Abstract
In the title compound, C14H12ClNO, the central acetamide plane forms dihedral angles of 76.0 (2) and 64.0 (2)° with the phenyl rings and the phenyl rings form a dihedral angle of 71.8 (2)° with each other.
Related literature
The title compound is an important intermediate in the synthesis of N-phenyl-indolin-2-one, which can be further transformed to l-aryl-3-(aminoalkylidene)oxindoles, a new class of ‘GABAergic’ agents (Shindikar et al., 2006 ▶; Sarges et al., 1989 ▶) using a new variant of the Friedel–Crafts cyclization (Hennessy & Buchwald, 2003 ▶; Trost & Frederiksen, 2005 ▶; Trost & Yong, 2006 ▶).
Experimental
Crystal data
C14H12ClNO
M r = 245.70
Orthorhombic,
a = 6.4350 (13) Å
b = 12.799 (3) Å
c = 14.944 (3) Å
V = 1230.8 (5) Å3
Z = 4
Mo Kα radiation
μ = 0.29 mm−1
T = 293 K
0.30 × 0.20 × 0.10 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.917, T max = 0.971
2519 measured reflections
2231 independent reflections
1842 reflections with I > 2σ(I)
R int = 0.064
3 standard reflections every 200 reflections intensity decay: 1%
Refinement
R[F 2 > 2σ(F 2)] = 0.045
wR(F 2) = 0.112
S = 1.00
2231 reflections
154 parameters
H-atom parameters constrained
Δρmax = 0.18 e Å−3
Δρmin = −0.21 e Å−3
Absolute structure: Flack (1983 ▶), 912 Friedel pairs
Flack parameter: −0.14 (9)
Data collection: CAD-4 Software (Enraf–Nonius, 1989 ▶); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: SHELXL97 and PLATON.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024052/ya2097sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024052/ya2097Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Center of Testing and Analysis of Nanjing University for support of this study.
supplementary crystallographic information
Comment
The title compound is an important intermediate in the synthesis of N-phenyl-indolin-2-one, which can be further transformed to l-aryl-3-(aminoalkylidene)oxindoles, a new class of "GABAergic" agents (Shindikar et al., 2006; Sarges et al., 1989) using the new variant of the Friedel-Crafts cyclization (Hennessy & Buchwald, 2003; Trost & Frederiksen, 2005; Trost & Yong, 2006).
In the molecule of the title compound (Fig 1), dihedral angles formed by the central plane C14/C13/N/O with phenyl rings C1—C6 and C7—C12 are equal to 104.0 (2)° and 116.0 (2)° respectively; phenyl rings form dihedral angle 108.2 (2)° with each other.
Experimental
The title compound was prepared by refluxing for 2 hrs of the mixture of diphenylamine (1.69 g, 0.01 mol) and chloroacetyl chloride (1.13 g, 0.01 mol) in 50 ml of toluene. 150 ml of water was then added to the reaction mixture causing precipitation of the product, which was filtered, washed with water, dried and and recrystallized from ethanol (yield 97%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution (yield 96%, m.p.413 K).
Refinement
The H atoms were positioned geometrically (C—H 0.97 and 0.93 Å for methylene and aromatic H, respectively), and included in the refinement in the riding motion approximation with Uiso(H) = 1.2Ueq of the carrying atom.
Figures
Fig. 1.
Molecular structure of the title compound; thermal displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radius.
Crystal data
| C14H12ClNO | Dx = 1.326 Mg m−3 |
| Mr = 245.70 | Melting point: 393 K |
| Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2ac 2ab | Cell parameters from 25 reflections |
| a = 6.4350 (13) Å | θ = 9.0–13.0° |
| b = 12.799 (3) Å | µ = 0.29 mm−1 |
| c = 14.944 (3) Å | T = 293 K |
| V = 1230.8 (5) Å3 | Block, colorless |
| Z = 4 | 0.30 × 0.20 × 0.10 mm |
| F(000) = 512 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | 1842 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.064 |
| graphite | θmax = 25.3°, θmin = 2.1° |
| ω/2θ scans | h = −7→0 |
| Absorption correction: ψ scan (North et al., 1968) | k = −15→15 |
| Tmin = 0.917, Tmax = 0.971 | l = −17→0 |
| 2519 measured reflections | 3 standard reflections every 200 reflections |
| 2231 independent reflections | intensity decay: 1% |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
| wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.065P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.00 | (Δ/σ)max < 0.001 |
| 2231 reflections | Δρmax = 0.18 e Å−3 |
| 154 parameters | Δρmin = −0.21 e Å−3 |
| 0 restraints | Absolute structure: Flack (1983), 912 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: −0.14 (9) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl | 0.97222 (13) | 0.79305 (6) | 0.11836 (6) | 0.0621 (3) | |
| O | 1.0050 (3) | 0.63002 (15) | −0.01779 (12) | 0.0490 (5) | |
| N | 1.2460 (3) | 0.52988 (16) | 0.05137 (14) | 0.0354 (5) | |
| C1 | 1.6477 (5) | 0.4811 (2) | 0.2686 (2) | 0.0543 (8) | |
| H1A | 1.7359 | 0.4711 | 0.3172 | 0.065* | |
| C2 | 1.4544 (5) | 0.4359 (2) | 0.26845 (19) | 0.0514 (8) | |
| H2A | 1.4111 | 0.3956 | 0.3167 | 0.062* | |
| C3 | 1.3243 (5) | 0.4509 (2) | 0.19570 (17) | 0.0410 (7) | |
| H3A | 1.1943 | 0.4193 | 0.1943 | 0.049* | |
| C4 | 1.3879 (4) | 0.51270 (19) | 0.12568 (16) | 0.0343 (6) | |
| C5 | 1.5827 (5) | 0.5572 (2) | 0.1258 (2) | 0.0485 (7) | |
| H5A | 1.6263 | 0.5978 | 0.0777 | 0.058* | |
| C6 | 1.7120 (5) | 0.5409 (3) | 0.1976 (2) | 0.0596 (9) | |
| H6A | 1.8439 | 0.5706 | 0.1981 | 0.072* | |
| C7 | 1.1939 (8) | 0.2816 (3) | −0.1312 (2) | 0.0726 (12) | |
| H7A | 1.1834 | 0.2270 | −0.1719 | 0.087* | |
| C8 | 1.0262 (7) | 0.3081 (3) | −0.0781 (3) | 0.0695 (11) | |
| H8A | 0.9034 | 0.2702 | −0.0825 | 0.083* | |
| C9 | 1.0392 (5) | 0.3908 (2) | −0.0181 (2) | 0.0527 (8) | |
| H9A | 0.9261 | 0.4090 | 0.0174 | 0.063* | |
| C10 | 1.2238 (5) | 0.4453 (2) | −0.01240 (17) | 0.0381 (7) | |
| C11 | 1.3920 (5) | 0.4182 (2) | −0.06415 (18) | 0.0500 (8) | |
| H11A | 1.5165 | 0.4546 | −0.0594 | 0.060* | |
| C12 | 1.3728 (7) | 0.3355 (3) | −0.1236 (2) | 0.0626 (9) | |
| H12A | 1.4858 | 0.3170 | −0.1590 | 0.075* | |
| C13 | 1.1327 (4) | 0.6186 (2) | 0.04201 (16) | 0.0341 (6) | |
| C14 | 1.1818 (4) | 0.7040 (2) | 0.10923 (18) | 0.0410 (6) | |
| H14A | 1.3058 | 0.7412 | 0.0905 | 0.049* | |
| H14B | 1.2092 | 0.6729 | 0.1672 | 0.049* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl | 0.0602 (5) | 0.0518 (5) | 0.0743 (6) | 0.0188 (4) | −0.0070 (4) | −0.0153 (4) |
| O | 0.0505 (12) | 0.0557 (12) | 0.0409 (10) | 0.0128 (10) | −0.0121 (10) | −0.0018 (9) |
| N | 0.0378 (12) | 0.0378 (12) | 0.0306 (11) | 0.0016 (11) | −0.0061 (10) | −0.0002 (10) |
| C1 | 0.055 (2) | 0.063 (2) | 0.0450 (17) | 0.0191 (17) | −0.0191 (17) | −0.0039 (16) |
| C2 | 0.066 (2) | 0.0570 (18) | 0.0315 (15) | 0.0058 (16) | −0.0011 (15) | 0.0079 (13) |
| C3 | 0.0404 (16) | 0.0448 (15) | 0.0377 (15) | −0.0018 (13) | 0.0028 (13) | 0.0058 (13) |
| C4 | 0.0360 (14) | 0.0374 (13) | 0.0295 (13) | 0.0037 (11) | −0.0034 (12) | −0.0008 (11) |
| C5 | 0.0403 (16) | 0.0593 (18) | 0.0459 (17) | −0.0076 (13) | −0.0032 (14) | 0.0137 (15) |
| C6 | 0.0380 (18) | 0.078 (2) | 0.063 (2) | −0.0050 (16) | −0.0138 (17) | −0.0025 (19) |
| C7 | 0.122 (4) | 0.0484 (19) | 0.047 (2) | 0.006 (2) | −0.023 (2) | −0.0115 (16) |
| C8 | 0.086 (3) | 0.0488 (19) | 0.073 (2) | −0.020 (2) | −0.029 (2) | 0.0012 (17) |
| C9 | 0.057 (2) | 0.0487 (17) | 0.0525 (17) | −0.0111 (16) | −0.0092 (16) | 0.0001 (15) |
| C10 | 0.0508 (17) | 0.0327 (14) | 0.0307 (14) | 0.0016 (13) | −0.0058 (13) | 0.0035 (11) |
| C11 | 0.060 (2) | 0.0472 (17) | 0.0429 (16) | 0.0021 (15) | 0.0058 (16) | −0.0007 (14) |
| C12 | 0.086 (3) | 0.0569 (19) | 0.0447 (18) | 0.012 (2) | 0.000 (2) | −0.0085 (16) |
| C13 | 0.0329 (14) | 0.0406 (14) | 0.0288 (13) | 0.0003 (12) | 0.0009 (12) | 0.0045 (11) |
| C14 | 0.0385 (14) | 0.0403 (15) | 0.0443 (15) | 0.0026 (12) | 0.0001 (13) | −0.0028 (13) |
Geometric parameters (Å, °)
| Cl—C14 | 1.771 (3) | C6—H6A | 0.9300 |
| O—C13 | 1.223 (3) | C7—C12 | 1.347 (6) |
| N—C13 | 1.357 (3) | C7—C8 | 1.382 (6) |
| N—C10 | 1.449 (3) | C7—H7A | 0.9300 |
| N—C4 | 1.454 (3) | C8—C9 | 1.390 (5) |
| C1—C2 | 1.372 (5) | C8—H8A | 0.9300 |
| C1—C6 | 1.372 (5) | C9—C10 | 1.380 (4) |
| C1—H1A | 0.9300 | C9—H9A | 0.9300 |
| C2—C3 | 1.386 (4) | C10—C11 | 1.375 (4) |
| C2—H2A | 0.9300 | C11—C12 | 1.386 (4) |
| C3—C4 | 1.374 (4) | C11—H11A | 0.9300 |
| C3—H3A | 0.9300 | C12—H12A | 0.9300 |
| C4—C5 | 1.377 (4) | C13—C14 | 1.518 (4) |
| C5—C6 | 1.374 (4) | C14—H14A | 0.9700 |
| C5—H5A | 0.9300 | C14—H14B | 0.9700 |
| C13—N—C10 | 120.3 (2) | C7—C8—C9 | 120.7 (3) |
| C13—N—C4 | 122.9 (2) | C7—C8—H8A | 119.7 |
| C10—N—C4 | 116.8 (2) | C9—C8—H8A | 119.7 |
| C2—C1—C6 | 120.5 (3) | C10—C9—C8 | 118.5 (3) |
| C2—C1—H1A | 119.8 | C10—C9—H9A | 120.8 |
| C6—C1—H1A | 119.8 | C8—C9—H9A | 120.8 |
| C1—C2—C3 | 119.4 (3) | C11—C10—C9 | 121.0 (3) |
| C1—C2—H2A | 120.3 | C11—C10—N | 118.7 (3) |
| C3—C2—H2A | 120.3 | C9—C10—N | 120.2 (3) |
| C4—C3—C2 | 119.8 (3) | C10—C11—C12 | 118.9 (3) |
| C4—C3—H3A | 120.1 | C10—C11—H11A | 120.6 |
| C2—C3—H3A | 120.1 | C12—C11—H11A | 120.6 |
| C3—C4—C5 | 120.6 (3) | C7—C12—C11 | 121.4 (4) |
| C3—C4—N | 118.8 (2) | C7—C12—H12A | 119.3 |
| C5—C4—N | 120.7 (2) | C11—C12—H12A | 119.3 |
| C6—C5—C4 | 119.3 (3) | O—C13—N | 122.4 (2) |
| C6—C5—H5A | 120.3 | O—C13—C14 | 122.5 (2) |
| C4—C5—H5A | 120.3 | N—C13—C14 | 115.0 (2) |
| C1—C6—C5 | 120.4 (3) | C13—C14—Cl | 110.84 (19) |
| C1—C6—H6A | 119.8 | C13—C14—H14A | 109.5 |
| C5—C6—H6A | 119.8 | Cl—C14—H14A | 109.5 |
| C12—C7—C8 | 119.6 (3) | C13—C14—H14B | 109.5 |
| C12—C7—H7A | 120.2 | Cl—C14—H14B | 109.5 |
| C8—C7—H7A | 120.2 | H14A—C14—H14B | 108.1 |
| C6—C1—C2—C3 | 0.2 (5) | C8—C9—C10—N | −178.0 (3) |
| C1—C2—C3—C4 | −1.6 (4) | C13—N—C10—C11 | 116.2 (3) |
| C2—C3—C4—C5 | 2.1 (4) | C4—N—C10—C11 | −65.9 (3) |
| C2—C3—C4—N | −178.1 (2) | C13—N—C10—C9 | −66.3 (3) |
| C13—N—C4—C3 | 100.9 (3) | C4—N—C10—C9 | 111.6 (3) |
| C10—N—C4—C3 | −77.0 (3) | C9—C10—C11—C12 | 0.9 (4) |
| C13—N—C4—C5 | −79.4 (3) | N—C10—C11—C12 | 178.4 (2) |
| C10—N—C4—C5 | 102.8 (3) | C8—C7—C12—C11 | −0.7 (5) |
| C3—C4—C5—C6 | −1.3 (4) | C10—C11—C12—C7 | −0.2 (5) |
| N—C4—C5—C6 | 179.0 (3) | C10—N—C13—O | 2.1 (4) |
| C2—C1—C6—C5 | 0.7 (5) | C4—N—C13—O | −175.7 (2) |
| C4—C5—C6—C1 | −0.1 (5) | C10—N—C13—C14 | −175.8 (2) |
| C12—C7—C8—C9 | 1.1 (5) | C4—N—C13—C14 | 6.4 (4) |
| C7—C8—C9—C10 | −0.4 (5) | O—C13—C14—Cl | 23.3 (3) |
| C8—C9—C10—C11 | −0.6 (4) | N—C13—C14—Cl | −158.8 (2) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2097).
References
- Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
- Hennessy, E. J. & Buchwald, S. L. (2003). J. Am. Chem. Soc.40, 12084–12085. [DOI] [PubMed]
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sarges, R., Howard, H. R., Koe, K. B. & Weissman, A. (1989). J. Med. Chem.2, 437–444. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Shindikar, A. V., Khan, F. & Viswanathan, C. L. (2006). Eur. J. Med. Chem.41, 786—792. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Trost, B. M. & Frederiksen, M. U. (2005). Angew. Chem. Int. Ed.44, 308–312.
- Trost, B. M. & Yong, Z. (2006). J. Am. Chem. Soc.128, 4590–4591. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024052/ya2097sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024052/ya2097Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

