints (O-H= 0.85Å and H···H= 1.39Å with Uĩso~(H) = 1.5U~eq~(O). In the last stage of refinement they were treated as riding on the O atom.

Figures

Fig. 1.

Fig. 1.

Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.[Symmetry codes: (i) -x+1, -y+1, -z+1]

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis showing the three dimensionnal hydrogen bondings network (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[Zn(C8H6N5O2)2(H2O)2] F(000) = 520
Mr = 509.76 Dx = 1.784 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1984 reflections
a = 7.6407 (15) Å θ = 3.6–27.5°
b = 8.2583 (17) Å µ = 1.36 mm1
c = 15.155 (3) Å T = 298 K
β = 97.17 (3)° Block, colorless
V = 948.8 (3) Å3 0.35 × 0.25 × 0.20 mm
Z = 2

Data collection

Rigaku Mercury2 diffractometer 2177 independent reflections
Radiation source: fine-focus sealed tube 1984 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.6°
CCD profile fitting scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −10→10
Tmin = 0.762, Tmax = 0.841 l = −19→19
9600 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3221P] where P = (Fo2 + 2Fc2)/3
2177 reflections (Δ/σ)max < 0.001
151 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 0.5000 0.5000 0.02160 (10)
N1 0.32018 (18) 0.61053 (17) 0.39557 (9) 0.0230 (3)
O1W 0.72023 (15) 0.59206 (14) 0.44676 (8) 0.0267 (3)
H1WA 0.7564 0.5199 0.4135 0.040*
H1WB 0.8013 0.6233 0.4865 0.040*
N5 0.45085 (17) 0.73160 (16) 0.55431 (9) 0.0212 (3)
O1 −0.0465 (2) 0.79027 (18) 0.07872 (9) 0.0417 (3)
N2 0.22867 (19) 0.57379 (18) 0.31894 (9) 0.0253 (3)
O2 0.16960 (18) 0.89846 (16) 0.17318 (8) 0.0353 (3)
N3 0.11283 (18) 0.68988 (17) 0.30393 (9) 0.0238 (3)
C5 0.3275 (2) 0.82286 (19) 0.50739 (10) 0.0211 (3)
C6 0.2532 (2) 0.74873 (19) 0.42345 (10) 0.0213 (3)
N4 0.12076 (19) 0.80232 (17) 0.36653 (9) 0.0260 (3)
C1 0.5300 (2) 0.7902 (2) 0.63096 (11) 0.0275 (4)
H1 0.6149 0.7271 0.6643 0.033*
C4 0.2795 (2) 0.9734 (2) 0.53507 (12) 0.0281 (4)
H4 0.1925 1.0336 0.5013 0.034*
C2 0.4912 (3) 0.9404 (2) 0.66288 (12) 0.0320 (4)
H2 0.5501 0.9787 0.7162 0.038*
C3 0.3640 (3) 1.0324 (2) 0.61438 (13) 0.0330 (4)
H3 0.3349 1.1339 0.6348 0.040*
C7 −0.0122 (2) 0.6946 (2) 0.22339 (11) 0.0303 (4)
H7A −0.1255 0.7307 0.2384 0.036*
H7B −0.0273 0.5858 0.1996 0.036*
C8 0.0445 (2) 0.8059 (2) 0.15154 (11) 0.0258 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02190 (16) 0.02041 (15) 0.02109 (15) 0.00495 (9) −0.00280 (10) −0.00076 (9)
N1 0.0233 (7) 0.0239 (7) 0.0206 (6) 0.0030 (5) −0.0022 (5) 0.0012 (5)
O1W 0.0250 (6) 0.0283 (6) 0.0263 (6) 0.0004 (5) 0.0008 (5) −0.0052 (5)
N5 0.0203 (6) 0.0205 (6) 0.0221 (7) 0.0006 (5) −0.0002 (5) 0.0001 (5)
O1 0.0499 (8) 0.0481 (9) 0.0238 (6) 0.0109 (7) −0.0081 (6) 0.0047 (6)
N2 0.0269 (7) 0.0258 (7) 0.0213 (7) 0.0009 (6) −0.0041 (5) 0.0027 (5)
O2 0.0390 (7) 0.0371 (7) 0.0304 (7) −0.0054 (6) 0.0071 (5) 0.0062 (6)
N3 0.0234 (7) 0.0250 (7) 0.0211 (7) −0.0008 (5) −0.0043 (5) 0.0048 (5)
C5 0.0198 (7) 0.0216 (7) 0.0217 (8) −0.0003 (6) 0.0018 (6) 0.0029 (6)
C6 0.0211 (7) 0.0211 (7) 0.0214 (8) 0.0005 (6) 0.0012 (6) 0.0044 (6)
N4 0.0254 (7) 0.0257 (7) 0.0253 (7) 0.0031 (6) −0.0031 (5) 0.0032 (6)
C1 0.0249 (8) 0.0301 (9) 0.0258 (8) −0.0007 (7) −0.0034 (7) −0.0010 (7)
C4 0.0293 (9) 0.0231 (8) 0.0317 (9) 0.0049 (7) 0.0035 (7) 0.0030 (7)
C2 0.0362 (10) 0.0319 (9) 0.0270 (9) −0.0047 (8) 0.0002 (7) −0.0069 (7)
C3 0.0430 (11) 0.0229 (8) 0.0342 (10) 0.0004 (7) 0.0089 (8) −0.0060 (7)
C7 0.0284 (9) 0.0334 (9) 0.0254 (8) −0.0047 (7) −0.0109 (7) 0.0067 (7)
C8 0.0292 (8) 0.0260 (8) 0.0217 (8) 0.0103 (7) 0.0012 (6) 0.0034 (6)

Geometric parameters (Å, °)

Zn1—O1W 2.0974 (13) N3—N4 1.324 (2)
Zn1—O1Wi 2.0974 (13) N3—C7 1.453 (2)
Zn1—N5 2.1340 (14) C5—C4 1.377 (2)
Zn1—N5i 2.1340 (14) C5—C6 1.461 (2)
Zn1—N1i 2.1640 (14) C6—N4 1.321 (2)
Zn1—N1 2.1640 (14) C1—C2 1.377 (3)
N1—N2 1.3142 (19) C1—H1 0.9300
N1—C6 1.341 (2) C4—C3 1.380 (3)
O1W—H1WA 0.8486 C4—H4 0.9300
O1W—H1WB 0.8480 C2—C3 1.373 (3)
N5—C1 1.332 (2) C2—H2 0.9300
N5—C5 1.339 (2) C3—H3 0.9300
O1—C8 1.235 (2) C7—C8 1.529 (2)
N2—N3 1.305 (2) C7—H7A 0.9700
O2—C8 1.236 (2) C7—H7B 0.9700
O1W—Zn1—O1Wi 180.0 N5—C5—C4 122.90 (15)
O1W—Zn1—N5 90.67 (5) N5—C5—C6 113.44 (14)
O1Wi—Zn1—N5 89.33 (5) C4—C5—C6 123.65 (15)
O1W—Zn1—N5i 89.33 (5) N4—C6—N1 111.77 (14)
O1Wi—Zn1—N5i 90.67 (5) N4—C6—C5 127.65 (15)
N5—Zn1—N5i 180.000 (1) N1—C6—C5 120.58 (14)
O1W—Zn1—N1i 88.14 (5) C6—N4—N3 101.29 (13)
O1Wi—Zn1—N1i 91.86 (5) N5—C1—C2 122.66 (16)
N5—Zn1—N1i 102.84 (5) N5—C1—H1 118.7
N5i—Zn1—N1i 77.16 (5) C2—C1—H1 118.7
O1W—Zn1—N1 91.86 (5) C5—C4—C3 118.07 (17)
O1Wi—Zn1—N1 88.14 (5) C5—C4—H4 121.0
N5—Zn1—N1 77.16 (5) C3—C4—H4 121.0
N5i—Zn1—N1 102.84 (5) C3—C2—C1 118.66 (17)
N1i—Zn1—N1 180.0 C3—C2—H2 120.7
N2—N1—C6 107.04 (13) C1—C2—H2 120.7
N2—N1—Zn1 140.18 (11) C2—C3—C4 119.59 (17)
C6—N1—Zn1 111.18 (10) C2—C3—H3 120.2
Zn1—O1W—H1WA 108.1 C4—C3—H3 120.2
Zn1—O1W—H1WB 112.8 N3—C7—C8 113.54 (14)
H1WA—O1W—H1WB 111.8 N3—C7—H7A 108.9
C1—N5—C5 118.12 (14) C8—C7—H7A 108.9
C1—N5—Zn1 125.41 (11) N3—C7—H7B 108.9
C5—N5—Zn1 116.46 (11) C8—C7—H7B 108.9
N3—N2—N1 105.00 (13) H7A—C7—H7B 107.7
N2—N3—N4 114.90 (13) O1—C8—O2 129.21 (17)
N2—N3—C7 121.74 (15) O1—C8—C7 113.30 (16)
N4—N3—C7 123.35 (14) O2—C8—C7 117.48 (15)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WB···O1ii 0.85 1.85 2.6891 (19) 172
O1W—H1WA···O2iii 0.85 1.80 2.6365 (17) 169

Symmetry codes: (ii) x+1, −y+3/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2467).

References

  1. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  2. Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des.8, 3461–3464.
  5. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [DOI] [PubMed]
  8. Wen, X.-C. (2008). Acta Cryst. E64, m768. [DOI] [PMC free article] [PubMed]
  9. Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem.58, 4139–4141.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023940/dn2467sup1.cif

e-65-0m831-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023940/dn2467Isup2.hkl

e-65-0m831-Isup2.hkl (104.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES