Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 10;65(Pt 7):o1529. doi: 10.1107/S1600536809021229

N-(2,3-Dimethyl­phen­yl)-2,2,2-trimethyl­acetamide

B Thimme Gowda a,*, Sabine Foro b, Hiromitsu Terao c, Hartmut Fuess b
PMCID: PMC2969287  PMID: 21582819

Abstract

The N—H bond in the title compound, C13H19NO, is anti to the C=O bond and is also anti to both the 2- and 3-methyl substituents in the aromatic ring. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains propagating along the c axis.

Related literature

For the preparation of the title compound, see: Shilpa & Gowda (2007). For related structures, see: Gowda et al. (2007a,b,c ).graphic file with name e-65-o1529-scheme1.jpg

Experimental

Crystal data

  • C13H19NO

  • M r = 205.29

  • Monoclinic, Inline graphic

  • a = 18.276 (4) Å

  • b = 8.227 (2) Å

  • c = 8.633 (2) Å

  • β = 97.94 (2)°

  • V = 1285.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 299 K

  • 0.45 × 0.16 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.971, T max = 0.992

  • 4295 measured reflections

  • 2349 independent reflections

  • 1214 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.221

  • S = 0.96

  • 2349 reflections

  • 195 parameters

  • 112 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021229/ci2806sup1.cif

e-65-o1529-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021229/ci2806Isup2.hkl

e-65-o1529-Isup2.hkl (115.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.94 2.11 2.966 (3) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for resumption of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the effect of ring and side chain substitutions on the crystal structures of chemically and biologically important class of compounds such as aromatic amides (Gowda et al., 2007a, b, c), the crystal structure of 2,2,2-trimethyl-N-(2,3-dimethylphenyl)-acetamide has been determined.

The conformation of the N–H bond in the title compound is anti to both the 2- and 3-methyl substituents in the aromatic ring (Fig. 1), in contrast to the syn conformation observed with respect to both the 2- and 3-chloro substituents in 2,2,2-trimethyl-N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2007a), syn conformation with respect to the 2-methyl substituent in 2,2,2-trimethyl-N- (2-methylphenyl)acetamide (Gowda et al., 2007b) and anti conformation with respect to 3-methyl substituent in 2,2,2-trimethyl-N- (3-methylphenyl)acetamide (Gowda et al., 2007c). Furthermore, the conformation of the C═O bond is anti to the N—H bond in the amide segment.

In the title compound, the molecules are linked into chains (Fig. 2) running along the c axis by intermolecular N—H···O hydrogen bonds (Table 1).

Experimental

The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa & Gowda, 2007). Single crystals of the title compound were grown by slow evaporation of its ethanolic solution at room temperature.

Refinement

The tert-butyl group is disordered over three orientations with occupancies of 0.743 (14), 0.153 (7) and 0.104 (13). All C—C/C···C distances involving disordered atoms were restrained to be equal and also they were subjected to a rigid bond restraint. The Uij components of the disordered atoms were restrained to approximate isotropic behaviour. The N-bound H atom was located in a difference map and was allowed to ride on the N atom. The remaining H atoms were positioned geometrically and refined using a riding model [C-H = 0.93–0.96 Å]. The Uiso parameter for all H atoms were set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All disorder components are shown.

Fig. 2.

Fig. 2.

Molecular packing of the title compound, viewed down the b axis. Only the major disorder component is shown. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H19NO F(000) = 448
Mr = 205.29 Dx = 1.061 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1033 reflections
a = 18.276 (4) Å θ = 2.7–27.9°
b = 8.227 (2) Å µ = 0.07 mm1
c = 8.633 (2) Å T = 299 K
β = 97.94 (2)° Needle, colourless
V = 1285.6 (5) Å3 0.45 × 0.16 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2349 independent reflections
Radiation source: fine-focus sealed tube 1214 reflections with I > 2σ(I)
graphite Rint = 0.047
Rotation method data acquisition using ω and φ scans θmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) h = −17→21
Tmin = 0.971, Tmax = 0.992 k = −6→9
4295 measured reflections l = −10→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1311P)2] where P = (Fo2 + 2Fc2)/3
2349 reflections (Δ/σ)max = 0.001
195 parameters Δρmax = 0.28 e Å3
112 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.19392 (11) 0.0929 (2) 0.5063 (2) 0.0698 (7)
N1 0.23113 (12) 0.2060 (3) 0.2915 (2) 0.0563 (7)
H1N 0.2239 0.2356 0.1850 0.068*
C1 0.28809 (14) 0.3034 (3) 0.3784 (3) 0.0502 (7)
C2 0.34834 (14) 0.2312 (3) 0.4711 (3) 0.0519 (7)
C3 0.40102 (15) 0.3326 (4) 0.5567 (3) 0.0618 (8)
C4 0.39304 (17) 0.4983 (4) 0.5429 (3) 0.0733 (9)
H4 0.4278 0.5652 0.6002 0.088*
C5 0.33513 (19) 0.5685 (4) 0.4467 (4) 0.0789 (10)
H5 0.3320 0.6809 0.4369 0.095*
C6 0.28169 (17) 0.4699 (3) 0.3649 (3) 0.0652 (8)
H6 0.2418 0.5157 0.3012 0.078*
C7 0.18685 (15) 0.1087 (3) 0.3635 (3) 0.0533 (7)
C8 0.12776 (15) 0.0097 (3) 0.2593 (3) 0.0636 (8)
C9 0.1112 (4) 0.0650 (10) 0.0899 (5) 0.086 (2) 0.743 (14)
H9A 0.0865 0.1682 0.0853 0.128* 0.743 (14)
H9B 0.0801 −0.0136 0.0309 0.128* 0.743 (14)
H9C 0.1566 0.0752 0.0465 0.128* 0.743 (14)
C10 0.0569 (3) 0.0106 (12) 0.3340 (8) 0.100 (3) 0.743 (14)
H10A 0.0391 0.1201 0.3385 0.150* 0.743 (14)
H10B 0.0667 −0.0329 0.4380 0.150* 0.743 (14)
H10C 0.0202 −0.0548 0.2727 0.150* 0.743 (14)
C11 0.1582 (4) −0.1659 (6) 0.2620 (10) 0.101 (3) 0.743 (14)
H11A 0.2051 −0.1661 0.2242 0.151* 0.743 (14)
H11B 0.1242 −0.2338 0.1964 0.151* 0.743 (14)
H11C 0.1640 −0.2066 0.3672 0.151* 0.743 (14)
C9A 0.1107 (14) −0.144 (2) 0.347 (3) 0.091 (7) 0.153 (7)
H9D 0.0780 −0.1177 0.4215 0.136* 0.153 (7)
H9E 0.1558 −0.1881 0.4012 0.136* 0.153 (7)
H9F 0.0877 −0.2228 0.2742 0.136* 0.153 (7)
C10A 0.1509 (13) −0.029 (3) 0.0996 (17) 0.082 (7) 0.153 (7)
H10D 0.1342 0.0566 0.0273 0.122* 0.153 (7)
H10E 0.1293 −0.1299 0.0618 0.122* 0.153 (7)
H10F 0.2038 −0.0366 0.1096 0.122* 0.153 (7)
C11A 0.0616 (9) 0.129 (2) 0.242 (3) 0.082 (6) 0.153 (7)
H11D 0.0791 0.2375 0.2295 0.124* 0.153 (7)
H11E 0.0374 0.1235 0.3336 0.124* 0.153 (7)
H11F 0.0274 0.0996 0.1517 0.124* 0.153 (7)
C9B 0.072 (2) −0.059 (7) 0.360 (6) 0.085 (11) 0.104 (13)
H9G 0.0440 0.0291 0.3957 0.128* 0.104 (13)
H9H 0.0978 −0.1152 0.4480 0.128* 0.104 (13)
H9I 0.0391 −0.1324 0.2983 0.128* 0.104 (13)
C11B 0.089 (3) 0.128 (6) 0.138 (7) 0.111 (19) 0.104 (13)
H11G 0.0842 0.2324 0.1855 0.167* 0.104 (13)
H11H 0.0406 0.0873 0.0987 0.167* 0.104 (13)
H11I 0.1173 0.1392 0.0528 0.167* 0.104 (13)
C10B 0.173 (2) −0.115 (6) 0.180 (7) 0.095 (11) 0.104 (13)
H10G 0.1773 −0.0790 0.0753 0.142* 0.104 (13)
H10H 0.1490 −0.2185 0.1756 0.142* 0.104 (13)
H10I 0.2216 −0.1242 0.2383 0.142* 0.104 (13)
C12 0.35791 (18) 0.0495 (4) 0.4751 (4) 0.0746 (9)
H12A 0.3305 0.0027 0.3830 0.112*
H12B 0.3401 0.0065 0.5662 0.112*
H12C 0.4093 0.0234 0.4785 0.112*
C13 0.46617 (16) 0.2627 (5) 0.6612 (4) 0.0859 (11)
H13A 0.4976 0.2062 0.5987 0.129*
H13B 0.4490 0.1883 0.7340 0.129*
H13C 0.4935 0.3490 0.7175 0.129*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0848 (15) 0.0745 (15) 0.0504 (12) −0.0125 (11) 0.0108 (9) 0.0006 (10)
N1 0.0721 (15) 0.0500 (14) 0.0461 (12) −0.0083 (12) 0.0054 (10) 0.0016 (10)
C1 0.0617 (17) 0.0420 (16) 0.0468 (13) −0.0051 (12) 0.0073 (12) −0.0018 (12)
C2 0.0576 (16) 0.0471 (17) 0.0527 (14) 0.0025 (13) 0.0132 (12) 0.0018 (12)
C3 0.0570 (17) 0.071 (2) 0.0577 (16) −0.0049 (15) 0.0082 (13) 0.0023 (15)
C4 0.074 (2) 0.069 (2) 0.073 (2) −0.0191 (17) −0.0008 (16) −0.0073 (16)
C5 0.104 (3) 0.0400 (18) 0.089 (2) −0.0114 (17) 0.001 (2) −0.0069 (16)
C6 0.076 (2) 0.0459 (18) 0.0706 (18) 0.0028 (15) −0.0011 (15) 0.0033 (14)
C7 0.0631 (17) 0.0461 (17) 0.0515 (16) 0.0017 (13) 0.0104 (12) 0.0003 (12)
C8 0.0728 (19) 0.0537 (18) 0.0629 (18) −0.0116 (14) 0.0046 (14) −0.0043 (14)
C9 0.085 (4) 0.100 (5) 0.064 (3) −0.027 (3) −0.013 (3) −0.001 (3)
C10 0.081 (3) 0.122 (6) 0.098 (4) −0.030 (4) 0.016 (3) −0.010 (4)
C11 0.135 (5) 0.051 (3) 0.111 (5) −0.012 (3) −0.004 (4) −0.017 (3)
C9A 0.095 (11) 0.080 (9) 0.101 (10) −0.016 (8) 0.024 (8) 0.008 (8)
C10A 0.085 (10) 0.085 (11) 0.073 (8) −0.005 (8) 0.006 (7) −0.008 (8)
C11A 0.076 (9) 0.085 (9) 0.083 (10) −0.004 (7) 0.000 (7) −0.011 (8)
C9B 0.084 (13) 0.082 (15) 0.092 (13) −0.006 (9) 0.018 (9) 0.011 (9)
C11B 0.11 (2) 0.12 (2) 0.11 (2) −0.002 (10) 0.008 (10) −0.005 (10)
C10B 0.103 (13) 0.092 (14) 0.092 (14) −0.008 (9) 0.020 (9) −0.013 (10)
C12 0.082 (2) 0.061 (2) 0.082 (2) 0.0128 (16) 0.0142 (17) 0.0059 (16)
C13 0.065 (2) 0.110 (3) 0.081 (2) −0.001 (2) 0.0016 (16) 0.006 (2)

Geometric parameters (Å, °)

O1—C7 1.229 (3) C10—H10B 0.96
N1—C7 1.350 (3) C10—H10C 0.96
N1—C1 1.440 (3) C11—H11A 0.96
N1—H1N 0.94 C11—H11B 0.96
C1—C6 1.378 (4) C11—H11C 0.96
C1—C2 1.401 (3) C9A—H9D 0.96
C2—C3 1.405 (4) C9A—H9E 0.96
C2—C12 1.505 (4) C9A—H9F 0.96
C3—C4 1.374 (4) C10A—H10D 0.96
C3—C13 1.505 (4) C10A—H10E 0.96
C4—C5 1.378 (4) C10A—H10F 0.96
C4—H4 0.93 C11A—H11D 0.96
C5—C6 1.386 (4) C11A—H11E 0.96
C5—H5 0.93 C11A—H11F 0.96
C6—H6 0.93 C9B—H9G 0.96
C7—C8 1.539 (4) C9B—H9H 0.96
C8—C9 1.522 (4) C9B—H9I 0.96
C8—C10 1.525 (5) C11B—H11G 0.96
C8—C9A 1.529 (8) C11B—H11H 0.96
C8—C10A 1.530 (8) C11B—H11I 0.96
C8—C9B 1.533 (8) C10B—H10G 0.96
C8—C11B 1.534 (8) C10B—H10H 0.96
C8—C10B 1.539 (8) C10B—H10I 0.96
C8—C11 1.547 (5) C12—H12A 0.96
C8—C11A 1.547 (8) C12—H12B 0.96
C9—H9A 0.96 C12—H12C 0.96
C9—H9B 0.96 C13—H13A 0.96
C9—H9C 0.96 C13—H13B 0.96
C10—H10A 0.96 C13—H13C 0.96
C7—N1—C1 121.8 (2) C8—C11—H11B 109.5
C7—N1—H1N 126.2 H11A—C11—H11B 109.5
C1—N1—H1N 111.0 C8—C11—H11C 109.5
C6—C1—C2 121.4 (2) H11A—C11—H11C 109.5
C6—C1—N1 117.5 (2) H11B—C11—H11C 109.5
C2—C1—N1 121.1 (2) C8—C9A—H9D 109.5
C1—C2—C3 118.4 (2) C8—C9A—H9E 109.5
C1—C2—C12 120.9 (2) H9D—C9A—H9E 109.5
C3—C2—C12 120.6 (3) C8—C9A—H9F 109.5
C4—C3—C2 119.1 (3) H9D—C9A—H9F 109.5
C4—C3—C13 119.8 (3) H9E—C9A—H9F 109.5
C2—C3—C13 121.1 (3) C8—C10A—H10D 109.5
C3—C4—C5 122.1 (3) C8—C10A—H10E 109.5
C3—C4—H4 119.0 H10D—C10A—H10E 109.5
C5—C4—H4 119.0 C8—C10A—H10F 109.5
C4—C5—C6 119.4 (3) H10D—C10A—H10F 109.5
C4—C5—H5 120.3 H10E—C10A—H10F 109.5
C6—C5—H5 120.3 C8—C11A—H11D 109.5
C1—C6—C5 119.5 (3) C8—C11A—H11E 109.5
C1—C6—H6 120.2 H11D—C11A—H11E 109.5
C5—C6—H6 120.2 C8—C11A—H11F 109.5
O1—C7—N1 122.6 (2) H11D—C11A—H11F 109.5
O1—C7—C8 119.9 (2) H11E—C11A—H11F 109.5
N1—C7—C8 117.5 (2) C8—C9B—H9G 109.5
C9—C8—C10 109.7 (3) C8—C9B—H9H 109.5
C9A—C8—C10A 112.2 (7) H9G—C9B—H9H 109.5
C9B—C8—C11B 110 (3) C8—C9B—H9I 109.5
C9B—C8—C10B 117 (3) H9G—C9B—H9I 109.5
C11B—C8—C10B 110 (3) H9H—C9B—H9I 109.5
C9—C8—C7 115.7 (3) C8—C11B—H11G 109.5
C10—C8—C7 108.6 (3) C8—C11B—H11H 109.5
C9A—C8—C7 108.8 (10) H11G—C11B—H11H 109.5
C10A—C8—C7 112.1 (9) C8—C11B—H11I 109.5
C9B—C8—C7 109 (2) H11G—C11B—H11I 109.5
C11B—C8—C7 107 (2) H11H—C11B—H11I 109.5
C10B—C8—C7 103.6 (16) C8—C10B—H10G 109.5
C9—C8—C11 108.5 (3) C8—C10B—H10H 109.5
C10—C8—C11 108.8 (3) H10G—C10B—H10H 109.5
C7—C8—C11 105.3 (3) C8—C10B—H10I 109.5
C9A—C8—C11A 111.3 (7) H10G—C10B—H10I 109.5
C10A—C8—C11A 110.6 (7) H10H—C10B—H10I 109.5
C8—C9—H9A 109.5 C2—C12—H12A 109.5
C8—C9—H9B 109.5 C2—C12—H12B 109.5
H9A—C9—H9B 109.5 H12A—C12—H12B 109.5
C8—C9—H9C 109.5 C2—C12—H12C 109.5
H9A—C9—H9C 109.5 H12A—C12—H12C 109.5
H9B—C9—H9C 109.5 H12B—C12—H12C 109.5
C8—C10—H10A 109.5 C3—C13—H13A 109.5
C8—C10—H10B 109.5 C3—C13—H13B 109.5
H10A—C10—H10B 109.5 H13A—C13—H13B 109.5
C8—C10—H10C 109.5 C3—C13—H13C 109.5
H10A—C10—H10C 109.5 H13A—C13—H13C 109.5
H10B—C10—H10C 109.5 H13B—C13—H13C 109.5
C8—C11—H11A 109.5
C7—N1—C1—C6 −116.5 (3) O1—C7—C8—C9 166.5 (5)
C7—N1—C1—C2 64.6 (3) N1—C7—C8—C9 −16.0 (5)
C6—C1—C2—C3 2.9 (4) O1—C7—C8—C10 42.6 (5)
N1—C1—C2—C3 −178.2 (2) N1—C7—C8—C10 −139.9 (5)
C6—C1—C2—C12 −175.1 (2) O1—C7—C8—C9A −24.7 (11)
N1—C1—C2—C12 3.8 (4) N1—C7—C8—C9A 152.8 (11)
C1—C2—C3—C4 −2.1 (4) O1—C7—C8—C10A −149.4 (11)
C12—C2—C3—C4 176.0 (3) N1—C7—C8—C10A 28.1 (11)
C1—C2—C3—C13 178.7 (2) O1—C7—C8—C9B 16 (2)
C12—C2—C3—C13 −3.3 (4) N1—C7—C8—C9B −166 (2)
C2—C3—C4—C5 −0.4 (5) O1—C7—C8—C11B 135 (3)
C13—C3—C4—C5 178.9 (3) N1—C7—C8—C11B −48 (3)
C3—C4—C5—C6 2.1 (5) O1—C7—C8—C10B −109 (3)
C2—C1—C6—C5 −1.2 (4) N1—C7—C8—C10B 69 (3)
N1—C1—C6—C5 179.8 (3) O1—C7—C8—C11 −73.8 (5)
C4—C5—C6—C1 −1.3 (5) N1—C7—C8—C11 103.7 (5)
C1—N1—C7—O1 −2.5 (4) O1—C7—C8—C11A 92.6 (11)
C1—N1—C7—C8 −180.0 (2) N1—C7—C8—C11A −89.9 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.94 2.11 2.966 (3) 151

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2806).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o3788.
  3. Gowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007b). Acta Cryst. E63, o1983–o1984.
  4. Gowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007c). Acta Cryst. E63, o2073–o2074.
  5. Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  6. Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021229/ci2806sup1.cif

e-65-o1529-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021229/ci2806Isup2.hkl

e-65-o1529-Isup2.hkl (115.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES