Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):m842–m843. doi: 10.1107/S1600536809023824

Chlorido[(E)-2-hydr­oxy-6-(isonicotinoyl­hydrazonometh­yl)phen­yl]mercury(II) monohydrate

Su-Zhen Bai a, Xin-Hua Lou b,*, Hong-Mei Li c, Hui Shi a
PMCID: PMC2969284  PMID: 21582756

Abstract

The asymmetric unit of the title compound, [Hg(C13H10N3O2)Cl]·H2O, contains two independent mercury(II) complexes with slightly different conformations, related via a pseudo-inversion centre, and two water mol­ecules. The HgII atoms show a typical linear geometry to a C atom of the benzene ring and to a Cl atom. A benzene C and the azomethine N atom chelate the HgII atoms with weak intra­molecular Hg⋯N bonding distances of 2.735 (3) and 2.739 (3) Å, respectively. The resulting five-membered metallacycles are nearly coplanar with the benzene rings [dihedral angles = 0.9 (1) and 0.7 (1)°], while the pyridine rings make dihedral angles with the benzene units of 58.17 (1) and 56.58 (1)°. In the crystal structure, the HgII complexes are linked by hydr­oxy donor and pyridine acceptor groups into chains along [010]. The water mol­ecules connect the complexes through inter­molecular O—H⋯Ocarbon­yl bonds in the a-axis direction, and the azomethine H atoms donate towards the water O atoms, forming a three-dimensional network of inter­molecular O—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For general background, see: Gruter et al. (1995); Soro et al. (2005); Xu et al. (2009b ). For related structures, see: Hao et al. (2007); Lin et al. (2002); For the synthesis of related cyclomercurated compounds, see: Xu et al. (2009a ).graphic file with name e-65-0m842-scheme1.jpg

Experimental

Crystal data

  • [Hg(C13H10N3O2)Cl]·H2O

  • M r = 494.30

  • Monoclinic, Inline graphic

  • a = 14.5932 (16) Å

  • b = 14.0111 (15) Å

  • c = 15.3711 (17) Å

  • β = 104.6850 (10)°

  • V = 3040.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 10.31 mm−1

  • T = 296 K

  • 0.37 × 0.28 × 0.25 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.113, T max = 0.179 (expected range = 0.048–0.076)

  • 22798 measured reflections

  • 5658 independent reflections

  • 4683 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.046

  • S = 1.05

  • 5658 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.83 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023824/si2184sup1.cif

e-65-0m842-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023824/si2184Isup2.hkl

e-65-0m842-Isup2.hkl (277KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H4W⋯O2i 0.83 2.15 2.898 (4) 150
O6—H3W⋯O3 0.83 2.30 3.023 (4) 146
O5—H2W⋯O1 0.83 2.17 2.963 (4) 159
O5—H1W⋯O4ii 0.84 2.06 2.876 (4) 166
N5—H5D⋯O6iii 0.86 2.04 2.872 (4) 162
N2—H2D⋯O5iv 0.86 2.06 2.890 (4) 161
O3—H3⋯N6v 0.82 1.92 2.737 (4) 171
O1—H1⋯N3vi 0.82 1.93 2.733 (4) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

This work was supported by the High-Level Personnel to Start Research Fund of Pingdingshan University (No. 2006044).

supplementary crystallographic information

Comment

Cyclometallated compounds have attracted much research interest owing to theirs utility in synthesis, catalysis and materials (Gruter et al., 1995; Xu et al., 2009b). Among them, cyclomercurated compounds are easy to prepare through a C—H activation process and are stable but reasonably reactive. Although numerous cyclomercurated compounds have been widely investigated, and many examples have been reported(Soro et al., 2005; Hao et al., 2007), only a few cyclometallated Schiff bases containing heterocyclic ring are known(Lin et al., 2002).

The asymmetric unit of the title compound (Fig.1) contains two independent mercury(II) complexes with slightly different conformations, related via a pseudo-inversion centre (1/2a, 3/4b, 1/4c), and two water molecules. The HgII atoms show a typical linear coordination geometry with a carbon atom of the benzene ring and the chloride atom in trans position. A benzene carbon and the azomethine nitrogen atom chelate the mercury(II) atoms with weak intramolecular Hg···N bonding distances of 2.735 (3)Å and 2.739 (3) Å. which are shorter than those of the related HgII complex (Hao et al., (2007); Lin et al., (2002); Xu et al., (2009a). The C—Hg and Hg—Cl bond distances are within normal ranges. The C1—Hg1—Cl1 and C14—Hg2—Cl2 angles are 173.85 (10)° and 174.67 (10)°, slightly smaller than the ideal value of 180° in organic derivatives of mercury. The resulting five-membered metallacycles are nearly coplanar with the benzene ring, while the pyridine are not coplanar with the benzene. In the crystal structure, intermolecular O—H···O, N—H···O and O—H···N hydrogen bonds (Table 1) link the independent HgII complexes and the water molecules into a three-dimensional network.

Experimental

Chlorido(2-formyl-6-hydroxybenzaldehyde-kC1)mercury(II) was synthesized according to the reported procedure (Xu et al., 2009a). The title compound was prepared from the above compound with isonicotinoylhydrazine and recrystallized from ethanol solution at room temperature to give the desired product as colourless crystals suitable for single-crystal X-ray diffraction.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their patent atoms, with distances: C—H = 0.93 Å, N—H = 0.86 Å, and O—H = 0.82 Å. The Uiso(H) values were set at 1.2Ueq (C,N) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at the 30% probability level.

Crystal data

[Hg(C13H10N3O2)Cl]·H2O F(000) = 1856
Mr = 494.30 Dx = 2.160 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 14.5932 (16) Å Cell parameters from 5064 reflections
b = 14.0111 (15) Å θ = 2.7–28.3°
c = 15.3711 (17) Å µ = 10.31 mm1
β = 104.685 (1)° T = 296 K
V = 3040.2 (6) Å3 Block, colorless
Z = 8 0.37 × 0.28 × 0.25 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 5658 independent reflections
Radiation source: fine-focus sealed tube 4683 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −17→17
Tmin = 0.113, Tmax = 0.179 k = −16→16
22798 measured reflections l = −16→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0197P)2 + 1.3364P] where P = (Fo2 + 2Fc2)/3
5658 reflections (Δ/σ)max = 0.002
381 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.83 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.909422 (9) 0.795528 (10) 0.140566 (10) 0.03271 (5)
Hg2 0.088755 (10) 0.667392 (10) 0.363229 (10) 0.03354 (5)
Cl1 1.06292 (6) 0.74039 (8) 0.15848 (7) 0.0482 (3)
Cl2 −0.06489 (7) 0.72341 (8) 0.34424 (7) 0.0485 (3)
O1 0.85291 (17) 1.00819 (18) 0.13735 (19) 0.0444 (7)
H1 0.8409 1.0641 0.1231 0.067*
O2 0.91602 (18) 0.54581 (19) 0.0795 (2) 0.0539 (8)
O3 0.14451 (18) 0.45504 (17) 0.3573 (2) 0.0473 (7)
H3 0.1565 0.3987 0.3693 0.071*
O4 0.08053 (18) 0.91980 (18) 0.4187 (2) 0.0494 (7)
N1 0.7764 (2) 0.6537 (2) 0.1123 (2) 0.0339 (7)
N2 0.7733 (2) 0.55515 (19) 0.11402 (19) 0.0338 (7)
H2D 0.7253 0.5255 0.1239 0.041*
N3 0.8374 (2) 0.2013 (2) 0.1131 (2) 0.0397 (8)
N4 0.2225 (2) 0.8089 (2) 0.3911 (2) 0.0362 (7)
N5 0.2266 (2) 0.9077 (2) 0.39086 (19) 0.0352 (7)
H5D 0.2760 0.9368 0.3836 0.042*
N6 0.1645 (2) 1.2624 (2) 0.3851 (2) 0.0397 (8)
C1 0.7779 (2) 0.8579 (2) 0.1197 (2) 0.0279 (8)
C2 0.7707 (3) 0.9568 (3) 0.1195 (2) 0.0349 (8)
C3 0.6823 (3) 1.0005 (3) 0.1066 (3) 0.0431 (10)
H3A 0.6779 1.0667 0.1076 0.052*
C4 0.6011 (3) 0.9454 (3) 0.0924 (3) 0.0495 (11)
H4 0.5422 0.9746 0.0830 0.059*
C5 0.6075 (3) 0.8465 (3) 0.0920 (3) 0.0411 (9)
H5 0.5528 0.8097 0.0830 0.049*
C6 0.6953 (2) 0.8023 (2) 0.1051 (2) 0.0313 (8)
C7 0.6986 (3) 0.6972 (2) 0.1046 (2) 0.0331 (8)
H7 0.6430 0.6625 0.0986 0.040*
C8 0.8484 (3) 0.5069 (2) 0.0996 (2) 0.0351 (9)
C9 0.8433 (2) 0.4003 (2) 0.1063 (2) 0.0302 (8)
C10 0.8804 (2) 0.3447 (2) 0.0486 (3) 0.0361 (9)
H10 0.9089 0.3731 0.0075 0.043*
C11 0.8744 (2) 0.2467 (3) 0.0532 (3) 0.0379 (9)
H11 0.8973 0.2102 0.0127 0.046*
C12 0.8025 (3) 0.2558 (3) 0.1688 (3) 0.0416 (9)
H12 0.7760 0.2254 0.2104 0.050*
C13 0.8035 (3) 0.3542 (3) 0.1680 (3) 0.0393 (9)
H13 0.7782 0.3890 0.2079 0.047*
C14 0.2197 (2) 0.6052 (2) 0.3792 (2) 0.0291 (8)
C15 0.3026 (3) 0.6602 (2) 0.3951 (2) 0.0324 (8)
C16 0.3903 (3) 0.6153 (3) 0.4047 (3) 0.0446 (10)
H16 0.4453 0.6518 0.4149 0.054*
C17 0.3955 (3) 0.5171 (3) 0.3992 (3) 0.0510 (11)
H17 0.4540 0.4876 0.4057 0.061*
C18 0.3143 (3) 0.4625 (3) 0.3840 (3) 0.0447 (10)
H18 0.3180 0.3965 0.3798 0.054*
C19 0.2271 (3) 0.5063 (3) 0.3751 (2) 0.0350 (9)
C20 0.3007 (3) 0.7648 (3) 0.3986 (2) 0.0361 (9)
H20 0.3568 0.7992 0.4063 0.043*
C21 0.1510 (2) 0.9574 (3) 0.4023 (2) 0.0352 (8)
C22 0.1583 (2) 1.0639 (2) 0.3948 (2) 0.0305 (8)
C23 0.1992 (3) 1.1083 (3) 0.3340 (2) 0.0381 (9)
H23 0.2259 1.0727 0.2955 0.046*
C24 0.1997 (3) 1.2072 (2) 0.3315 (3) 0.0392 (9)
H24 0.2265 1.2367 0.2896 0.047*
C25 0.1267 (3) 1.2190 (3) 0.4458 (3) 0.0386 (9)
H25 0.1036 1.2567 0.4854 0.046*
C26 0.1205 (2) 1.1212 (3) 0.4521 (2) 0.0372 (9)
H26 0.0919 1.0936 0.4935 0.045*
O5 0.89687 (19) 0.9980 (2) 0.33618 (19) 0.0566 (8)
H1W 0.9471 0.9752 0.3683 0.085*
H2W 0.9002 1.0018 0.2829 0.085*
O6 0.10303 (19) 0.4671 (2) 0.1547 (2) 0.0618 (8)
H3W 0.0890 0.4581 0.2031 0.093*
H4W 0.0571 0.4882 0.1161 0.093*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.03055 (8) 0.02692 (10) 0.04319 (9) 0.00303 (6) 0.01399 (6) 0.00319 (6)
Hg2 0.03092 (8) 0.02783 (10) 0.04418 (9) 0.00243 (6) 0.01377 (6) 0.00243 (6)
Cl1 0.0326 (5) 0.0563 (7) 0.0615 (7) 0.0070 (4) 0.0225 (5) 0.0088 (5)
Cl2 0.0337 (5) 0.0583 (7) 0.0585 (7) 0.0064 (4) 0.0213 (5) 0.0088 (5)
O1 0.0416 (15) 0.0241 (15) 0.0673 (19) −0.0017 (11) 0.0136 (14) 0.0059 (13)
O2 0.0427 (16) 0.0345 (16) 0.092 (2) −0.0030 (12) 0.0304 (16) 0.0051 (15)
O3 0.0496 (17) 0.0181 (14) 0.074 (2) 0.0002 (12) 0.0163 (14) 0.0048 (14)
O4 0.0429 (16) 0.0295 (16) 0.081 (2) −0.0021 (12) 0.0254 (15) 0.0056 (14)
N1 0.0407 (18) 0.0175 (16) 0.0423 (18) 0.0007 (13) 0.0085 (15) 0.0004 (13)
N2 0.0329 (16) 0.0204 (17) 0.0505 (19) −0.0019 (12) 0.0151 (14) −0.0009 (13)
N3 0.045 (2) 0.026 (2) 0.047 (2) 0.0007 (13) 0.0098 (16) 0.0011 (14)
N4 0.0443 (19) 0.0212 (17) 0.0430 (19) −0.0063 (14) 0.0108 (15) −0.0037 (14)
N5 0.0349 (17) 0.0217 (17) 0.0505 (19) −0.0045 (13) 0.0135 (14) −0.0018 (14)
N6 0.0408 (18) 0.0281 (19) 0.050 (2) 0.0005 (14) 0.0120 (16) 0.0004 (15)
C1 0.0333 (19) 0.0218 (19) 0.0300 (19) 0.0068 (14) 0.0103 (15) 0.0038 (14)
C2 0.040 (2) 0.028 (2) 0.037 (2) 0.0015 (16) 0.0096 (17) 0.0025 (16)
C3 0.048 (2) 0.025 (2) 0.057 (3) 0.0112 (18) 0.014 (2) 0.0000 (18)
C4 0.042 (2) 0.041 (3) 0.063 (3) 0.0197 (19) 0.010 (2) 0.004 (2)
C5 0.032 (2) 0.035 (2) 0.054 (3) −0.0009 (16) 0.0046 (18) 0.0005 (18)
C6 0.036 (2) 0.025 (2) 0.034 (2) 0.0047 (15) 0.0097 (16) −0.0003 (15)
C7 0.037 (2) 0.025 (2) 0.038 (2) −0.0028 (15) 0.0117 (17) −0.0013 (16)
C8 0.036 (2) 0.024 (2) 0.044 (2) −0.0021 (16) 0.0075 (17) 0.0039 (16)
C9 0.0301 (18) 0.021 (2) 0.037 (2) 0.0014 (14) 0.0052 (15) 0.0032 (15)
C10 0.037 (2) 0.029 (2) 0.044 (2) −0.0006 (16) 0.0154 (18) 0.0009 (17)
C11 0.039 (2) 0.030 (2) 0.046 (2) 0.0082 (16) 0.0132 (18) −0.0025 (18)
C12 0.049 (2) 0.037 (3) 0.042 (2) −0.0021 (18) 0.0186 (19) 0.0061 (19)
C13 0.052 (2) 0.024 (2) 0.044 (2) 0.0024 (17) 0.0164 (19) −0.0021 (17)
C14 0.0347 (19) 0.023 (2) 0.0320 (19) 0.0054 (14) 0.0118 (16) 0.0031 (15)
C15 0.038 (2) 0.026 (2) 0.033 (2) 0.0030 (15) 0.0092 (17) 0.0014 (15)
C16 0.034 (2) 0.040 (3) 0.057 (3) 0.0023 (17) 0.0062 (19) −0.0017 (19)
C17 0.038 (2) 0.041 (3) 0.070 (3) 0.0165 (18) 0.006 (2) 0.005 (2)
C18 0.048 (2) 0.026 (2) 0.058 (3) 0.0120 (18) 0.009 (2) 0.0042 (18)
C19 0.041 (2) 0.023 (2) 0.040 (2) −0.0009 (16) 0.0077 (17) 0.0044 (16)
C20 0.034 (2) 0.028 (2) 0.046 (2) −0.0025 (16) 0.0108 (17) −0.0024 (17)
C21 0.031 (2) 0.032 (2) 0.041 (2) −0.0013 (16) 0.0066 (17) −0.0004 (17)
C22 0.0282 (18) 0.023 (2) 0.039 (2) 0.0017 (14) 0.0065 (16) 0.0007 (16)
C23 0.047 (2) 0.034 (2) 0.037 (2) 0.0030 (17) 0.0175 (18) −0.0026 (17)
C24 0.050 (2) 0.026 (2) 0.046 (2) −0.0040 (16) 0.0194 (19) 0.0040 (17)
C25 0.040 (2) 0.030 (2) 0.048 (2) 0.0069 (16) 0.0135 (19) −0.0033 (17)
C26 0.034 (2) 0.040 (2) 0.041 (2) 0.0041 (16) 0.0151 (17) 0.0042 (17)
O5 0.0477 (17) 0.068 (2) 0.0577 (19) 0.0121 (15) 0.0196 (15) 0.0016 (15)
O6 0.0449 (17) 0.072 (2) 0.071 (2) 0.0108 (15) 0.0201 (16) −0.0060 (17)

Geometric parameters (Å, °)

Hg1—C1 2.059 (3) C8—C9 1.501 (5)
Hg1—Cl1 2.3189 (9) C9—C13 1.390 (5)
Hg2—C14 2.058 (3) C9—C10 1.389 (5)
Hg2—Cl2 2.3231 (10) C10—C11 1.379 (5)
O1—C2 1.366 (4) C10—H10 0.9300
O1—H1 0.8200 C11—H11 0.9300
O2—C8 1.233 (4) C12—C13 1.379 (5)
O3—C19 1.369 (4) C12—H12 0.9300
O3—H3 0.8200 C13—H13 0.9300
O4—C21 1.237 (4) C14—C19 1.391 (5)
N1—C7 1.268 (4) C14—C15 1.402 (5)
N1—N2 1.382 (4) C15—C16 1.400 (5)
N2—C8 1.354 (4) C15—C20 1.468 (5)
N2—H2D 0.8600 C16—C17 1.383 (5)
N3—C12 1.340 (5) C16—H16 0.9300
N3—C11 1.341 (5) C17—C18 1.379 (5)
N4—C20 1.277 (4) C17—H17 0.9300
N4—N5 1.386 (4) C18—C19 1.389 (5)
N5—C21 1.353 (4) C18—H18 0.9300
N5—H5D 0.8600 C20—H20 0.9300
N6—C24 1.323 (4) C21—C22 1.502 (5)
N6—C25 1.345 (4) C22—C23 1.379 (5)
C1—C2 1.388 (5) C22—C26 1.402 (5)
C1—C6 1.405 (5) C23—C24 1.387 (5)
C2—C3 1.397 (5) C23—H23 0.9300
C3—C4 1.384 (5) C24—H24 0.9300
C3—H3A 0.9300 C25—C26 1.378 (5)
C4—C5 1.389 (5) C25—H25 0.9300
C4—H4 0.9300 C26—H26 0.9300
C5—C6 1.392 (5) O5—H1W 0.8363
C5—H5 0.9300 O5—H2W 0.8344
C6—C7 1.473 (5) O6—H3W 0.8298
C7—H7 0.9300 O6—H4W 0.8293
C1—Hg1—Cl1 173.85 (10) N3—C12—C13 123.8 (3)
C14—Hg2—Cl2 174.67 (10) N3—C12—H12 118.1
C2—O1—H1 109.5 C13—C12—H12 118.1
C19—O3—H3 109.5 C12—C13—C9 118.5 (3)
C7—N1—N2 116.7 (3) C12—C13—H13 120.7
C8—N2—N1 117.6 (3) C9—C13—H13 120.7
C8—N2—H2D 121.2 C19—C14—C15 118.8 (3)
N1—N2—H2D 121.2 C19—C14—Hg2 119.7 (3)
C12—N3—C11 117.0 (3) C15—C14—Hg2 121.4 (2)
C20—N4—N5 116.5 (3) C16—C15—C14 119.8 (3)
C21—N5—N4 118.5 (3) C16—C15—C20 118.0 (3)
C21—N5—H5D 120.7 C14—C15—C20 122.2 (3)
N4—N5—H5D 120.7 C17—C16—C15 120.2 (4)
C24—N6—C25 117.4 (3) C17—C16—H16 119.9
C2—C1—C6 119.5 (3) C15—C16—H16 119.9
C2—C1—Hg1 119.4 (3) C18—C17—C16 120.2 (4)
C6—C1—Hg1 121.1 (2) C18—C17—H17 119.9
O1—C2—C1 117.6 (3) C16—C17—H17 119.9
O1—C2—C3 122.0 (3) C17—C18—C19 119.9 (4)
C1—C2—C3 120.3 (3) C17—C18—H18 120.0
C4—C3—C2 120.0 (4) C19—C18—H18 120.0
C4—C3—H3A 120.0 O3—C19—C18 121.7 (3)
C2—C3—H3A 120.0 O3—C19—C14 117.2 (3)
C3—C4—C5 120.2 (3) C18—C19—C14 121.0 (3)
C3—C4—H4 119.9 N4—C20—C15 120.3 (3)
C5—C4—H4 119.9 N4—C20—H20 119.9
C4—C5—C6 120.2 (3) C15—C20—H20 119.9
C4—C5—H5 119.9 O4—C21—N5 123.6 (3)
C6—C5—H5 119.9 O4—C21—C22 121.2 (3)
C5—C6—C1 119.8 (3) N5—C21—C22 115.2 (3)
C5—C6—C7 118.3 (3) C23—C22—C26 118.4 (3)
C1—C6—C7 121.9 (3) C23—C22—C21 123.4 (3)
N1—C7—C6 120.6 (3) C26—C22—C21 118.3 (3)
N1—C7—H7 119.7 C22—C23—C24 118.3 (3)
C6—C7—H7 119.7 C22—C23—H23 120.8
O2—C8—N2 123.6 (3) C24—C23—H23 120.8
O2—C8—C9 121.0 (3) N6—C24—C23 124.1 (3)
N2—C8—C9 115.4 (3) N6—C24—H24 117.9
C13—C9—C10 118.2 (3) C23—C24—H24 117.9
C13—C9—C8 123.1 (3) N6—C25—C26 122.9 (3)
C10—C9—C8 118.7 (3) N6—C25—H25 118.6
C11—C10—C9 119.1 (3) C26—C25—H25 118.6
C11—C10—H10 120.5 C25—C26—C22 118.8 (3)
C9—C10—H10 120.5 C25—C26—H26 120.6
N3—C11—C10 123.3 (3) C22—C26—H26 120.6
N3—C11—H11 118.4 H1W—O5—H2W 110.1
C10—C11—H11 118.4 H3W—O6—H4W 111.0
C7—N1—N2—C8 163.9 (3) C8—C9—C13—C12 −179.9 (3)
C20—N4—N5—C21 −166.2 (3) Cl2—Hg2—C14—C19 2.9 (12)
Cl1—Hg1—C1—C2 −23.9 (11) Cl2—Hg2—C14—C15 −176.6 (8)
Cl1—Hg1—C1—C6 155.6 (7) C19—C14—C15—C16 1.2 (5)
C6—C1—C2—O1 177.6 (3) Hg2—C14—C15—C16 −179.3 (3)
Hg1—C1—C2—O1 −2.8 (4) C19—C14—C15—C20 178.7 (3)
C6—C1—C2—C3 1.2 (5) Hg2—C14—C15—C20 −1.8 (5)
Hg1—C1—C2—C3 −179.2 (3) C14—C15—C16—C17 −0.4 (6)
O1—C2—C3—C4 −177.4 (4) C20—C15—C16—C17 −178.0 (4)
C1—C2—C3—C4 −1.1 (6) C15—C16—C17—C18 0.1 (6)
C2—C3—C4—C5 0.8 (6) C16—C17—C18—C19 −0.6 (6)
C3—C4—C5—C6 −0.6 (6) C17—C18—C19—O3 178.0 (4)
C4—C5—C6—C1 0.8 (6) C17—C18—C19—C14 1.4 (6)
C4—C5—C6—C7 179.7 (3) C15—C14—C19—O3 −178.5 (3)
C2—C1—C6—C5 −1.1 (5) Hg2—C14—C19—O3 2.1 (4)
Hg1—C1—C6—C5 179.4 (3) C15—C14—C19—C18 −1.7 (5)
C2—C1—C6—C7 −179.9 (3) Hg2—C14—C19—C18 178.8 (3)
Hg1—C1—C6—C7 0.5 (5) N5—N4—C20—C15 −177.1 (3)
N2—N1—C7—C6 178.0 (3) C16—C15—C20—N4 −179.3 (4)
C5—C6—C7—N1 176.9 (3) C14—C15—C20—N4 3.2 (5)
C1—C6—C7—N1 −4.2 (5) N4—N5—C21—O4 4.8 (5)
N1—N2—C8—O2 −4.8 (5) N4—N5—C21—C22 −175.9 (3)
N1—N2—C8—C9 177.4 (3) O4—C21—C22—C23 −143.1 (4)
O2—C8—C9—C13 145.8 (4) N5—C21—C22—C23 37.6 (5)
N2—C8—C9—C13 −36.3 (5) O4—C21—C22—C26 36.2 (5)
O2—C8—C9—C10 −33.8 (5) N5—C21—C22—C26 −143.1 (3)
N2—C8—C9—C10 144.1 (3) C26—C22—C23—C24 −1.0 (5)
C13—C9—C10—C11 1.5 (5) C21—C22—C23—C24 178.3 (3)
C8—C9—C10—C11 −178.9 (3) C25—N6—C24—C23 0.5 (6)
C12—N3—C11—C10 2.0 (5) C22—C23—C24—N6 1.1 (6)
C9—C10—C11—N3 −2.5 (5) C24—N6—C25—C26 −2.2 (5)
C11—N3—C12—C13 −0.6 (5) N6—C25—C26—C22 2.3 (5)
N3—C12—C13—C9 −0.2 (6) C23—C22—C26—C25 −0.6 (5)
C10—C9—C13—C12 −0.3 (5) C21—C22—C26—C25 −179.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H4W···O2i 0.83 2.15 2.898 (4) 150
O6—H3W···O3 0.83 2.30 3.023 (4) 146
O5—H2W···O1 0.83 2.17 2.963 (4) 159
O5—H1W···O4ii 0.84 2.06 2.876 (4) 166
N5—H5D···O6iii 0.86 2.04 2.872 (4) 162
N2—H2D···O5iv 0.86 2.06 2.890 (4) 161
O3—H3···N6v 0.82 1.92 2.737 (4) 171
O1—H1···N3vi 0.82 1.93 2.733 (4) 167

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+3/2, y−1/2, −z+1/2; (v) x, y−1, z; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2184).

References

  1. Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gruter, G. M., Van Klink, G. P. M., Akkerman, O. S. & Bickelhaupt, F. (1995). Chem. Rev.95, 2405–2456
  3. Hao, X. Q., Gong, J. F., Song, W. T., Wu, Y. J. & Song, M. P. (2007). Inorg. Chem. Commun.10, 371–375.
  4. Lin, K. H., Song, M. P., Zhu, Y. & Wu, Y. J. (2002). J. Organomet. Chem.660, 139–144.
  5. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Soro, B., Stoccoro, S., Minghetti, G., Zucca, A., Cinellu, M. A., Gladiali, S., Manassero, M. & Sansoni, M. (2005). Organometallics, 24, 53–61.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2009a). Acta Cryst. E65, m754. [DOI] [PMC free article] [PubMed]
  10. Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009b). Organometallics, 28, 1909–1916.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023824/si2184sup1.cif

e-65-0m842-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023824/si2184Isup2.hkl

e-65-0m842-Isup2.hkl (277KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES