Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 17;65(Pt 7):o1587. doi: 10.1107/S1600536809022168

(E)-N′-(3,5-Dibromo-2-hydroxy­benzyl­idene)-2-methoxy­benzohydrazide

Guo-Biao Cao a,*, Xu-Hui Lu a
PMCID: PMC2969285  PMID: 21582862

Abstract

The title compound, C15H12Br2N2O3, was synthesized by the reaction of 3,5-dibromo-2-hydroxy­benzaldehyde with an equimolar quantity of 2-methoxy­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 3.4 (2)° and intra­molecular O—H⋯N and N—H⋯O hydrogen bonds are observed in the mol­ecule. The crystal studied was an inversion twin with a 0.513 (19):0.487 (19) domain ratio.

Related literature

For related structures, see: Mohd Lair et al. (2009); Fun et al. (2008); Li & Ban (2009); Zhu et al. (2009); Yang (2007); You et al. (2008). For our previous work in this area, see: Qu et al. (2008); Yang et al. (2008). For reference structural data, see: Allen et al. (1987).graphic file with name e-65-o1587-scheme1.jpg

Experimental

Crystal data

  • C15H12Br2N2O3

  • M r = 428.09

  • Monoclinic, Inline graphic

  • a = 10.886 (1) Å

  • b = 12.956 (2) Å

  • c = 10.965 (2) Å

  • β = 96.476 (3)°

  • V = 1536.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.29 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.27 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.300, T max = 0.329 (expected range = 0.219–0.240)

  • 4623 measured reflections

  • 2208 independent reflections

  • 1992 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.125

  • S = 1.05

  • 2208 reflections

  • 204 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983), 531 Friedel pairs

  • Flack parameter: 0.513 (19)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022168/hb5004sup1.cif

e-65-o1587-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022168/hb5004Isup2.hkl

e-65-o1587-Isup2.hkl (108.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.90 (5) 1.97 (9) 2.617 (8) 128 (9)
O1—H1⋯N1 0.82 1.93 2.535 (7) 130

Acknowledgments

The Vital Foundation of Ankang University (project No. 2008AKXY012), and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 02JK202) are gratefully acknowledged.

supplementary crystallographic information

Comment

Study on the crystal structures of hydrazone derivatives is a hot topic in structural chemistry. In the last few years, the crystal structures of a large number of hydrazone compounds have been reported (Mohd Lair et al., 2009; Fun et al., 2008; Li & Ban, 2009; Zhu et al., 2009; Yang, 2007; You et al., 2008). As a continuation of our work in this area (Qu et al., 2008; Yang et al., 2008), the title new hydrazone compound, (I), derived from the reaction of 3,5-dibromo-2-hydroxybenzaldehyde with an equimolar quantity of 2-methoxybenzohydrazide is reported.

In compound (I), Fig. 1, the dihedral angle between the two benzene rings is 3.4 (2)°. Intramolecular N2—H2···O3 and O1—H1···N1 hydrogen bonds, (Table 1) are observed in the molecule. All the bond lengths are within normal values (Allen et al., 1987).

Experimental

The title compound was prepared by refluxing equimolar quantities of 3,5-dibromo-2-hydroxybenzaldehyde with 2-methoxybenzohydrazide in methanol. Colorless blocks of (I) were formed by slow evaporation of the solution in air.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions (C–H = 0.93-0.96 Å, O–H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O and methyl C). The crystal studied was an inversion twin with a 0.513 (19):0.487 (19) domain ratio.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with ellipsoids drawn at the 30% probability level and hydrogen bonds indicated by dashed lines.

Crystal data

C15H12Br2N2O3 F(000) = 840
Mr = 428.09 Dx = 1.850 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 2250 reflections
a = 10.886 (1) Å θ = 2.4–25.9°
b = 12.956 (2) Å µ = 5.29 mm1
c = 10.965 (2) Å T = 298 K
β = 96.476 (3)° Block, colorless
V = 1536.6 (4) Å3 0.30 × 0.30 × 0.27 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2208 independent reflections
Radiation source: fine-focus sealed tube 1992 reflections with I > 2σ(I)
graphite Rint = 0.030
ω scans θmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→13
Tmin = 0.300, Tmax = 0.329 k = −16→16
4623 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0877P)2 + 0.6851P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2208 reflections Δρmax = 0.35 e Å3
204 parameters Δρmin = −0.62 e Å3
3 restraints Absolute structure: Flack (1983), 531 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.513 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.39963 (8) −0.26669 (6) −0.15520 (7) 0.0501 (2)
Br2 0.48191 (8) −0.46448 (6) 0.30371 (8) 0.0556 (3)
O1 0.5231 (5) −0.0896 (4) −0.0108 (4) 0.0388 (11)
H1 0.5797 −0.0514 0.0166 0.058*
O2 0.6295 (7) 0.1701 (5) 0.0431 (5) 0.0548 (16)
O3 0.7666 (6) 0.2128 (4) 0.4081 (5) 0.0466 (14)
N1 0.6150 (6) 0.0066 (5) 0.1793 (5) 0.0341 (12)
N2 0.6578 (6) 0.0982 (4) 0.2312 (5) 0.0360 (12)
C1 0.5608 (6) −0.1684 (5) 0.1883 (6) 0.0300 (13)
C2 0.5188 (6) −0.1713 (5) 0.0627 (6) 0.0306 (13)
C3 0.4675 (7) −0.2629 (5) 0.0147 (7) 0.0351 (14)
C4 0.4612 (7) −0.3510 (5) 0.0854 (8) 0.0389 (15)
H4 0.4296 −0.4122 0.0504 0.047*
C5 0.5026 (7) −0.3458 (5) 0.2081 (7) 0.0369 (15)
C6 0.5533 (7) −0.2572 (5) 0.2625 (8) 0.0360 (16)
H6 0.5818 −0.2559 0.3456 0.043*
C7 0.6101 (7) −0.0736 (5) 0.2472 (6) 0.0343 (14)
H7 0.6369 −0.0714 0.3307 0.041*
C8 0.6631 (7) 0.1797 (6) 0.1527 (6) 0.0332 (14)
C9 0.7136 (7) 0.2793 (5) 0.2082 (7) 0.0354 (15)
C10 0.7100 (8) 0.3626 (6) 0.1268 (8) 0.0458 (18)
H10 0.6764 0.3535 0.0458 0.055*
C11 0.7548 (10) 0.4567 (7) 0.1642 (12) 0.063 (3)
H11 0.7503 0.5115 0.1090 0.076*
C12 0.8069 (9) 0.4715 (7) 0.2835 (11) 0.059 (2)
H12 0.8380 0.5358 0.3088 0.071*
C13 0.8126 (8) 0.3906 (7) 0.3647 (9) 0.052 (2)
H13 0.8486 0.4003 0.4449 0.062*
C14 0.7652 (7) 0.2940 (6) 0.3286 (7) 0.0386 (15)
C15 0.8276 (10) 0.2211 (8) 0.5282 (8) 0.062 (3)
H15A 0.9101 0.2462 0.5248 0.093*
H15B 0.8309 0.1545 0.5668 0.093*
H15C 0.7833 0.2682 0.5748 0.093*
H2 0.692 (9) 0.097 (9) 0.310 (3) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0682 (5) 0.0405 (4) 0.0380 (4) −0.0037 (4) −0.0105 (3) −0.0106 (3)
Br2 0.0651 (5) 0.0333 (4) 0.0706 (6) 0.0050 (4) 0.0171 (4) 0.0194 (4)
O1 0.059 (3) 0.029 (2) 0.027 (2) −0.007 (2) −0.006 (2) 0.0006 (18)
O2 0.079 (4) 0.043 (3) 0.039 (3) −0.015 (3) −0.011 (3) 0.005 (3)
O3 0.060 (4) 0.044 (3) 0.033 (3) −0.015 (3) −0.007 (2) −0.007 (2)
N1 0.042 (3) 0.030 (3) 0.030 (3) −0.006 (2) 0.001 (2) −0.005 (2)
N2 0.050 (3) 0.028 (3) 0.029 (3) −0.010 (3) −0.003 (2) −0.003 (2)
C1 0.034 (3) 0.026 (3) 0.030 (3) −0.001 (2) 0.002 (2) 0.002 (2)
C2 0.036 (3) 0.024 (3) 0.031 (3) 0.002 (2) 0.000 (3) 0.000 (2)
C3 0.036 (4) 0.034 (3) 0.033 (4) 0.003 (3) −0.004 (3) −0.003 (3)
C4 0.038 (4) 0.028 (3) 0.050 (4) 0.002 (3) 0.004 (3) −0.007 (3)
C5 0.040 (4) 0.028 (3) 0.044 (4) 0.005 (3) 0.010 (3) 0.006 (3)
C6 0.039 (4) 0.026 (3) 0.042 (4) 0.000 (3) 0.002 (3) 0.005 (3)
C7 0.044 (4) 0.029 (3) 0.029 (3) 0.001 (3) −0.001 (3) −0.001 (2)
C8 0.035 (3) 0.038 (4) 0.025 (3) −0.004 (3) 0.000 (3) −0.004 (3)
C9 0.038 (4) 0.032 (4) 0.038 (4) −0.005 (3) 0.011 (3) −0.008 (3)
C10 0.051 (5) 0.040 (4) 0.048 (4) 0.000 (3) 0.010 (3) 0.000 (3)
C11 0.063 (6) 0.034 (4) 0.096 (8) −0.003 (4) 0.026 (6) 0.005 (5)
C12 0.056 (5) 0.036 (4) 0.088 (7) −0.013 (4) 0.018 (5) −0.020 (4)
C13 0.046 (4) 0.046 (5) 0.065 (5) −0.016 (4) 0.012 (4) −0.030 (4)
C14 0.035 (4) 0.037 (3) 0.045 (4) −0.007 (3) 0.008 (3) −0.013 (3)
C15 0.061 (6) 0.086 (7) 0.037 (4) −0.011 (5) −0.005 (4) −0.007 (4)

Geometric parameters (Å, °)

Br1—C3 1.925 (7) C5—C6 1.379 (10)
Br2—C5 1.889 (7) C6—H6 0.9300
O1—C2 1.335 (8) C7—H7 0.9300
O1—H1 0.8200 C8—C9 1.504 (10)
O2—C8 1.222 (8) C9—C14 1.388 (11)
O3—C14 1.366 (10) C9—C10 1.398 (11)
O3—C15 1.411 (11) C10—C11 1.359 (13)
N1—C7 1.282 (9) C10—H10 0.9300
N1—N2 1.375 (8) C11—C12 1.380 (17)
N2—C8 1.367 (9) C11—H11 0.9300
N2—H2 0.90 (5) C12—C13 1.372 (14)
C1—C2 1.401 (9) C12—H12 0.9300
C1—C6 1.417 (9) C13—C14 1.394 (10)
C1—C7 1.461 (9) C13—H13 0.9300
C2—C3 1.389 (10) C15—H15A 0.9600
C3—C4 1.386 (11) C15—H15B 0.9600
C4—C5 1.372 (11) C15—H15C 0.9600
C4—H4 0.9300
C2—O1—H1 109.5 O2—C8—N2 120.7 (6)
C14—O3—C15 120.5 (7) O2—C8—C9 122.7 (6)
C7—N1—N2 119.5 (6) N2—C8—C9 116.6 (6)
C8—N2—N1 116.3 (5) C14—C9—C10 118.7 (7)
C8—N2—H2 125 (7) C14—C9—C8 126.3 (7)
N1—N2—H2 118 (7) C10—C9—C8 114.9 (7)
C2—C1—C6 120.5 (6) C11—C10—C9 121.1 (9)
C2—C1—C7 121.3 (6) C11—C10—H10 119.4
C6—C1—C7 118.1 (6) C9—C10—H10 119.4
O1—C2—C3 119.2 (6) C10—C11—C12 120.3 (9)
O1—C2—C1 122.8 (6) C10—C11—H11 119.8
C3—C2—C1 117.9 (6) C12—C11—H11 119.8
C4—C3—C2 122.3 (7) C13—C12—C11 119.6 (8)
C4—C3—Br1 118.8 (5) C13—C12—H12 120.2
C2—C3—Br1 118.9 (5) C11—C12—H12 120.2
C5—C4—C3 118.5 (6) C12—C13—C14 120.9 (9)
C5—C4—H4 120.8 C12—C13—H13 119.6
C3—C4—H4 120.8 C14—C13—H13 119.6
C4—C5—C6 122.4 (6) O3—C14—C9 118.4 (6)
C4—C5—Br2 117.3 (5) O3—C14—C13 122.2 (7)
C6—C5—Br2 120.3 (6) C9—C14—C13 119.4 (8)
C5—C6—C1 118.3 (7) O3—C15—H15A 109.5
C5—C6—H6 120.9 O3—C15—H15B 109.5
C1—C6—H6 120.9 H15A—C15—H15B 109.5
N1—C7—C1 117.5 (6) O3—C15—H15C 109.5
N1—C7—H7 121.3 H15A—C15—H15C 109.5
C1—C7—H7 121.3 H15B—C15—H15C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3 0.90 (5) 1.97 (9) 2.617 (8) 128 (9)
O1—H1···N1 0.82 1.93 2.535 (7) 130

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5004).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [DOI] [PMC free article] [PubMed]
  6. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189. [DOI] [PMC free article] [PubMed]
  7. Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466. [DOI] [PMC free article] [PubMed]
  8. Qu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Yang, D.-S. (2007). J. Chem. Crystallogr.37, 343–348.
  11. Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186. [DOI] [PMC free article] [PubMed]
  12. You, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem.82, 2215–2219.
  13. Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022168/hb5004sup1.cif

e-65-o1587-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022168/hb5004Isup2.hkl

e-65-o1587-Isup2.hkl (108.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES