Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):o1719. doi: 10.1107/S1600536809024052

2-Chloro-N,N-diphenyl­acetamide

Shuai Shao a, Jie Sun a,*
PMCID: PMC2969282  PMID: 21582970

Abstract

In the title compound, C14H12ClNO, the central acetamide plane forms dihedral angles of 76.0 (2) and 64.0 (2)° with the phenyl rings and the phenyl rings form a dihedral angle of 71.8 (2)° with each other.

Related literature

The title compound is an important inter­mediate in the synthesis of N-phenyl-indolin-2-one, which can be further transformed to l-aryl-3-(amino­alkyl­idene)oxindoles, a new class of ‘GABAergic’ agents (Shindikar et al., 2006; Sarges et al., 1989) using a new variant of the Friedel–Crafts cyclization (Hennessy & Buchwald, 2003; Trost & Frederiksen, 2005; Trost & Yong, 2006).graphic file with name e-65-o1719-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO

  • M r = 245.70

  • Orthorhombic, Inline graphic

  • a = 6.4350 (13) Å

  • b = 12.799 (3) Å

  • c = 14.944 (3) Å

  • V = 1230.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.917, T max = 0.971

  • 2519 measured reflections

  • 2231 independent reflections

  • 1842 reflections with I > 2σ(I)

  • R int = 0.064

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.112

  • S = 1.00

  • 2231 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 912 Friedel pairs

  • Flack parameter: −0.14 (9)

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024052/ya2097sup1.cif

e-65-o1719-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024052/ya2097Isup2.hkl

e-65-o1719-Isup2.hkl (109.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis of Nanjing University for support of this study.

supplementary crystallographic information

Comment

The title compound is an important intermediate in the synthesis of N-phenyl-indolin-2-one, which can be further transformed to l-aryl-3-(aminoalkylidene)oxindoles, a new class of "GABAergic" agents (Shindikar et al., 2006; Sarges et al., 1989) using the new variant of the Friedel-Crafts cyclization (Hennessy & Buchwald, 2003; Trost & Frederiksen, 2005; Trost & Yong, 2006).

In the molecule of the title compound (Fig 1), dihedral angles formed by the central plane C14/C13/N/O with phenyl rings C1—C6 and C7—C12 are equal to 104.0 (2)° and 116.0 (2)° respectively; phenyl rings form dihedral angle 108.2 (2)° with each other.

Experimental

The title compound was prepared by refluxing for 2 hrs of the mixture of diphenylamine (1.69 g, 0.01 mol) and chloroacetyl chloride (1.13 g, 0.01 mol) in 50 ml of toluene. 150 ml of water was then added to the reaction mixture causing precipitation of the product, which was filtered, washed with water, dried and and recrystallized from ethanol (yield 97%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution (yield 96%, m.p.413 K).

Refinement

The H atoms were positioned geometrically (C—H 0.97 and 0.93 Å for methylene and aromatic H, respectively), and included in the refinement in the riding motion approximation with Uiso(H) = 1.2Ueq of the carrying atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound; thermal displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radius.

Crystal data

C14H12ClNO Dx = 1.326 Mg m3
Mr = 245.70 Melting point: 393 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 6.4350 (13) Å θ = 9.0–13.0°
b = 12.799 (3) Å µ = 0.29 mm1
c = 14.944 (3) Å T = 293 K
V = 1230.8 (5) Å3 Block, colorless
Z = 4 0.30 × 0.20 × 0.10 mm
F(000) = 512

Data collection

Enraf–Nonius CAD-4 diffractometer 1842 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.064
graphite θmax = 25.3°, θmin = 2.1°
ω/2θ scans h = −7→0
Absorption correction: ψ scan (North et al., 1968) k = −15→15
Tmin = 0.917, Tmax = 0.971 l = −17→0
2519 measured reflections 3 standard reflections every 200 reflections
2231 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.065P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2231 reflections Δρmax = 0.18 e Å3
154 parameters Δρmin = −0.21 e Å3
0 restraints Absolute structure: Flack (1983), 912 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.14 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.97222 (13) 0.79305 (6) 0.11836 (6) 0.0621 (3)
O 1.0050 (3) 0.63002 (15) −0.01779 (12) 0.0490 (5)
N 1.2460 (3) 0.52988 (16) 0.05137 (14) 0.0354 (5)
C1 1.6477 (5) 0.4811 (2) 0.2686 (2) 0.0543 (8)
H1A 1.7359 0.4711 0.3172 0.065*
C2 1.4544 (5) 0.4359 (2) 0.26845 (19) 0.0514 (8)
H2A 1.4111 0.3956 0.3167 0.062*
C3 1.3243 (5) 0.4509 (2) 0.19570 (17) 0.0410 (7)
H3A 1.1943 0.4193 0.1943 0.049*
C4 1.3879 (4) 0.51270 (19) 0.12568 (16) 0.0343 (6)
C5 1.5827 (5) 0.5572 (2) 0.1258 (2) 0.0485 (7)
H5A 1.6263 0.5978 0.0777 0.058*
C6 1.7120 (5) 0.5409 (3) 0.1976 (2) 0.0596 (9)
H6A 1.8439 0.5706 0.1981 0.072*
C7 1.1939 (8) 0.2816 (3) −0.1312 (2) 0.0726 (12)
H7A 1.1834 0.2270 −0.1719 0.087*
C8 1.0262 (7) 0.3081 (3) −0.0781 (3) 0.0695 (11)
H8A 0.9034 0.2702 −0.0825 0.083*
C9 1.0392 (5) 0.3908 (2) −0.0181 (2) 0.0527 (8)
H9A 0.9261 0.4090 0.0174 0.063*
C10 1.2238 (5) 0.4453 (2) −0.01240 (17) 0.0381 (7)
C11 1.3920 (5) 0.4182 (2) −0.06415 (18) 0.0500 (8)
H11A 1.5165 0.4546 −0.0594 0.060*
C12 1.3728 (7) 0.3355 (3) −0.1236 (2) 0.0626 (9)
H12A 1.4858 0.3170 −0.1590 0.075*
C13 1.1327 (4) 0.6186 (2) 0.04201 (16) 0.0341 (6)
C14 1.1818 (4) 0.7040 (2) 0.10923 (18) 0.0410 (6)
H14A 1.3058 0.7412 0.0905 0.049*
H14B 1.2092 0.6729 0.1672 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0602 (5) 0.0518 (5) 0.0743 (6) 0.0188 (4) −0.0070 (4) −0.0153 (4)
O 0.0505 (12) 0.0557 (12) 0.0409 (10) 0.0128 (10) −0.0121 (10) −0.0018 (9)
N 0.0378 (12) 0.0378 (12) 0.0306 (11) 0.0016 (11) −0.0061 (10) −0.0002 (10)
C1 0.055 (2) 0.063 (2) 0.0450 (17) 0.0191 (17) −0.0191 (17) −0.0039 (16)
C2 0.066 (2) 0.0570 (18) 0.0315 (15) 0.0058 (16) −0.0011 (15) 0.0079 (13)
C3 0.0404 (16) 0.0448 (15) 0.0377 (15) −0.0018 (13) 0.0028 (13) 0.0058 (13)
C4 0.0360 (14) 0.0374 (13) 0.0295 (13) 0.0037 (11) −0.0034 (12) −0.0008 (11)
C5 0.0403 (16) 0.0593 (18) 0.0459 (17) −0.0076 (13) −0.0032 (14) 0.0137 (15)
C6 0.0380 (18) 0.078 (2) 0.063 (2) −0.0050 (16) −0.0138 (17) −0.0025 (19)
C7 0.122 (4) 0.0484 (19) 0.047 (2) 0.006 (2) −0.023 (2) −0.0115 (16)
C8 0.086 (3) 0.0488 (19) 0.073 (2) −0.020 (2) −0.029 (2) 0.0012 (17)
C9 0.057 (2) 0.0487 (17) 0.0525 (17) −0.0111 (16) −0.0092 (16) 0.0001 (15)
C10 0.0508 (17) 0.0327 (14) 0.0307 (14) 0.0016 (13) −0.0058 (13) 0.0035 (11)
C11 0.060 (2) 0.0472 (17) 0.0429 (16) 0.0021 (15) 0.0058 (16) −0.0007 (14)
C12 0.086 (3) 0.0569 (19) 0.0447 (18) 0.012 (2) 0.000 (2) −0.0085 (16)
C13 0.0329 (14) 0.0406 (14) 0.0288 (13) 0.0003 (12) 0.0009 (12) 0.0045 (11)
C14 0.0385 (14) 0.0403 (15) 0.0443 (15) 0.0026 (12) 0.0001 (13) −0.0028 (13)

Geometric parameters (Å, °)

Cl—C14 1.771 (3) C6—H6A 0.9300
O—C13 1.223 (3) C7—C12 1.347 (6)
N—C13 1.357 (3) C7—C8 1.382 (6)
N—C10 1.449 (3) C7—H7A 0.9300
N—C4 1.454 (3) C8—C9 1.390 (5)
C1—C2 1.372 (5) C8—H8A 0.9300
C1—C6 1.372 (5) C9—C10 1.380 (4)
C1—H1A 0.9300 C9—H9A 0.9300
C2—C3 1.386 (4) C10—C11 1.375 (4)
C2—H2A 0.9300 C11—C12 1.386 (4)
C3—C4 1.374 (4) C11—H11A 0.9300
C3—H3A 0.9300 C12—H12A 0.9300
C4—C5 1.377 (4) C13—C14 1.518 (4)
C5—C6 1.374 (4) C14—H14A 0.9700
C5—H5A 0.9300 C14—H14B 0.9700
C13—N—C10 120.3 (2) C7—C8—C9 120.7 (3)
C13—N—C4 122.9 (2) C7—C8—H8A 119.7
C10—N—C4 116.8 (2) C9—C8—H8A 119.7
C2—C1—C6 120.5 (3) C10—C9—C8 118.5 (3)
C2—C1—H1A 119.8 C10—C9—H9A 120.8
C6—C1—H1A 119.8 C8—C9—H9A 120.8
C1—C2—C3 119.4 (3) C11—C10—C9 121.0 (3)
C1—C2—H2A 120.3 C11—C10—N 118.7 (3)
C3—C2—H2A 120.3 C9—C10—N 120.2 (3)
C4—C3—C2 119.8 (3) C10—C11—C12 118.9 (3)
C4—C3—H3A 120.1 C10—C11—H11A 120.6
C2—C3—H3A 120.1 C12—C11—H11A 120.6
C3—C4—C5 120.6 (3) C7—C12—C11 121.4 (4)
C3—C4—N 118.8 (2) C7—C12—H12A 119.3
C5—C4—N 120.7 (2) C11—C12—H12A 119.3
C6—C5—C4 119.3 (3) O—C13—N 122.4 (2)
C6—C5—H5A 120.3 O—C13—C14 122.5 (2)
C4—C5—H5A 120.3 N—C13—C14 115.0 (2)
C1—C6—C5 120.4 (3) C13—C14—Cl 110.84 (19)
C1—C6—H6A 119.8 C13—C14—H14A 109.5
C5—C6—H6A 119.8 Cl—C14—H14A 109.5
C12—C7—C8 119.6 (3) C13—C14—H14B 109.5
C12—C7—H7A 120.2 Cl—C14—H14B 109.5
C8—C7—H7A 120.2 H14A—C14—H14B 108.1
C6—C1—C2—C3 0.2 (5) C8—C9—C10—N −178.0 (3)
C1—C2—C3—C4 −1.6 (4) C13—N—C10—C11 116.2 (3)
C2—C3—C4—C5 2.1 (4) C4—N—C10—C11 −65.9 (3)
C2—C3—C4—N −178.1 (2) C13—N—C10—C9 −66.3 (3)
C13—N—C4—C3 100.9 (3) C4—N—C10—C9 111.6 (3)
C10—N—C4—C3 −77.0 (3) C9—C10—C11—C12 0.9 (4)
C13—N—C4—C5 −79.4 (3) N—C10—C11—C12 178.4 (2)
C10—N—C4—C5 102.8 (3) C8—C7—C12—C11 −0.7 (5)
C3—C4—C5—C6 −1.3 (4) C10—C11—C12—C7 −0.2 (5)
N—C4—C5—C6 179.0 (3) C10—N—C13—O 2.1 (4)
C2—C1—C6—C5 0.7 (5) C4—N—C13—O −175.7 (2)
C4—C5—C6—C1 −0.1 (5) C10—N—C13—C14 −175.8 (2)
C12—C7—C8—C9 1.1 (5) C4—N—C13—C14 6.4 (4)
C7—C8—C9—C10 −0.4 (5) O—C13—C14—Cl 23.3 (3)
C8—C9—C10—C11 −0.6 (4) N—C13—C14—Cl −158.8 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2097).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Hennessy, E. J. & Buchwald, S. L. (2003). J. Am. Chem. Soc.40, 12084–12085. [DOI] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sarges, R., Howard, H. R., Koe, K. B. & Weissman, A. (1989). J. Med. Chem.2, 437–444. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shindikar, A. V., Khan, F. & Viswanathan, C. L. (2006). Eur. J. Med. Chem.41, 786—792. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Trost, B. M. & Frederiksen, M. U. (2005). Angew. Chem. Int. Ed.44, 308–312.
  11. Trost, B. M. & Yong, Z. (2006). J. Am. Chem. Soc.128, 4590–4591. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024052/ya2097sup1.cif

e-65-o1719-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024052/ya2097Isup2.hkl

e-65-o1719-Isup2.hkl (109.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES