Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1626. doi: 10.1107/S1600536809022119

3-(4-Fluoro­phen­yl)-6-meth­oxy-2-(4-pyrid­yl)quinoxaline

Hartmut Jahns a, Pierre Koch a, Dieter Schollmeyer b, Stefan Laufer a,*
PMCID: PMC2969274  PMID: 21582893

Abstract

In the title compound, C20H14FN3O, the quinoxaline system makes dihedral angles of 32.38 (7) and 48.04 (7)° with the 4-fluoro­phenyl and pyridine rings, respectively. The 4-fluoro­phenyl ring makes a dihedral angle of 57.77 (9)° with the pyridine ring. In the crystal, the mol­ecules form dimeric C—H⋯N hydrogen-bonded R 2 2(20) ring motifs lying about crystallographic inversion centers. The dimeric units stack via π–π inter­actions between methoxy­phenyl rings and pyridine–fluoro­phenyl rings with centroid–centroid distances of 3.720 (1) and 3.823 (1) Å, respectively. The respective average perpendicular distances are 3.421 and 3.378 Å, with dihedral angles between the rings of 1.31 (9) and 11.64 (9)°.

Related literature

Many chinoxaline derivatives have been prepared and their biological activity have been studied, see: He et al. (2003); Kim et al. (2004). For inter­molecular C—H⋯N hydrogen bonds, see: Taylor & Kennard (1982). For distinct ring motifs formed via O—H⋯N hydrogen bonds, see: Habib & Janiak (2008); Friščič & MacGillivray (2003). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-65-o1626-scheme1.jpg

Experimental

Crystal data

  • C20H14FN3O

  • M r = 331.34

  • Orthorhombic, Inline graphic

  • a = 7.3886 (4) Å

  • b = 12.2071 (8) Å

  • c = 34.562 (6) Å

  • V = 3117.3 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 193 K

  • 0.45 × 0.22 × 0.13 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2950 measured reflections

  • 2950 independent reflections

  • 2542 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.124

  • S = 1.05

  • 2950 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022119/si2176sup1.cif

e-65-o1626-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022119/si2176Isup2.hkl

e-65-o1626-Isup2.hkl (144.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N21i 0.95 2.44 3.368 (3) 165

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Functionalized quinoxaline derivatives are well known in pharmaceutical industry. They have been shown to possess antibacterial activity (Kim et al. 2004) and as PDGF-R tyrosine kinase inhibitors (He et al. 2003).

The title compound, (I), was prepared in the course of our studies on 2-(2-alkylaminopyridin-4-yl)-3-(4-fluorophenyl)quinoxalines as potent p38 mitogen-activated protein (MAP) kinase inhibitors. The two molecules of I are connected into a centrosymmetric dimer by intermolecular C15–H15···N21 hydrogen bonds [graph set R22(20) (Bernstein et al. 1995)] (Fig.1 and Table 1). By searching the CCDC a similar O—H···N hydrogen bond pattern could be found in the structure EHOTUQ (Friščič & MacGillivray 2003), with a R44(46) ring system. A variety of distinct ring motifs formed via hydrogen bonded donors and acceptors (O—H···O, O—H···N) has been described for the 4/1/2 adduct of benzene-1,3,5-tricarboxylic acid, 1,2-bis(1,2,4-triazol-4-yl)ethane and water by Habib & Janiak (2008). The C—H···N hydrogen bond of the title compound (Table 1) confirms the hydrogen-bond geometry values reviewed by Taylor & Kennard (1982), where the C—H···N distances vary between 2.523 Å and 2.721 Å, and the angles around the H atom range between 124.6° and 157.3°. The quinoxaline ring makes dihedral angles of 32.38 (7)° and 48.04 (7)° to the 4-fluorophenyl ring and the pyridine ring, respectively. The 4-fluorophenyl ring makes dihedral angles of 57.77 (9)° with the pyridine ring.

π—π interactions between the pyridin rings and the 4-fluorophenyl rings along the b axis have Cg2···Cg4ii distances of 3.823 (1) Å, and the distances between Cg3···Cg3iii of the methoxyphenyl rings are 3.720 (1) Å along the a axis (Fig. 2). The respective average perpendicular stacking distances are 3.378 Å and 3.421 Å, with dihedral angles between the rings 1.31° and 11.64°. Symmetry codes ii = 1/2 - x, 1/2 + y, z; iii = -1/2 + xy, 3/2 - z. Cg2, Cg3 and Cg4 are the centroids of rings N21, C20, C19, C18, C23, C22; C4 - C9; and C11 - C16.

Experimental

The title compound I was prepared by irradiating 1-(4-fluorophenyl)-2-(pyridin-4-yl)ethane-1,2-dion (137 mg, 0.6 mmol), o-phenylendiamine (82 mg, 0.6 mmol) and methanol-acetic acid (9:1, 6 ml) in a sealed tube at 433 K for 5 min by moderating the initial microwave power (250 W). After the mixture was cooled to room temperature in a stream of compressed air, the solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, from petroleum ether/ ethyl acetate 2:1 to 1:2) to yield 82 mg of I. Crystals suitable for X-ray analysis were obtained by slow crystallization from diethylether/n-hexane.

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). The structure was solved using a preliminary data collection set. The final measurement on CAD4-diffractometer covered only 1/8 (unique reflection) of the reflection sphere, thus Rint = 0.0000.

Figures

Fig. 1.

Fig. 1.

View of the centrosymmetric dimer of I. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size. Hydrogen bonds with dashed lines. Symmetry code a: -x, -y, 1-z.

Fig. 2.

Fig. 2.

A section of the crystal structure of the title compound, viewed along the b axis. Aromatic rings involved in π—π stacking interactions are shown in red and blue. Hydrogen bonds with dashed lines.

Crystal data

C20H14FN3O F(000) = 1376
Mr = 331.34 Dx = 1.412 Mg m3
Orthorhombic, Pbca Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2ab Cell parameters from 25 reflections
a = 7.3886 (4) Å θ = 61–69°
b = 12.2071 (8) Å µ = 0.80 mm1
c = 34.562 (6) Å T = 193 K
V = 3117.3 (6) Å3 Plate, colourless
Z = 8 0.45 × 0.22 × 0.13 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.0000
Radiation source: FR571 rotating anode θmax = 70.1°, θmin = 2.6°
graphite h = 0→8
ω/2θ scans k = 0→14
2950 measured reflections l = 0→42
2950 independent reflections 3 standard reflections every 60 min
2542 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.063P)2 + 1.8096P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2950 reflections Δρmax = 0.32 e Å3
228 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0024 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0332 (2) 0.08992 (13) 0.65003 (5) 0.0212 (4)
C2 0.1240 (2) −0.01069 (13) 0.64015 (5) 0.0234 (4)
N3 0.1695 (2) −0.08283 (11) 0.66708 (4) 0.0248 (3)
C4 0.1415 (2) −0.05500 (14) 0.70477 (5) 0.0241 (4)
C5 0.1912 (2) −0.12816 (15) 0.73464 (5) 0.0280 (4)
H5 0.2383 −0.1984 0.7284 0.034*
C6 0.1717 (3) −0.09798 (15) 0.77228 (5) 0.0290 (4)
H6 0.2040 −0.1478 0.7922 0.035*
C7 0.1034 (2) 0.00738 (15) 0.78208 (5) 0.0257 (4)
C8 0.0529 (2) 0.07962 (14) 0.75376 (5) 0.0253 (4)
H8 0.0074 0.1499 0.7604 0.030*
C9 0.0691 (2) 0.04866 (14) 0.71462 (5) 0.0224 (4)
N10 0.01133 (19) 0.11909 (11) 0.68664 (4) 0.0228 (3)
C11 −0.0457 (2) 0.16507 (13) 0.62087 (5) 0.0214 (4)
C12 −0.0501 (2) 0.27756 (14) 0.62867 (5) 0.0240 (4)
H12 0.0020 0.3047 0.6519 0.029*
C13 −0.1297 (3) 0.34958 (14) 0.60292 (5) 0.0277 (4)
H13 −0.1341 0.4258 0.6084 0.033*
C14 −0.2026 (2) 0.30841 (15) 0.56913 (5) 0.0277 (4)
C15 −0.2047 (3) 0.19825 (15) 0.56049 (5) 0.0286 (4)
H15 −0.2590 0.1720 0.5374 0.034*
C16 −0.1249 (2) 0.12698 (14) 0.58669 (5) 0.0258 (4)
H16 −0.1240 0.0507 0.5813 0.031*
F17 −0.27461 (17) 0.37943 (9) 0.54317 (3) 0.0401 (3)
C18 0.1841 (2) −0.03833 (14) 0.60030 (5) 0.0239 (4)
C19 0.1592 (3) −0.14261 (14) 0.58520 (5) 0.0286 (4)
H19 0.0981 −0.1973 0.5998 0.034*
C20 0.2249 (3) −0.16553 (15) 0.54863 (5) 0.0340 (4)
H20 0.2038 −0.2367 0.5385 0.041*
N21 0.3161 (2) −0.09438 (13) 0.52658 (5) 0.0344 (4)
C22 0.3408 (3) 0.00561 (15) 0.54154 (5) 0.0317 (4)
H22 0.4053 0.0580 0.5266 0.038*
C23 0.2776 (2) 0.03680 (14) 0.57757 (5) 0.0272 (4)
H23 0.2979 0.1091 0.5867 0.033*
O24 0.09436 (18) 0.02718 (11) 0.82084 (3) 0.0324 (3)
C25 0.0370 (3) 0.13400 (17) 0.83218 (6) 0.0356 (5)
H25A 0.1183 0.1888 0.8209 0.053*
H25B 0.0400 0.1398 0.8605 0.053*
H25C −0.0866 0.1468 0.8230 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0199 (8) 0.0226 (8) 0.0211 (8) −0.0022 (6) 0.0009 (6) −0.0003 (6)
C2 0.0229 (8) 0.0223 (8) 0.0248 (8) −0.0015 (7) 0.0009 (7) 0.0012 (6)
N3 0.0253 (7) 0.0243 (7) 0.0249 (7) 0.0000 (6) 0.0026 (6) 0.0024 (6)
C4 0.0201 (8) 0.0264 (8) 0.0259 (8) −0.0007 (7) 0.0018 (6) 0.0031 (7)
C5 0.0270 (9) 0.0260 (8) 0.0311 (9) 0.0018 (7) 0.0026 (7) 0.0058 (7)
C6 0.0267 (9) 0.0313 (9) 0.0289 (9) 0.0013 (8) −0.0004 (7) 0.0100 (7)
C7 0.0207 (8) 0.0355 (10) 0.0209 (8) −0.0039 (7) 0.0012 (7) 0.0049 (7)
C8 0.0237 (8) 0.0265 (8) 0.0257 (8) −0.0004 (7) 0.0014 (7) 0.0011 (7)
C9 0.0184 (8) 0.0254 (8) 0.0234 (8) −0.0022 (7) 0.0004 (6) 0.0038 (7)
N10 0.0225 (7) 0.0237 (7) 0.0221 (7) −0.0001 (6) 0.0002 (6) 0.0013 (6)
C11 0.0195 (8) 0.0225 (8) 0.0220 (8) −0.0002 (6) 0.0024 (6) −0.0002 (6)
C12 0.0225 (8) 0.0248 (8) 0.0246 (8) −0.0003 (6) 0.0000 (7) −0.0019 (7)
C13 0.0293 (9) 0.0226 (8) 0.0312 (9) 0.0019 (7) 0.0014 (7) −0.0001 (7)
C14 0.0258 (9) 0.0310 (9) 0.0263 (9) 0.0045 (7) −0.0004 (7) 0.0068 (7)
C15 0.0283 (10) 0.0354 (9) 0.0221 (8) 0.0011 (8) −0.0029 (7) −0.0020 (7)
C16 0.0258 (9) 0.0245 (8) 0.0272 (8) −0.0004 (7) 0.0006 (7) −0.0031 (7)
F17 0.0459 (7) 0.0397 (6) 0.0347 (6) 0.0119 (5) −0.0078 (5) 0.0092 (5)
C18 0.0219 (8) 0.0235 (8) 0.0262 (9) 0.0030 (7) −0.0012 (7) 0.0001 (7)
C19 0.0318 (10) 0.0241 (9) 0.0300 (9) −0.0010 (7) 0.0004 (8) 0.0014 (7)
C20 0.0444 (12) 0.0253 (9) 0.0323 (9) −0.0019 (8) −0.0002 (9) −0.0058 (8)
N21 0.0429 (10) 0.0319 (8) 0.0284 (8) 0.0021 (7) 0.0025 (7) −0.0039 (7)
C22 0.0369 (11) 0.0293 (9) 0.0288 (9) −0.0010 (8) 0.0053 (8) 0.0017 (7)
C23 0.0303 (9) 0.0228 (8) 0.0284 (9) −0.0008 (7) 0.0011 (7) −0.0022 (7)
O24 0.0350 (7) 0.0406 (8) 0.0216 (6) 0.0003 (6) −0.0003 (5) 0.0052 (5)
C25 0.0353 (11) 0.0436 (11) 0.0279 (9) 0.0009 (9) 0.0001 (8) −0.0011 (8)

Geometric parameters (Å, °)

C1—N10 1.324 (2) C13—C14 1.381 (3)
C1—C2 1.440 (2) C13—H13 0.9500
C1—C11 1.482 (2) C14—F17 1.356 (2)
C2—N3 1.325 (2) C14—C15 1.378 (3)
C2—C18 1.486 (2) C15—C16 1.387 (2)
N3—C4 1.362 (2) C15—H15 0.9500
C4—C5 1.414 (2) C16—H16 0.9500
C4—C9 1.416 (2) C18—C19 1.388 (2)
C5—C6 1.360 (3) C18—C23 1.391 (2)
C5—H5 0.9500 C19—C20 1.382 (3)
C6—C7 1.423 (3) C19—H19 0.9500
C6—H6 0.9500 C20—N21 1.338 (3)
C7—O24 1.363 (2) C20—H20 0.9500
C7—C8 1.369 (2) N21—C22 1.338 (2)
C8—C9 1.410 (2) C22—C23 1.384 (3)
C8—H8 0.9500 C22—H22 0.9500
C9—N10 1.363 (2) C23—H23 0.9500
C11—C16 1.398 (2) O24—C25 1.426 (2)
C11—C12 1.400 (2) C25—H25A 0.9800
C12—C13 1.382 (2) C25—H25B 0.9800
C12—H12 0.9500 C25—H25C 0.9800
N10—C1—C2 120.82 (15) C12—C13—H13 120.7
N10—C1—C11 115.80 (15) F17—C14—C15 118.43 (16)
C2—C1—C11 123.35 (15) F17—C14—C13 118.67 (16)
N3—C2—C1 121.23 (15) C15—C14—C13 122.89 (16)
N3—C2—C18 115.13 (15) C14—C15—C16 117.77 (17)
C1—C2—C18 123.52 (15) C14—C15—H15 121.1
C2—N3—C4 117.89 (15) C16—C15—H15 121.1
N3—C4—C5 120.10 (16) C15—C16—C11 121.39 (16)
N3—C4—C9 120.69 (15) C15—C16—H16 119.3
C5—C4—C9 119.16 (16) C11—C16—H16 119.3
C6—C5—C4 120.00 (17) C19—C18—C23 117.26 (16)
C6—C5—H5 120.0 C19—C18—C2 121.15 (16)
C4—C5—H5 120.0 C23—C18—C2 121.47 (15)
C5—C6—C7 120.69 (16) C20—C19—C18 118.88 (17)
C5—C6—H6 119.7 C20—C19—H19 120.6
C7—C6—H6 119.7 C18—C19—H19 120.6
O24—C7—C8 125.10 (17) N21—C20—C19 124.49 (17)
O24—C7—C6 114.32 (15) N21—C20—H20 117.8
C8—C7—C6 120.58 (16) C19—C20—H20 117.8
C7—C8—C9 119.36 (16) C20—N21—C22 116.18 (16)
C7—C8—H8 120.3 N21—C22—C23 123.54 (17)
C9—C8—H8 120.3 N21—C22—H22 118.2
N10—C9—C8 119.04 (15) C23—C22—H22 118.2
N10—C9—C4 120.78 (15) C22—C23—C18 119.64 (16)
C8—C9—C4 120.17 (15) C22—C23—H23 120.2
C1—N10—C9 118.06 (15) C18—C23—H23 120.2
C16—C11—C12 118.64 (16) C7—O24—C25 116.56 (14)
C16—C11—C1 122.23 (15) O24—C25—H25A 109.5
C12—C11—C1 119.03 (15) O24—C25—H25B 109.5
C13—C12—C11 120.66 (16) H25A—C25—H25B 109.5
C13—C12—H12 119.7 O24—C25—H25C 109.5
C11—C12—H12 119.7 H25A—C25—H25C 109.5
C14—C13—C12 118.61 (16) H25B—C25—H25C 109.5
C14—C13—H13 120.7
N10—C1—C2—N3 7.9 (3) N10—C1—C11—C12 32.8 (2)
C11—C1—C2—N3 −170.22 (16) C2—C1—C11—C12 −149.01 (16)
N10—C1—C2—C18 −167.94 (16) C16—C11—C12—C13 −0.6 (3)
C11—C1—C2—C18 13.9 (3) C1—C11—C12—C13 −177.19 (16)
C1—C2—N3—C4 −5.4 (2) C11—C12—C13—C14 −0.8 (3)
C18—C2—N3—C4 170.78 (15) C12—C13—C14—F17 −177.56 (16)
C2—N3—C4—C5 −178.67 (16) C12—C13—C14—C15 2.1 (3)
C2—N3—C4—C9 −1.1 (2) F17—C14—C15—C16 177.79 (16)
N3—C4—C5—C6 176.67 (16) C13—C14—C15—C16 −1.9 (3)
C9—C4—C5—C6 −1.0 (3) C14—C15—C16—C11 0.4 (3)
C4—C5—C6—C7 −0.7 (3) C12—C11—C16—C15 0.8 (3)
C5—C6—C7—O24 −178.82 (16) C1—C11—C16—C15 177.30 (16)
C5—C6—C7—C8 1.2 (3) N3—C2—C18—C19 46.7 (2)
O24—C7—C8—C9 −179.94 (15) C1—C2—C18—C19 −137.24 (18)
C6—C7—C8—C9 0.0 (3) N3—C2—C18—C23 −129.12 (18)
C7—C8—C9—N10 177.21 (16) C1—C2—C18—C23 47.0 (3)
C7—C8—C9—C4 −1.7 (3) C23—C18—C19—C20 −1.1 (3)
N3—C4—C9—N10 5.7 (3) C2—C18—C19—C20 −177.09 (17)
C5—C4—C9—N10 −176.72 (16) C18—C19—C20—N21 1.7 (3)
N3—C4—C9—C8 −175.42 (15) C19—C20—N21—C22 −1.0 (3)
C5—C4—C9—C8 2.2 (3) C20—N21—C22—C23 −0.1 (3)
C2—C1—N10—C9 −3.2 (2) N21—C22—C23—C18 0.6 (3)
C11—C1—N10—C9 175.05 (14) C19—C18—C23—C22 0.1 (3)
C8—C9—N10—C1 177.83 (15) C2—C18—C23—C22 176.04 (17)
C4—C9—N10—C1 −3.2 (2) C8—C7—O24—C25 −3.7 (3)
N10—C1—C11—C16 −143.69 (17) C6—C7—O24—C25 176.37 (16)
C2—C1—C11—C16 34.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15···N21i 0.95 2.44 3.368 (3) 165

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2176).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  4. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  5. Friščič, T. & MacGillivray, L. R. (2003). Chem. Commun. pp. 1306–1307. [PubMed]
  6. Habib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199. [DOI] [PMC free article] [PubMed]
  7. He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett.13, 3097–3100. [DOI] [PubMed]
  8. Kim, Y. B., Kim, Y. H., Park, J. Y. & Kim, S. K. (2004). Bioorg. Med. Chem. Lett.14, 541–544. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc.104, 5063–5070.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022119/si2176sup1.cif

e-65-o1626-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022119/si2176Isup2.hkl

e-65-o1626-Isup2.hkl (144.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES