Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1630. doi: 10.1107/S1600536809022843

2-Hydr­oxy-3-nitro­benzamide

Abdul Rauf Raza a, Muhammad Danish a, M Nawaz Tahir b,*, Bushra Nisar a, Mohammad S Iqbal c
PMCID: PMC2969278  PMID: 21582897

Abstract

The asymmetric unit of title compound, C7H6N2O4, contains two mol­ecules, one of which has a disordered nitro group with an occupancy ratio of 0.517 (9):0.483 (9) for the O atoms. Both mol­ecules contain an intra­molecular O—H⋯O hydrogen bond. In the crystal, both mol­ecules form inversion dimers linked by pairs of N—H⋯O hydrogen bonds, resulting in R 2 2(8) ring motifs. The dimers are connected by further N—H⋯O links and weak C—H⋯O inter­actions, resulting in a layered motif.

Related literature

For related structures, see: Liu & Zhu (2007); Pertlik (1990). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-65-o1630-scheme1.jpg

Experimental

Crystal data

  • C7H6N2O4

  • M r = 182.14

  • Triclinic, Inline graphic

  • a = 3.8390 (2) Å

  • b = 13.0347 (8) Å

  • c = 16.0409 (9) Å

  • α = 98.207 (3)°

  • β = 95.658 (2)°

  • γ = 98.365 (3)°

  • V = 780.16 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.966, T max = 0.979

  • 15183 measured reflections

  • 3658 independent reflections

  • 1932 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.139

  • S = 1.00

  • 3658 reflections

  • 287 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022843/hb5009sup1.cif

e-65-o1630-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022843/hb5009Isup2.hkl

e-65-o1630-Isup2.hkl (175.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4 0.82 1.77 2.500 (2) 148
N2—H2A⋯O6Ai 0.80 (3) 2.38 (3) 3.142 (5) 161 (3)
N2—H2B⋯O4ii 0.93 (3) 2.03 (3) 2.966 (3) 177 (2)
N4—H4A⋯O8iii 0.87 (3) 2.07 (3) 2.929 (3) 172 (2)
N4—H4B⋯O2iv 0.91 (3) 2.18 (3) 3.084 (3) 174 (2)
O5—H5O⋯O8 0.82 1.76 2.496 (2) 148
C6—H6⋯O6Ai 0.91 (2) 2.40 (2) 3.285 (6) 163 (2)
C11—H11⋯O7Av 0.92 (2) 2.41 (2) 3.221 (6) 147 (2)
C11—H11⋯O7Avi 0.92 (2) 2.55 (2) 2.997 (6) 110.5 (17)
C13—H13⋯O2iv 0.92 (2) 2.39 (2) 3.289 (3) 165 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore and for technical support, respectively.

supplementary crystallographic information

Comment

The title compound (I), (Fig. 1), has been prepared as an intermediate for derivatization. The purpose of structure determination was to investigate the amount and position of nitration on the 2-hydroxybenzamide.

The crystal structures of (II) 2-Hydroxybenzamide (Pertlik, 1990) and (III) 2-Hydroxy-3,5-dinitrobenzamide monohydrate (Liu & Zhu, 2007) have been published which contain the common group of hydroxybenzamide as in (I).

The title compound consists of two molecules in the asymmetric unit. The O-atoms of nitro group in one of the molecules are disordered over two sites with occupancy ratio of 0.517 (9):0.483 (9). In both molecules the hydroxy group form intramolecular H-bonding with the O-atom of amide group, thus completing ring motifs R11(6) (Bernstein et al., 1995). The H-atoms of NH2 groups behave differently. One H-atom forms dimer, whereas the other is used in linkage of the dimers. It is intersting that both molecules form dimers among themselves through the intermolecular H-bonds of N—H···O type with ring motifs R22(8). The dimers of both molecules are connected to each other through the same type of intermolecular H-bonding (Fig. 2). The molecules are stabilized in the form of two dimensional polymeric sheets due to intera as well as intermolecular H-bonding (Table 1).

Experimental

A solution of 2-hydroxybenzamide (1.37 g, 0.01 mol) in ethylacetate (EtOAc) (25 ml) was added dropwise to a nitrating mixture of HNO3 (1.89 g, 0.03 mol) and H2SO4 (1.96 g, 0.02 mol) with constant stirring while the temperature was kept below 278 K. Then reaction mixture was stirred at room temperature for 4–5 h. The resulting mixture was refluxed for 1 h, cooled, neutralized with aq. NaHCO3 (10%) and extracted with EtOAc (3 × 25 ml). The organic layers were combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford a reddish brown solid. The column chromatographic purification with 0, 2.5, 5 and 7.5% EtOAc in petrol (0.5 L each) over a silica gel packed column (25.5 cm) afforded brown prisms of (I).

Refinement

The H-atoms were positioned geometrically, with O—H = 0.82 Å for hydroxy groups. The coordinates of all other H-atoms were refined with Uiso(H) = 1.2Ueq(carrier).

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small spheres of arbitrary radius. Hydrogen bonds are symbolized by dashed lines.

Fig. 2.

Fig. 2.

The partial packing of (I) which shows that molecules form dimers and the dimers are interlinked forming two dimensional polymeric sheets.

Crystal data

C7H6N2O4 Z = 4
Mr = 182.14 F(000) = 376
Triclinic, P1 Dx = 1.551 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 3.8390 (2) Å Cell parameters from 3658 reflections
b = 13.0347 (8) Å θ = 1.3–27.9°
c = 16.0409 (9) Å µ = 0.13 mm1
α = 98.207 (3)° T = 296 K
β = 95.658 (2)° Prism, brown
γ = 98.365 (3)° 0.25 × 0.22 × 0.18 mm
V = 780.16 (8) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 3658 independent reflections
Radiation source: fine-focus sealed tube 1932 reflections with I > 2σ(I)
graphite Rint = 0.039
Detector resolution: 7.40 pixels mm-1 θmax = 27.9°, θmin = 1.3°
ω scans h = −5→5
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −17→16
Tmin = 0.966, Tmax = 0.979 l = −20→20
15183 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.1478P] where P = (Fo2 + 2Fc2)/3
3658 reflections (Δ/σ)max < 0.001
287 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O5 1.3003 (4) 0.14269 (11) 0.28007 (10) 0.0574 (6)
O6A 1.0846 (17) 0.2123 (3) 0.1437 (3) 0.0622 (16) 0.517 (9)
O7A 0.9012 (16) 0.0976 (4) 0.0315 (3) 0.0726 (16) 0.517 (9)
O8 1.4309 (4) 0.06126 (12) 0.40897 (9) 0.0602 (6)
N3 0.9800 (5) 0.12260 (17) 0.11120 (12) 0.0517 (8)
N4 1.1499 (6) −0.09612 (17) 0.42380 (13) 0.0584 (7)
C8 1.0438 (5) −0.03373 (16) 0.28965 (12) 0.0398 (6)
C9 1.1008 (5) 0.05167 (16) 0.24507 (12) 0.0390 (6)
C10 0.9365 (5) 0.03748 (17) 0.16144 (13) 0.0416 (7)
C11 0.7300 (6) −0.05660 (19) 0.12321 (14) 0.0488 (8)
C12 0.6838 (6) −0.1393 (2) 0.16654 (14) 0.0522 (8)
C13 0.8391 (6) −0.12754 (18) 0.24892 (14) 0.0476 (8)
C14 1.2174 (5) −0.02094 (17) 0.37827 (13) 0.0442 (7)
O7B 1.2731 (16) 0.1761 (5) 0.1186 (3) 0.0686 (17) 0.483 (9)
O6B 0.7212 (15) 0.1376 (4) 0.0676 (4) 0.0765 (19) 0.483 (9)
O1 1.1680 (4) 0.64772 (12) 0.23085 (10) 0.0576 (6)
O2 1.6092 (5) 0.69953 (13) 0.37229 (11) 0.0717 (7)
O3 1.3820 (6) 0.64564 (16) 0.47695 (12) 0.0965 (9)
O4 0.7934 (4) 0.56454 (13) 0.09498 (10) 0.0650 (6)
N1 1.4064 (5) 0.63841 (15) 0.40149 (12) 0.0521 (7)
N2 0.5075 (6) 0.40043 (18) 0.07421 (14) 0.0632 (8)
C1 0.8539 (5) 0.47141 (16) 0.21067 (13) 0.0412 (7)
C2 1.0752 (5) 0.55872 (16) 0.26058 (13) 0.0409 (7)
C3 1.1871 (5) 0.54999 (16) 0.34496 (13) 0.0418 (7)
C4 1.0917 (6) 0.45937 (19) 0.37779 (15) 0.0492 (8)
C5 0.8859 (6) 0.37445 (19) 0.32808 (15) 0.0543 (8)
C6 0.7662 (6) 0.38048 (18) 0.24564 (14) 0.0482 (8)
C7 0.7143 (6) 0.48026 (19) 0.12263 (14) 0.0475 (8)
H4B 0.984 (7) −0.1544 (19) 0.4054 (15) 0.0701*
H5O 1.38739 0.13813 0.32790 0.0689*
H12 0.533 (7) −0.208 (2) 0.1414 (15) 0.075 (7)*
H13 0.808 (6) −0.1821 (18) 0.2792 (14) 0.0571*
H11 0.632 (6) −0.0653 (17) 0.0674 (15) 0.0586*
H4A 1.260 (7) −0.0911 (19) 0.4746 (17) 0.0701*
H1O 1.07785 0.64178 0.18153 0.0692*
H2A 0.444 (7) 0.347 (2) 0.0911 (17) 0.0758*
H2B 0.420 (6) 0.4100 (19) 0.0199 (17) 0.0758*
H4 1.161 (6) 0.4557 (17) 0.4324 (15) 0.0589*
H5 0.820 (6) 0.3154 (19) 0.3482 (15) 0.0651*
H6 0.614 (6) 0.3254 (18) 0.2137 (14) 0.0578*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5 0.0718 (10) 0.0450 (10) 0.0451 (9) −0.0112 (8) −0.0179 (8) 0.0107 (7)
O6A 0.079 (3) 0.052 (3) 0.053 (2) 0.000 (2) −0.002 (2) 0.0178 (19)
O7A 0.075 (3) 0.097 (3) 0.038 (2) −0.010 (2) −0.011 (2) 0.021 (2)
O8 0.0729 (10) 0.0528 (10) 0.0431 (9) −0.0137 (8) −0.0177 (8) 0.0098 (8)
N3 0.0482 (12) 0.0617 (15) 0.0429 (12) 0.0011 (10) −0.0054 (9) 0.0157 (11)
N4 0.0716 (14) 0.0557 (13) 0.0403 (11) −0.0074 (10) −0.0156 (10) 0.0154 (10)
C8 0.0405 (10) 0.0413 (12) 0.0345 (11) 0.0025 (9) −0.0022 (9) 0.0042 (10)
C9 0.0362 (10) 0.0402 (12) 0.0362 (11) 0.0001 (9) −0.0040 (8) 0.0032 (9)
C10 0.0379 (10) 0.0486 (14) 0.0373 (12) 0.0035 (9) −0.0005 (9) 0.0108 (10)
C11 0.0467 (12) 0.0599 (16) 0.0330 (12) −0.0004 (11) −0.0075 (10) 0.0023 (11)
C12 0.0548 (13) 0.0498 (15) 0.0428 (14) −0.0073 (11) −0.0062 (10) 0.0011 (12)
C13 0.0542 (13) 0.0437 (14) 0.0406 (13) −0.0031 (10) −0.0013 (10) 0.0086 (10)
C14 0.0482 (12) 0.0459 (13) 0.0353 (12) 0.0034 (10) −0.0036 (9) 0.0062 (10)
O7B 0.060 (3) 0.071 (3) 0.070 (3) −0.016 (2) −0.008 (2) 0.033 (2)
O6B 0.064 (3) 0.092 (3) 0.074 (4) 0.010 (2) −0.020 (3) 0.037 (3)
O1 0.0725 (11) 0.0494 (10) 0.0490 (10) −0.0047 (8) −0.0044 (8) 0.0242 (8)
O2 0.0808 (12) 0.0613 (12) 0.0630 (11) −0.0209 (9) 0.0007 (9) 0.0152 (9)
O3 0.1297 (18) 0.0999 (16) 0.0415 (11) −0.0298 (13) −0.0012 (11) 0.0073 (10)
O4 0.0848 (11) 0.0577 (11) 0.0489 (10) −0.0052 (9) −0.0095 (8) 0.0257 (8)
N1 0.0565 (11) 0.0520 (12) 0.0454 (12) 0.0023 (9) −0.0024 (9) 0.0127 (10)
N2 0.0773 (14) 0.0598 (15) 0.0466 (12) −0.0077 (12) −0.0122 (10) 0.0217 (11)
C1 0.0417 (11) 0.0458 (13) 0.0385 (12) 0.0082 (9) 0.0049 (9) 0.0141 (10)
C2 0.0428 (11) 0.0416 (12) 0.0412 (12) 0.0061 (9) 0.0066 (9) 0.0160 (10)
C3 0.0416 (11) 0.0439 (13) 0.0406 (12) 0.0054 (9) 0.0041 (9) 0.0117 (10)
C4 0.0521 (12) 0.0568 (15) 0.0406 (13) 0.0065 (11) 0.0005 (10) 0.0206 (12)
C5 0.0604 (14) 0.0493 (15) 0.0530 (15) −0.0013 (12) −0.0022 (11) 0.0242 (12)
C6 0.0495 (13) 0.0465 (14) 0.0468 (14) 0.0007 (10) −0.0010 (10) 0.0137 (11)
C7 0.0494 (12) 0.0520 (14) 0.0424 (13) 0.0063 (11) 0.0028 (10) 0.0158 (11)

Geometric parameters (Å, °)

O5—C9 1.330 (3) C8—C13 1.390 (3)
O6A—N3 1.203 (5) C8—C14 1.485 (3)
O6B—N3 1.214 (6) C8—C9 1.409 (3)
O7A—N3 1.268 (5) C9—C10 1.400 (3)
O7B—N3 1.220 (7) C10—C11 1.384 (3)
O8—C14 1.256 (3) C11—C12 1.364 (3)
O5—H5O 0.8200 C12—C13 1.373 (3)
O1—C2 1.331 (3) C11—H11 0.92 (2)
O2—N1 1.208 (3) C12—H12 1.00 (3)
O3—N1 1.215 (3) C13—H13 0.92 (2)
O4—C7 1.251 (3) C1—C7 1.487 (3)
O1—H1O 0.8200 C1—C2 1.408 (3)
N3—C10 1.462 (3) C1—C6 1.394 (3)
N4—C14 1.315 (3) C2—C3 1.405 (3)
N4—H4B 0.91 (3) C3—C4 1.377 (3)
N4—H4A 0.87 (3) C4—C5 1.362 (3)
N1—C3 1.459 (3) C5—C6 1.374 (3)
N2—C7 1.313 (3) C4—H4 0.90 (2)
N2—H2B 0.93 (3) C5—H5 0.89 (2)
N2—H2A 0.80 (3) C6—H6 0.91 (2)
C9—O5—H5O 109.00 O8—C14—N4 120.4 (2)
C2—O1—H1O 109.00 O8—C14—C8 119.73 (19)
O6A—N3—C10 121.8 (3) C10—C11—H11 120.5 (14)
O7A—N3—C10 116.8 (3) C12—C11—H11 119.2 (14)
O7B—N3—C10 117.3 (3) C11—C12—H12 122.5 (14)
O6B—N3—O7B 124.6 (4) C13—C12—H12 118.2 (14)
O6A—N3—O7A 121.4 (4) C8—C13—H13 117.7 (14)
O6B—N3—C10 118.1 (3) C12—C13—H13 120.4 (14)
C14—N4—H4A 120.6 (17) C6—C1—C7 122.08 (19)
H4A—N4—H4B 116 (2) C2—C1—C6 119.27 (19)
C14—N4—H4B 123.0 (15) C2—C1—C7 118.64 (19)
O2—N1—C3 119.37 (18) O1—C2—C3 120.55 (18)
O3—N1—C3 117.86 (19) C1—C2—C3 117.33 (19)
O2—N1—O3 122.7 (2) O1—C2—C1 122.09 (18)
H2A—N2—H2B 120 (2) N1—C3—C2 120.54 (18)
C7—N2—H2B 117.6 (15) N1—C3—C4 117.60 (19)
C7—N2—H2A 122.1 (19) C2—C3—C4 121.9 (2)
C9—C8—C13 119.43 (18) C3—C4—C5 120.2 (2)
C13—C8—C14 122.27 (19) C4—C5—C6 119.7 (2)
C9—C8—C14 118.26 (18) C1—C6—C5 121.6 (2)
O5—C9—C10 120.59 (19) O4—C7—C1 119.6 (2)
C8—C9—C10 117.21 (19) N2—C7—C1 120.3 (2)
O5—C9—C8 122.19 (17) O4—C7—N2 120.1 (2)
N3—C10—C11 117.63 (19) C3—C4—H4 120.7 (15)
N3—C10—C9 120.55 (19) C5—C4—H4 119.1 (14)
C9—C10—C11 121.8 (2) C4—C5—H5 121.6 (15)
C10—C11—C12 120.3 (2) C6—C5—H5 118.7 (15)
C11—C12—C13 119.3 (2) C1—C6—H6 118.7 (15)
C8—C13—C12 122.0 (2) C5—C6—H6 119.6 (15)
N4—C14—C8 119.9 (2)
O6A—N3—C10—C9 −17.2 (5) C9—C10—C11—C12 −0.6 (3)
O6A—N3—C10—C11 163.1 (4) N3—C10—C11—C12 179.1 (2)
O7A—N3—C10—C9 163.0 (4) C10—C11—C12—C13 1.2 (4)
O7A—N3—C10—C11 −16.7 (4) C11—C12—C13—C8 −0.2 (4)
O2—N1—C3—C2 −30.7 (3) C6—C1—C2—O1 −179.93 (18)
O2—N1—C3—C4 150.2 (2) C6—C1—C2—C3 −2.0 (3)
O3—N1—C3—C2 151.1 (2) C7—C1—C2—O1 −1.3 (3)
O3—N1—C3—C4 −28.0 (3) C7—C1—C2—C3 176.59 (19)
C13—C8—C9—C10 1.7 (3) C2—C1—C6—C5 1.0 (3)
C14—C8—C9—O5 −0.7 (3) C7—C1—C6—C5 −177.5 (2)
C13—C8—C9—O5 −178.57 (19) C2—C1—C7—O4 −0.5 (3)
C9—C8—C14—N4 175.1 (2) C2—C1—C7—N2 179.9 (2)
C13—C8—C14—O8 172.1 (2) C6—C1—C7—O4 178.1 (2)
C13—C8—C14—N4 −7.1 (3) C6—C1—C7—N2 −1.5 (3)
C14—C8—C13—C12 −179.0 (2) O1—C2—C3—N1 0.1 (3)
C14—C8—C9—C10 179.55 (18) O1—C2—C3—C4 179.2 (2)
C9—C8—C13—C12 −1.3 (3) C1—C2—C3—N1 −177.82 (18)
C9—C8—C14—O8 −5.6 (3) C1—C2—C3—C4 1.3 (3)
O5—C9—C10—N3 −0.3 (3) N1—C3—C4—C5 179.7 (2)
O5—C9—C10—C11 179.5 (2) C2—C3—C4—C5 0.6 (3)
C8—C9—C10—N3 179.46 (18) C3—C4—C5—C6 −1.7 (4)
C8—C9—C10—C11 −0.8 (3) C4—C5—C6—C1 0.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O4 0.82 1.77 2.500 (2) 148
N2—H2A···O6Ai 0.80 (3) 2.38 (3) 3.142 (5) 161 (3)
N2—H2B···O4ii 0.93 (3) 2.03 (3) 2.966 (3) 177 (2)
N4—H4A···O8iii 0.87 (3) 2.07 (3) 2.929 (3) 172 (2)
N4—H4B···O2iv 0.91 (3) 2.18 (3) 3.084 (3) 174 (2)
O5—H5O···O8 0.82 1.76 2.496 (2) 148
C6—H6···O6Ai 0.91 (2) 2.40 (2) 3.285 (6) 163 (2)
C11—H11···O7Av 0.92 (2) 2.41 (2) 3.221 (6) 147 (2)
C11—H11···O7Avi 0.92 (2) 2.55 (2) 2.997 (6) 110.5 (17)
C13—H13···O2iv 0.92 (2) 2.39 (2) 3.289 (3) 165 (2)

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z; (iii) −x+3, −y, −z+1; (iv) x−1, y−1, z; (v) −x+1, −y, −z; (vi) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5009).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Liu, T. & Zhu, J. Y. (2007). Acta Cryst. E63, o3830.
  7. Pertlik, F. (1990). Monatsh. Chem.121, 129–139.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022843/hb5009sup1.cif

e-65-o1630-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022843/hb5009Isup2.hkl

e-65-o1630-Isup2.hkl (175.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES