Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 24;65(Pt 7):m819. doi: 10.1107/S1600536809023113

Bis(acetyl­acetonato-κ2 O,O′)(2-amino-1-methyl-1H-benzimidazole-κN 3)oxido­vanadium(IV)

Zukhra Ch Kadirova a,*, Dilnoza S Rahmonova a, Samat A Talipov b, Jamshid M Ashurov b, Nusrat A Parpiev a
PMCID: PMC2969291  PMID: 21582741

Abstract

The title mixed-ligand oxidovanadium(IV) compound, [VO(C5H7O2)2(C8H9N3)], contains a VIV atom in a distorted octahedral coordination, which is typical for such complexes. The vanadyl group and the N-heterocyclic ligand are cis to each other. The coordination bond is located at the endocyclic N atom of the benzimidazole ligand. Intra­molecular hydrogen bonds between the exo-NH2 group H atoms and acetyl­acetonate O atoms stabilize the crystal structure.

Related literature

For the activity of vanadium complexes, see: Rehder (1999). For the crystal structures of acetylacetonate and benzimidazole oxidovanadium(IV) and (V) complexes, see: Maurya (2002); Caira et al. (1972); Shao et al. (1984); Crans et al. (1997); Maurya et al. (2006); Akhmed et al. (2004). For 1-methyl- 2-aminobenzimidazole compounds, see: Borodkina et al. (2003); Chekhlov (2004).graphic file with name e-65-0m819-scheme1.jpg

Experimental

Crystal data

  • [V(C5H7O2)2O(C8H9N3)]

  • M r = 412.33

  • Monoclinic, Inline graphic

  • a = 8.27120 (10) Å

  • b = 15.0472 (2) Å

  • c = 16.1078 (2) Å

  • β = 104.2646 (14)°

  • V = 1942.94 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.57 mm−1

  • T = 293 K

  • 0.25 × 0.12 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2007) T min = 0.544, T max = 0.694

  • 8892 measured reflections

  • 3720 independent reflections

  • 2983 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.106

  • S = 1.00

  • 3720 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023113/su2113sup1.cif

e-65-0m819-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023113/su2113Isup2.hkl

e-65-0m819-Isup2.hkl (182.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3AA⋯O2B 0.86 2.38 2.972 (3) 127
N3A—H3AA⋯O2C 0.86 2.47 3.034 (2) 124

Acknowledgments

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. F 3–142).

supplementary crystallographic information

Comment

Vanadium complexes have attracted interest in recent nears due to their insulin-mimetic action, and to their activity in nitrogen fixation and haloperoxidation (Rehder, 1999). The vanadium atom can have different coordination numbers and forms coordination compounds with a variety of coordination geometries and oxidation states (Maurya, 2002). Limited information is available on the crystal structure of the vanadium complexes of substituted benzimidazoles (Crans et al., 1997; Maurya et al., 2006). Bis(acetylacetonato)oxovanadium, [VO(acac)2], is a common precursor for the synthesis of the mixed ligand vanadium(IV) and vanadium(V) complexes with the N-containing monodentate ligands (L), [VO(acac)2L]. Usually these bis-chelated complexes can be cis- or trans- with distorted octahedral configurations (Caira et al., 1972; Shao et al., 1984). In this study, we prepared the mixed-ligand complex of oxovanadium(IV) with bidentate acetylacetonate and the monodentate benzimidazole, 2-amino-1-methylbenzimidazole, and report herein on its crystal structure.

The molecular structure of the title compound is shown in Fig. 1, and geometrical parameters are available from the archived CIF. In this cis-complex, [VO(acac)2L], the metal center has a slightly distorted octahedral N1O5 coordination sphere, assembled by the O—O-donor acetylacetonate, the oxo-group and the pyridine N-atom of the benzimidazole. The angles around the vanadium atom deviate from 90°, being in the range of 80.85 (6) - 99.91 (7) °, and from 180°, being in the range of 164.96 (7) - 179.18 (7)°, due to coordination of the sterically large ligand to the five-coordinate square-pyramidal [VO(acac)2] complex (Akhmed et al., 2004).

The coordination bond is localized at the endo-cyclic N-atom of the benzimidazole ligand and the bond lengths and angles are similar to those reported for 2-amino-1-methylbenzimidazolium chloride hydrate (Borodkina et al., 2003), and bis(2-amino-1-methylbenzimidazole-N) dichlorocobalt(II) (Chekhlov et al., 2004). The amino-group is coplanar with the methyl-group [torsion angle C8A—N2A—C7A—N3A is 4.3 (4)°] and participates in intramolecular hydrogen bonds with the carbonyl O-atoms (Fig.2 and Table 1).

The V—O bond (V1—O2B) trans to the oxo-group is significally longer (2.1523 (17) Å) than the V—O bonds which are cis to the oxo-group (1.9927 (14) - 2.0139 (14) Å). In contrast the carbonyl bond involving atom O2B (C4B?O2B) is shorter, (1.252 (3) Å), than the other acetylacetonate C?O bonds [1.264 (3) - 1.273 (3) Å]. The V—N bond length, the cis- and trans- V—O bond lengths are comparable to those reported for oxovanadium(IV) species containing acac- as ligand in a similar orientation (Crans et al., 1997).

Experimental

Equimolar quantities of [VO(acac)2] (acac = acetnlacetonate) and 2-amine-1-methylbenzimidazole (0.53 g, 1.9 mmol) were refluxed in ethanol for 3 h. The resulting green solution yielded green crystals which were filtered off and washed twice with acetone. Elem. Analysis found: C 52.4, H 6.0, N 10.3, V 12.4%; C18H23N3O5V requires: C 52.4, H 5.6, N 10.2,V 12.4%. IR (BRUKER spectrometer, KBr, cm-1): 3415 s, 3326 s, 1641 s, 1591 s, 1556 s, 1462m, 1373 s, 1273m, 1018m, 1252w, 1198w, 1132w,1052m, 983m, 939m, 787w, 746m, 669w, 590w, 557w, 455w). Crystals of the title compound, suitable X-ray diffraction analysis, were selected directly from the sample as prepared.

Refinement

All the H-atoms were included in calculated positions [N—H = 0.88 Å, C—H = 0.93 - 0.96 Å] and treated as riding atoms [Uiso(H) = k × Ueq(parent atom], where k = 1.2 for NH2 and CH H atoms and 1.5 for methyl H atoms].

Figures

Fig. 1.

Fig. 1.

A view of the molecuar structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound, with the intramolecuéar N—H···O hydrogen bonds shown as pale blue dashed lines (see Table 1 for details).

Crystal data

[V(C5H7O2)2O(C8H9N3)] F(000) = 860
Mr = 412.33 Dx = 1.410 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 3720 reflections
a = 8.2712 (1) Å θ = 4.1–76.0°
b = 15.0472 (2) Å µ = 4.57 mm1
c = 16.1078 (2) Å T = 293 K
β = 104.2646 (14)° Monoclinic, green
V = 1942.94 (4) Å3 0.25 × 0.12 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer 2983 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
graphite θmax = 76.0°, θmin = 4.1°
heavy atom scans h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) k = −18→17
Tmin = 0.544, Tmax = 0.694 l = −20→20
8892 measured reflections 3 standard reflections every 120 reflections
3720 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0695P)2] where P = (Fo2 + 2Fc2)/3
3720 reflections (Δ/σ)max = 0.001
249 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
V1 0.72939 (4) 0.84139 (2) 0.15879 (2) 0.0439 (1)
O1B 0.85987 (19) 0.94296 (8) 0.22441 (9) 0.0495 (5)
O1C 0.7792 (2) 0.89026 (9) 0.05202 (9) 0.0572 (5)
O1V 0.5517 (2) 0.88731 (10) 0.14793 (10) 0.0590 (5)
O2B 0.9707 (2) 0.78057 (10) 0.17502 (10) 0.0556 (5)
O2C 0.6598 (2) 0.72797 (9) 0.09633 (9) 0.0559 (5)
N1A 0.7312 (2) 0.77605 (10) 0.27641 (10) 0.0450 (5)
N2A 0.7430 (3) 0.67520 (11) 0.37942 (11) 0.0579 (7)
N3A 0.8363 (3) 0.63142 (12) 0.25875 (13) 0.0667 (8)
C1A 0.6736 (3) 0.81453 (13) 0.34241 (12) 0.0475 (6)
C1B 1.0649 (4) 1.03962 (17) 0.3018 (2) 0.0777 (10)
C1C 0.7707 (5) 0.9161 (2) −0.09262 (17) 0.0869 (13)
C2A 0.6149 (3) 0.89931 (15) 0.35119 (14) 0.0577 (8)
C2B 1.0157 (3) 0.95299 (13) 0.25591 (12) 0.0497 (7)
C2C 0.7364 (3) 0.85815 (15) −0.02274 (15) 0.0574 (8)
C3A 0.5629 (4) 0.91763 (18) 0.42447 (17) 0.0732 (10)
C3B 1.1380 (3) 0.89314 (15) 0.25154 (17) 0.0630 (8)
C3C 0.6646 (4) 0.77473 (16) −0.04198 (15) 0.0637 (8)
C4A 0.5667 (5) 0.8537 (2) 0.48746 (18) 0.0844 (13)
C4B 1.1117 (3) 0.80980 (14) 0.21204 (13) 0.0505 (7)
C4C 0.6354 (3) 0.71403 (14) 0.01637 (14) 0.0523 (7)
C5A 0.6251 (4) 0.76985 (18) 0.47967 (16) 0.0768 (12)
C5B 1.2601 (3) 0.75171 (16) 0.21416 (18) 0.0698 (9)
C5C 0.5724 (4) 0.62284 (17) −0.01264 (17) 0.0725 (9)
C6A 0.6788 (3) 0.75212 (14) 0.40690 (13) 0.0562 (7)
C7A 0.7706 (3) 0.69247 (13) 0.30215 (13) 0.0504 (7)
C8A 0.7863 (4) 0.59453 (16) 0.43059 (17) 0.0768 (9)
H3AA 0.85610 0.64500 0.21040 0.0800*
H3AB 0.85830 0.57890 0.27940 0.0800*
H2AA 0.61060 0.94230 0.30920 0.0690*
H3AC 0.52420 0.97440 0.43200 0.0880*
H4A 0.52880 0.86830 0.53550 0.1020*
H5AA 0.62850 0.72680 0.52150 0.0920*
H8AA 0.86740 0.56120 0.41000 0.1150*
H8AB 0.68810 0.55900 0.42600 0.1150*
H8AC 0.83190 0.61030 0.48950 0.1150*
H1BA 1.04180 1.08760 0.26140 0.1170*
H1BB 1.18190 1.03870 0.32930 0.1170*
H1BC 1.00230 1.04780 0.34420 0.1170*
H3BA 1.24760 0.90920 0.27690 0.0750*
H5BA 1.22290 0.69420 0.19160 0.1050*
H5BB 1.32470 0.74570 0.27220 0.1050*
H5BC 1.32750 0.77810 0.18010 0.1050*
H1CA 0.87820 0.94350 −0.07300 0.1300*
H1CB 0.68650 0.96130 −0.10720 0.1300*
H1CC 0.76940 0.88050 −0.14220 0.1300*
H3CA 0.63350 0.75860 −0.09950 0.0760*
H5CA 0.65170 0.57920 0.01560 0.1090*
H5CB 0.55760 0.61810 −0.07350 0.1090*
H5CC 0.46750 0.61290 0.00140 0.1090*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
V1 0.0518 (2) 0.0385 (2) 0.0396 (2) −0.0028 (1) 0.0080 (1) −0.0025 (1)
O1B 0.0574 (9) 0.0391 (7) 0.0499 (8) −0.0030 (6) 0.0091 (6) −0.0053 (6)
O1C 0.0787 (11) 0.0472 (8) 0.0483 (8) −0.0081 (7) 0.0207 (7) −0.0005 (6)
O1V 0.0571 (10) 0.0618 (9) 0.0548 (9) 0.0055 (7) 0.0073 (7) 0.0089 (7)
O2B 0.0558 (10) 0.0477 (8) 0.0632 (9) 0.0019 (6) 0.0144 (7) −0.0092 (6)
O2C 0.0729 (11) 0.0472 (8) 0.0433 (7) −0.0124 (7) 0.0063 (7) −0.0051 (6)
N1A 0.0543 (10) 0.0383 (8) 0.0401 (8) −0.0030 (7) 0.0071 (7) −0.0021 (6)
N2A 0.0848 (15) 0.0398 (9) 0.0435 (9) −0.0063 (9) 0.0054 (9) 0.0015 (7)
N3A 0.0966 (17) 0.0426 (9) 0.0608 (12) 0.0106 (10) 0.0193 (11) −0.0009 (8)
C1A 0.0541 (13) 0.0442 (10) 0.0409 (10) −0.0077 (9) 0.0053 (8) −0.0041 (8)
C1B 0.084 (2) 0.0505 (13) 0.0874 (19) −0.0150 (12) 0.0000 (15) −0.0131 (12)
C1C 0.130 (3) 0.0822 (18) 0.0595 (15) −0.0136 (18) 0.0444 (16) −0.0004 (13)
C2A 0.0689 (15) 0.0514 (12) 0.0503 (12) 0.0024 (10) 0.0097 (10) −0.0021 (9)
C2B 0.0621 (14) 0.0430 (10) 0.0415 (10) −0.0093 (9) 0.0083 (9) 0.0022 (8)
C2C 0.0703 (16) 0.0576 (13) 0.0494 (11) 0.0073 (11) 0.0246 (10) −0.0027 (9)
C3A 0.097 (2) 0.0639 (15) 0.0623 (14) 0.0086 (14) 0.0263 (14) −0.0116 (12)
C3B 0.0499 (14) 0.0591 (13) 0.0736 (15) −0.0065 (10) 0.0033 (11) −0.0042 (11)
C3C 0.0863 (18) 0.0616 (14) 0.0451 (11) −0.0049 (12) 0.0199 (11) −0.0113 (10)
C4A 0.121 (3) 0.087 (2) 0.0534 (14) −0.0039 (17) 0.0369 (16) −0.0130 (13)
C4B 0.0537 (13) 0.0511 (11) 0.0477 (10) 0.0020 (9) 0.0146 (9) 0.0085 (8)
C4C 0.0554 (13) 0.0492 (11) 0.0489 (11) 0.0013 (9) 0.0064 (9) −0.0105 (9)
C5A 0.118 (3) 0.0664 (16) 0.0471 (12) −0.0123 (15) 0.0222 (14) 0.0000 (11)
C5B 0.0621 (17) 0.0719 (16) 0.0744 (16) 0.0144 (12) 0.0150 (13) 0.0031 (12)
C5C 0.095 (2) 0.0597 (14) 0.0575 (14) −0.0135 (13) 0.0088 (13) −0.0165 (11)
C6A 0.0747 (16) 0.0492 (11) 0.0415 (10) −0.0104 (10) 0.0083 (10) −0.0029 (8)
C7A 0.0606 (14) 0.0395 (10) 0.0462 (10) −0.0023 (9) 0.0038 (9) −0.0032 (8)
C8A 0.115 (2) 0.0467 (12) 0.0609 (14) −0.0096 (13) 0.0069 (15) 0.0115 (10)

Geometric parameters (Å, °)

V1—O1B 2.0139 (14) C3C—C4C 1.374 (3)
V1—O1C 2.0044 (15) C4A—C5A 1.368 (4)
V1—O1V 1.5942 (17) C4B—C5B 1.500 (3)
V1—O2B 2.1523 (17) C4C—C5C 1.501 (3)
V1—O2C 1.9927 (14) C5A—C6A 1.378 (4)
V1—N1A 2.1313 (16) C1B—H1BA 0.9600
O1B—C2B 1.273 (3) C1B—H1BB 0.9600
O1C—C2C 1.264 (3) C1B—H1BC 0.9600
O2B—C4B 1.252 (3) C1C—H1CA 0.9600
O2C—C4C 1.271 (3) C1C—H1CB 0.9600
N1A—C1A 1.394 (3) C1C—H1CC 0.9600
N1A—C7A 1.339 (2) C2A—H2AA 0.9300
N2A—C6A 1.391 (3) C3A—H3AC 0.9300
N2A—C7A 1.345 (3) C3B—H3BA 0.9300
N2A—C8A 1.461 (3) C3C—H3CA 0.9300
N3A—C7A 1.347 (3) C4A—H4A 0.9300
N3A—H3AB 0.8600 C5A—H5AA 0.9300
N3A—H3AA 0.8600 C5B—H5BA 0.9600
C1A—C2A 1.385 (3) C5B—H5BB 0.9600
C1A—C6A 1.393 (3) C5B—H5BC 0.9600
C1B—C2B 1.504 (3) C5C—H5CA 0.9600
C1C—C2C 1.505 (4) C5C—H5CB 0.9600
C2A—C3A 1.380 (4) C5C—H5CC 0.9600
C2B—C3B 1.369 (3) C8A—H8AA 0.9600
C2C—C3C 1.391 (3) C8A—H8AB 0.9600
C3A—C4A 1.393 (4) C8A—H8AC 0.9600
C3B—C4B 1.399 (3)
O1B—V1—O1C 88.57 (6) C1A—C6A—C5A 123.1 (2)
O1B—V1—O1V 95.11 (7) N2A—C6A—C1A 105.53 (18)
O1B—V1—O2B 84.14 (6) N2A—C6A—C5A 131.3 (2)
O1B—V1—O2C 164.96 (7) N1A—C7A—N2A 112.59 (18)
O1B—V1—N1A 89.89 (6) N1A—C7A—N3A 125.33 (19)
O1C—V1—O1V 97.22 (7) N2A—C7A—N3A 122.05 (19)
O1C—V1—O2B 83.09 (6) C2B—C1B—H1BA 110.00
O1C—V1—O2C 88.62 (6) C2B—C1B—H1BB 110.00
O1C—V1—N1A 166.93 (7) C2B—C1B—H1BC 109.00
O1V—V1—O2B 179.18 (7) H1BA—C1B—H1BB 109.00
O1V—V1—O2C 99.91 (7) H1BA—C1B—H1BC 109.00
O1V—V1—N1A 95.85 (7) H1BB—C1B—H1BC 109.00
O2B—V1—O2C 80.85 (6) C2C—C1C—H1CA 109.00
O2B—V1—N1A 83.84 (6) C2C—C1C—H1CB 110.00
O2C—V1—N1A 89.52 (6) C2C—C1C—H1CC 109.00
V1—O1B—C2B 131.18 (13) H1CA—C1C—H1CB 109.00
V1—O1C—C2C 127.48 (15) H1CA—C1C—H1CC 109.00
V1—O2B—C4B 129.48 (14) H1CB—C1C—H1CC 109.00
V1—O2C—C4C 127.37 (13) C1A—C2A—H2AA 121.00
V1—N1A—C1A 123.89 (12) C3A—C2A—H2AA 121.00
V1—N1A—C7A 131.02 (14) C2A—C3A—H3AC 119.00
C1A—N1A—C7A 104.89 (16) C4A—C3A—H3AC 119.00
C6A—N2A—C7A 107.40 (17) C2B—C3B—H3BA 117.00
C6A—N2A—C8A 124.86 (19) C4B—C3B—H3BA 117.00
C7A—N2A—C8A 127.5 (2) C2C—C3C—H3CA 117.00
H3AA—N3A—H3AB 120.00 C4C—C3C—H3CA 117.00
C7A—N3A—H3AA 120.00 C3A—C4A—H4A 119.00
C7A—N3A—H3AB 120.00 C5A—C4A—H4A 120.00
N1A—C1A—C6A 109.59 (17) C4A—C5A—H5AA 122.00
N1A—C1A—C2A 130.93 (18) C6A—C5A—H5AA 122.00
C2A—C1A—C6A 119.5 (2) C4B—C5B—H5BA 109.00
C1A—C2A—C3A 117.6 (2) C4B—C5B—H5BB 109.00
O1B—C2B—C1B 115.1 (2) C4B—C5B—H5BC 109.00
O1B—C2B—C3B 126.17 (19) H5BA—C5B—H5BB 109.00
C1B—C2B—C3B 118.8 (2) H5BA—C5B—H5BC 110.00
O1C—C2C—C3C 124.1 (2) H5BB—C5B—H5BC 109.00
O1C—C2C—C1C 115.5 (2) C4C—C5C—H5CA 109.00
C1C—C2C—C3C 120.3 (2) C4C—C5C—H5CB 109.00
C2A—C3A—C4A 122.0 (3) C4C—C5C—H5CC 109.00
C2B—C3B—C4B 125.4 (2) H5CA—C5C—H5CB 109.00
C2C—C3C—C4C 125.8 (2) H5CA—C5C—H5CC 109.00
C3A—C4A—C5A 121.0 (3) H5CB—C5C—H5CC 109.00
C3B—C4B—C5B 118.5 (2) N2A—C8A—H8AA 110.00
O2B—C4B—C5B 117.85 (19) N2A—C8A—H8AB 110.00
O2B—C4B—C3B 123.6 (2) N2A—C8A—H8AC 110.00
O2C—C4C—C3C 124.9 (2) H8AA—C8A—H8AB 109.00
O2C—C4C—C5C 115.0 (2) H8AA—C8A—H8AC 109.00
C3C—C4C—C5C 120.1 (2) H8AB—C8A—H8AC 109.00
C4A—C5A—C6A 116.9 (2)
O1C—V1—O1B—C2B −83.35 (17) V1—N1A—C1A—C2A −4.2 (3)
O1V—V1—O1B—C2B 179.53 (17) C1A—N1A—C7A—N3A −178.0 (2)
O2B—V1—O1B—C2B −0.15 (17) V1—N1A—C7A—N3A 7.1 (4)
N1A—V1—O1B—C2B 83.67 (17) C7A—N1A—C1A—C6A −0.4 (3)
O1B—V1—O1C—C2C 178.64 (19) C1A—N1A—C7A—N2A −0.2 (3)
O1V—V1—O1C—C2C −86.4 (2) C7A—N1A—C1A—C2A −179.6 (3)
O2B—V1—O1C—C2C 94.37 (19) C8A—N2A—C6A—C5A −7.5 (5)
O2C—V1—O1C—C2C 13.42 (19) C8A—N2A—C7A—N1A −173.6 (2)
O1B—V1—O2B—C4B 0.1 (2) C7A—N2A—C6A—C5A 177.9 (3)
O1C—V1—O2B—C4B 89.40 (18) C8A—N2A—C7A—N3A 4.3 (4)
O2C—V1—O2B—C4B 179.11 (19) C6A—N2A—C7A—N1A 0.8 (3)
N1A—V1—O2B—C4B −90.39 (18) C6A—N2A—C7A—N3A 178.6 (2)
O1C—V1—O2C—C4C −11.2 (2) C7A—N2A—C6A—C1A −1.0 (3)
O1V—V1—O2C—C4C 85.9 (2) C8A—N2A—C6A—C1A 173.6 (2)
O2B—V1—O2C—C4C −94.4 (2) N1A—C1A—C2A—C3A 178.8 (3)
N1A—V1—O2C—C4C −178.3 (2) N1A—C1A—C6A—C5A −178.1 (2)
O1B—V1—N1A—C1A 55.10 (17) N1A—C1A—C6A—N2A 0.8 (3)
O1B—V1—N1A—C7A −130.9 (2) C2A—C1A—C6A—N2A −179.9 (2)
O1V—V1—N1A—C1A −40.02 (17) C2A—C1A—C6A—C5A 1.2 (4)
O1V—V1—N1A—C7A 134.0 (2) C6A—C1A—C2A—C3A −0.4 (4)
O2B—V1—N1A—C1A 139.22 (17) C1A—C2A—C3A—C4A −0.7 (4)
O2B—V1—N1A—C7A −46.7 (2) C1B—C2B—C3B—C4B 179.3 (2)
O2C—V1—N1A—C1A −139.93 (17) O1B—C2B—C3B—C4B −0.7 (4)
O2C—V1—N1A—C7A 34.1 (2) O1C—C2C—C3C—C4C −2.6 (5)
V1—O1B—C2B—C1B −179.51 (16) C1C—C2C—C3C—C4C 176.4 (3)
V1—O1B—C2B—C3B 0.4 (3) C2A—C3A—C4A—C5A 1.0 (5)
V1—O1C—C2C—C3C −9.3 (4) C2B—C3B—C4B—O2B 0.6 (4)
V1—O1C—C2C—C1C 171.7 (2) C2B—C3B—C4B—C5B −179.2 (2)
V1—O2B—C4B—C5B 179.41 (15) C2C—C3C—C4C—C5C −174.0 (3)
V1—O2B—C4B—C3B −0.4 (3) C2C—C3C—C4C—O2C 5.0 (5)
V1—O2C—C4C—C5C −176.10 (18) C3A—C4A—C5A—C6A −0.2 (5)
V1—O2C—C4C—C3C 4.9 (4) C4A—C5A—C6A—N2A −179.6 (3)
V1—N1A—C7A—N2A −175.13 (16) C4A—C5A—C6A—C1A −0.9 (4)
V1—N1A—C1A—C6A 174.97 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3A—H3AA···O2B 0.86 2.38 2.972 (3) 127
N3A—H3AA···O2C 0.86 2.47 3.034 (2) 124
C8A—H8AA···N3A 0.96 2.61 2.950 (3) 101
C8A—H8AB···O1Ci 0.96 2.57 3.146 (3) 119

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2113).

References

  1. Akhmed, M. A. K., Fjellvåg, H., Kjekshus, H. & Klewe, B. (2004). Z. Anorg. Allg. Chem.630, 2311–2318.
  2. Borodkina, I. G., Antsnshkina, A. S., Sadikov, G. G., Mistrnukov, A. E., Garnovskii, D. A., Uraev, A. I., Borodkin, G. S., Garnovskana, E. D., Sergienko, V. S. & Garnovskii, A. D. (2003). Russ. J. Coord. Chem.29, 519–523.
  3. Caira, M. R., Haigh, J. M. & Nassimbeni, L. R. (1972). Inorg. Nucl. Chem. Lett.8, 109–112.
  4. Chekhlov, A. N. (2004). Russ. J. Inorg. Chem.49, 1373–1377.
  5. Crans, D. C., Keramidas, A. D., Amin, S. S., Anderson, O. P. & Miller, S. M. (1997). J. Chem. Soc. Dalton Trans.16, 2799–2812.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Maurya, M. R. (2002). Coord. Chem. Rev.237, 163–181.
  8. Maurya, M. R., Kumar, A., Ebel, M. & Rehder, D. (2006). Inorg. Chem.45, 5924–5937. [DOI] [PubMed]
  9. Oxford Diffraction (2007). CrysAlisPro Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  10. Rehder, D. (1999). Coord. Chem. Rev.182, 297–322.
  11. Shao, M., Wang, L. & Tang, N. (1984). Kexue Tongbao (Chin. Sci. Bull.), 29, 759–764.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023113/su2113sup1.cif

e-65-0m819-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023113/su2113Isup2.hkl

e-65-0m819-Isup2.hkl (182.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES