Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):m707. doi: 10.1107/S1600536809020200

Aqua­azido­{2,2′-[o-phenylenebis(nitrilo­methyl­idyne)]diphenolato}manganese(III) hemihydrate

Xiutang Zhang a,b,*, Peihai Wei a, Bin Li a, Chunyong Wu c, Bo Hu a
PMCID: PMC2969293  PMID: 21582653

Abstract

In the title compound, [Mn(C20H14N2O2)(N3)(H2O)]·0.5H2O, the MnIII ion is chelated by the N,N′,O,O′-tetra­dentate Schiff base ligand and further coordinated by one azide ion and one water mol­ecule in trans positions, resulting in a distorted fac-MnN3O3 octa­hedral arrangement. The O atom of the uncoordinated water mol­ecule lies on a crystallographic twofold axis. In the crystal, O—H⋯O and O—H⋯N hydrogen bonds help to establish the packing.

Related literature

For background to salicylaldehyde complexes, see: Alam et al. (2003); Zelewsky & von Knof (1999).graphic file with name e-65-0m707-scheme1.jpg

Experimental

Crystal data

  • [Mn(C20H14N2O2)(N3)(H2O)]·0.5H2O

  • M r = 438.33

  • Monoclinic, Inline graphic

  • a = 25.100 (10) Å

  • b = 11.478 (5) Å

  • c = 12.599 (5) Å

  • β = 94.175 (3)°

  • V = 3620 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.914, T max = 0.941

  • 11927 measured reflections

  • 3162 independent reflections

  • 2371 reflections with I > 2σ(I)

  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.086

  • S = 1.00

  • 3162 reflections

  • 280 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020200/hb2977sup1.cif

e-65-0m707-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020200/hb2977Isup2.hkl

e-65-0m707-Isup2.hkl (155.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—O1 1.8636 (18)
Mn1—O2 1.8844 (18)
Mn1—N2 1.986 (2)
Mn1—N1 1.988 (2)
Mn1—N3 2.306 (2)
Mn1—O1W 2.321 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯N3i 0.82 (2) 2.12 (2) 2.937 (3) 176 (3)
O1W—H1W⋯O2ii 0.820 (11) 2.076 (6) 2.885 (3) 169 (2)
O2W—H3W⋯N5 0.82 (3) 2.18 (3) 3.000 (3) 173 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the National Ministry of Science and Technology of China (grant No. 2001CB6105–07) for support.

supplementary crystallographic information

Comment

The synthesis of complexes consisting of salicylaldehyde ligand has attracted continuous research interest not only because of their appealing structural and topological novelty, but also due to their unusual optical, electronic, magnetic, and catalytic properties, as well as their potential medical application (Alam et al., 2003; Zelewsky & von Knof, 1999). In the present paper, we describe the synthesis and structural characterizations of the title compound, (I),

As shown in Fig. 1, each Mn(III) atom is chelated by Schiff base ligand via two N and two O atoms and is additionally coordinated by one azide and a water molecule, forming a distorted octahedral geometry (Table 1) in which, the Schiff base lies in the equatorial plane, and the azide and aqua ligands lie in the axial coordination sites.

With O—H···O and O—H···N hydrogen bonds (Table 2), a three-dimensional network is formed as shown in Fig. 2.

Experimental

A mixture of manganese(III) acetylacetonate (1 mmol) and N,N'-bis(2-hydroxy-5-bromobenzyl)1,2-diaminopropane (1 mmol), and dipotassium nickel tetracyanide (1 mmol) in 20 ml methanol was refluxed for several hours. The above cooled solution was filtered and the filtrate was kept in an ice box. One week later, brown blocks of (I) were obtained with a yield of 5%. Anal. Calc. for C40H34Mn2N10O7: C 54.75, H 3.88, N 15.97%; Found: C 54.71, H 3.75, N 15.82.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier). H atom on aqua were located from difference density maps and were refined with distance restraints of O–H = 0.82 (1) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.

Fig. 2.

Fig. 2.

Three-dimensional network formed by hydrogen bonds (dashed lines).

Crystal data

[Mn(C20H14N2O2)(N3)(H2O)]·0.5H2O F(000) = 1808
Mr = 438.33 Dx = 1.612 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2yc Cell parameters from 3162 reflections
a = 25.10 (1) Å θ = 3.0–25.0°
b = 11.478 (5) Å µ = 0.77 mm1
c = 12.599 (5) Å T = 293 K
β = 94.175 (3)° Block, pink
V = 3620 (3) Å3 0.12 × 0.10 × 0.08 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer 3162 independent reflections
Radiation source: fine-focus sealed tube 2371 reflections with I > 2σ(I)
graphite Rint = 0.082
φ and ω scans θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −27→29
Tmin = 0.914, Tmax = 0.941 k = −13→13
11927 measured reflections l = −14→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.03P)2] where P = (Fo2 + 2Fc2)/3
3162 reflections (Δ/σ)max = 0.001
280 parameters Δρmax = 0.32 e Å3
4 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.204685 (15) 0.09791 (3) 0.87813 (3) 0.00903 (13)
C1 0.11631 (10) 0.2543 (2) 0.90445 (18) 0.0102 (6)
C2 0.09780 (10) 0.3688 (2) 0.90882 (19) 0.0124 (6)
H2 0.1219 0.4301 0.9061 0.015*
C3 0.04451 (10) 0.3928 (2) 0.91706 (19) 0.0156 (6)
H3 0.0332 0.4699 0.9196 0.019*
C4 0.00719 (10) 0.3029 (2) 0.9217 (2) 0.0180 (6)
H4 −0.0288 0.3197 0.9260 0.022*
C5 0.02444 (10) 0.1897 (2) 0.9198 (2) 0.0161 (6)
H5 −0.0002 0.1297 0.9238 0.019*
C6 0.07880 (10) 0.1623 (2) 0.91183 (18) 0.0110 (6)
C7 0.09346 (10) 0.0426 (2) 0.91314 (18) 0.0114 (6)
H7 0.0662 −0.0115 0.9188 0.014*
C8 0.15275 (10) −0.1198 (2) 0.91053 (18) 0.0092 (6)
C9 0.11626 (10) −0.2052 (2) 0.93648 (19) 0.0123 (6)
H9 0.0819 −0.1844 0.9525 0.015*
C10 0.13142 (10) −0.3207 (2) 0.93819 (18) 0.0123 (6)
H10 0.1071 −0.3777 0.9553 0.015*
C11 0.18272 (10) −0.3529 (2) 0.91454 (18) 0.0124 (6)
H11 0.1925 −0.4311 0.9157 0.015*
C12 0.21902 (10) −0.2690 (2) 0.88938 (18) 0.0109 (6)
H12 0.2533 −0.2906 0.8736 0.013*
C13 0.20450 (10) −0.1518 (2) 0.88751 (18) 0.0096 (5)
C14 0.28922 (10) −0.0719 (2) 0.84750 (19) 0.0110 (6)
H14 0.3007 −0.1480 0.8385 0.013*
C15 0.32741 (10) 0.0188 (2) 0.83746 (18) 0.0111 (6)
C16 0.38034 (10) −0.0164 (2) 0.82023 (18) 0.0145 (6)
H16 0.3878 −0.0954 0.8143 0.017*
C17 0.42059 (10) 0.0627 (2) 0.81212 (19) 0.0155 (6)
H17 0.4548 0.0377 0.7998 0.019*
C18 0.40976 (10) 0.1809 (2) 0.82255 (18) 0.0142 (6)
H18 0.4371 0.2350 0.8181 0.017*
C19 0.35893 (10) 0.2184 (2) 0.83938 (19) 0.0136 (6)
H19 0.3525 0.2978 0.8462 0.016*
C20 0.31675 (10) 0.1395 (2) 0.84649 (18) 0.0094 (6)
N1 0.23943 (8) −0.05699 (18) 0.86829 (15) 0.0098 (5)
N2 0.14151 (8) 0.00196 (18) 0.90708 (15) 0.0092 (5)
N3 0.17896 (8) 0.07150 (19) 0.70029 (16) 0.0131 (5)
N4 0.13255 (9) 0.05323 (19) 0.67637 (16) 0.0136 (5)
N5 0.08768 (9) 0.0341 (2) 0.65186 (17) 0.0234 (6)
O1 0.16772 (7) 0.23708 (15) 0.89293 (13) 0.0127 (4)
O2 0.26797 (6) 0.18073 (15) 0.85790 (12) 0.0113 (4)
O1W 0.23229 (7) 0.08568 (17) 1.05761 (13) 0.0138 (4)
O2W 0.0000 −0.0960 (3) 0.7500 0.0383 (8)
H1W 0.2366 (10) 0.1525 (7) 1.0796 (16) 0.023 (9)*
H2W 0.2189 (11) 0.0413 (15) 1.0991 (14) 0.037 (10)*
H3W 0.0224 (11) −0.056 (3) 0.723 (3) 0.064 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0082 (2) 0.0069 (2) 0.0122 (2) −0.00022 (17) 0.00244 (16) −0.00015 (16)
C1 0.0133 (14) 0.0136 (14) 0.0037 (13) 0.0011 (11) 0.0004 (10) 0.0013 (11)
C2 0.0163 (14) 0.0085 (14) 0.0124 (14) 0.0000 (11) 0.0008 (11) 0.0017 (11)
C3 0.0190 (15) 0.0117 (15) 0.0162 (15) 0.0046 (12) 0.0017 (12) 0.0029 (11)
C4 0.0105 (14) 0.0172 (16) 0.0271 (16) 0.0050 (12) 0.0059 (12) 0.0031 (13)
C5 0.0130 (14) 0.0117 (15) 0.0239 (16) −0.0027 (11) 0.0035 (12) 0.0033 (12)
C6 0.0149 (14) 0.0083 (14) 0.0101 (14) 0.0023 (11) 0.0031 (11) 0.0004 (11)
C7 0.0121 (14) 0.0118 (15) 0.0105 (14) −0.0045 (11) 0.0024 (11) −0.0004 (11)
C8 0.0129 (14) 0.0080 (14) 0.0064 (13) −0.0001 (11) −0.0005 (10) −0.0019 (10)
C9 0.0119 (14) 0.0114 (15) 0.0138 (14) −0.0013 (11) 0.0035 (11) −0.0016 (11)
C10 0.0159 (14) 0.0119 (15) 0.0092 (14) −0.0046 (11) 0.0014 (11) 0.0001 (11)
C11 0.0205 (15) 0.0067 (14) 0.0093 (13) 0.0021 (11) −0.0028 (11) 0.0002 (11)
C12 0.0129 (14) 0.0145 (15) 0.0052 (13) 0.0043 (11) 0.0005 (10) −0.0027 (10)
C13 0.0124 (14) 0.0120 (14) 0.0042 (13) −0.0028 (11) −0.0007 (10) −0.0015 (11)
C14 0.0142 (14) 0.0106 (15) 0.0082 (13) 0.0035 (11) 0.0011 (11) 0.0006 (10)
C15 0.0128 (14) 0.0144 (14) 0.0062 (13) −0.0007 (11) 0.0016 (10) 0.0010 (11)
C16 0.0170 (15) 0.0162 (15) 0.0104 (14) 0.0038 (12) 0.0021 (11) 0.0012 (11)
C17 0.0069 (14) 0.0278 (17) 0.0119 (14) 0.0028 (12) 0.0011 (11) 0.0015 (12)
C18 0.0107 (14) 0.0240 (17) 0.0077 (14) −0.0048 (12) −0.0008 (11) 0.0009 (12)
C19 0.0193 (15) 0.0119 (15) 0.0095 (14) −0.0023 (12) −0.0006 (11) −0.0023 (11)
C20 0.0082 (13) 0.0175 (15) 0.0026 (12) 0.0006 (11) 0.0005 (10) 0.0020 (11)
N1 0.0135 (12) 0.0086 (12) 0.0073 (11) 0.0005 (9) 0.0014 (9) 0.0004 (9)
N2 0.0118 (11) 0.0070 (12) 0.0088 (11) 0.0010 (9) 0.0018 (9) 0.0002 (9)
N3 0.0097 (12) 0.0190 (14) 0.0108 (12) −0.0020 (9) 0.0013 (9) 0.0014 (9)
N4 0.0198 (14) 0.0138 (13) 0.0078 (12) 0.0027 (10) 0.0047 (10) 0.0002 (9)
N5 0.0122 (13) 0.0395 (17) 0.0183 (13) 0.0007 (12) −0.0002 (10) 0.0000 (11)
O1 0.0099 (9) 0.0074 (10) 0.0213 (10) −0.0001 (7) 0.0038 (7) −0.0005 (8)
O2 0.0114 (9) 0.0097 (10) 0.0133 (10) −0.0007 (8) 0.0037 (7) 0.0011 (8)
O1W 0.0192 (11) 0.0090 (11) 0.0133 (10) −0.0039 (8) 0.0027 (8) −0.0004 (9)
O2W 0.025 (2) 0.028 (2) 0.063 (2) 0.000 0.0130 (18) 0.000

Geometric parameters (Å, °)

Mn1—O1 1.8636 (18) C10—H10 0.9300
Mn1—O2 1.8844 (18) C11—C12 1.379 (3)
Mn1—N2 1.986 (2) C11—H11 0.9300
Mn1—N1 1.988 (2) C12—C13 1.393 (3)
Mn1—N3 2.306 (2) C12—H12 0.9300
Mn1—O1W 2.321 (2) C13—N1 1.430 (3)
C1—O1 1.324 (3) C14—N1 1.307 (3)
C1—C2 1.397 (3) C14—C15 1.427 (3)
C1—C6 1.422 (3) C14—H14 0.9300
C2—C3 1.377 (3) C15—C20 1.418 (4)
C2—H2 0.9300 C15—C16 1.420 (3)
C3—C4 1.398 (4) C16—C17 1.367 (4)
C3—H3 0.9300 C16—H16 0.9300
C4—C5 1.371 (4) C17—C18 1.392 (4)
C4—H4 0.9300 C17—H17 0.9300
C5—C6 1.411 (3) C18—C19 1.378 (3)
C5—H5 0.9300 C18—H18 0.9300
C6—C7 1.422 (4) C19—C20 1.401 (3)
C7—N2 1.301 (3) C19—H19 0.9300
C7—H7 0.9300 C20—O2 1.330 (3)
C8—C9 1.397 (3) N3—N4 1.200 (3)
C8—C13 1.401 (3) N4—N5 1.167 (3)
C8—N2 1.425 (3) O1W—H1W 0.820 (11)
C9—C10 1.379 (4) O1W—H2W 0.82 (2)
C9—H9 0.9300 O2W—H3W 0.82 (3)
C10—C11 1.393 (3)
O1—Mn1—O2 90.68 (8) C11—C10—H10 119.7
O1—Mn1—N2 92.69 (8) C12—C11—C10 120.0 (2)
O2—Mn1—N2 175.37 (8) C12—C11—H11 120.0
O1—Mn1—N1 175.33 (8) C10—C11—H11 120.0
O2—Mn1—N1 93.71 (8) C11—C12—C13 120.1 (2)
N2—Mn1—N1 82.83 (9) C11—C12—H12 119.9
O1—Mn1—N3 95.95 (8) C13—C12—H12 119.9
O2—Mn1—N3 96.55 (7) C12—C13—C8 119.7 (2)
N2—Mn1—N3 86.26 (8) C12—C13—N1 125.1 (2)
N1—Mn1—N3 85.12 (8) C8—C13—N1 115.1 (2)
O1—Mn1—O1W 94.00 (7) N1—C14—C15 125.5 (2)
O2—Mn1—O1W 88.14 (7) N1—C14—H14 117.2
N2—Mn1—O1W 88.47 (7) C15—C14—H14 117.2
N1—Mn1—O1W 84.58 (7) C20—C15—C16 118.3 (2)
N3—Mn1—O1W 168.94 (7) C20—C15—C14 125.0 (2)
O1—C1—C2 118.3 (2) C16—C15—C14 116.6 (2)
O1—C1—C6 123.5 (2) C17—C16—C15 121.8 (3)
C2—C1—C6 118.2 (2) C17—C16—H16 119.1
C3—C2—C1 121.3 (2) C15—C16—H16 119.1
C3—C2—H2 119.4 C16—C17—C18 119.3 (2)
C1—C2—H2 119.4 C16—C17—H17 120.3
C2—C3—C4 120.9 (3) C18—C17—H17 120.3
C2—C3—H3 119.6 C19—C18—C17 120.6 (2)
C4—C3—H3 119.6 C19—C18—H18 119.7
C5—C4—C3 119.1 (2) C17—C18—H18 119.7
C5—C4—H4 120.5 C18—C19—C20 121.3 (3)
C3—C4—H4 120.5 C18—C19—H19 119.3
C4—C5—C6 121.4 (2) C20—C19—H19 119.3
C4—C5—H5 119.3 O2—C20—C19 118.9 (2)
C6—C5—H5 119.3 O2—C20—C15 122.5 (2)
C5—C6—C1 119.2 (2) C19—C20—C15 118.6 (2)
C5—C6—C7 117.7 (2) C14—N1—C13 122.8 (2)
C1—C6—C7 123.1 (2) C14—N1—Mn1 124.04 (18)
N2—C7—C6 125.9 (2) C13—N1—Mn1 113.16 (16)
N2—C7—H7 117.1 C7—N2—C8 122.2 (2)
C6—C7—H7 117.1 C7—N2—Mn1 124.61 (18)
C9—C8—C13 119.9 (2) C8—N2—Mn1 112.96 (15)
C9—C8—N2 124.3 (2) N4—N3—Mn1 117.69 (16)
C13—C8—N2 115.8 (2) N5—N4—N3 178.8 (3)
C10—C9—C8 119.6 (2) C1—O1—Mn1 129.44 (16)
C10—C9—H9 120.2 C20—O2—Mn1 128.82 (16)
C8—C9—H9 120.2 Mn1—O1W—H1W 107.2 (17)
C9—C10—C11 120.7 (2) Mn1—O1W—H2W 123.5 (18)
C9—C10—H10 119.7 H1W—O1W—H2W 114.6 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H2W···N3i 0.82 (2) 2.12 (2) 2.937 (3) 176 (3)
O1W—H1W···O2ii 0.82 (1) 2.08 (1) 2.885 (3) 169 (2)
O2W—H3W···N5 0.82 (3) 2.18 (3) 3.000 (3) 173 (4)

Symmetry codes: (i) x, −y, z+1/2; (ii) −x+1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2977).

References

  1. Alam, M. A., Nethaji, M. & Ray, M. (2003). Angew. Chem. Int. Ed.42, 1940–1942. [DOI] [PubMed]
  2. Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Zelewsky, A. & von Knof, U. (1999). Angew. Chem. Int. Ed.38, 302–322. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020200/hb2977sup1.cif

e-65-0m707-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020200/hb2977Isup2.hkl

e-65-0m707-Isup2.hkl (155.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES