Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):i53–i54. doi: 10.1107/S1600536809023460

Tetra­ammonium diaqua­diperoxidoocta­molybdate(VI) tetra­hydrate

Antony J Ward a, Gregory J Arrow a, Thomas Maschmeyer a, Anthony F Masters a,*, Peter Turner b, Jack K Clegg b
PMCID: PMC2969302  PMID: 21582647

Abstract

The title compound (NH4)4[Mo8O24(O2)2(H2O)2]·4H2O, consists of an octa­molybdate cluster with a crystallographic centre of symmetry. The clusters pack in a cubic close packing arrangement defining channels containing water mol­ecules and ammonium cations, which exhibit hydrogen bonding with neighbouring clusters. Hydrogen bonding also exists between the coordinated water mol­ecules of one cluster with one of the O atoms of the peroxido fragment in a neighbouring cluster.

Related literature

For work on polyoxidomolybdates, see: Pope (1983); Pope & Müller (2001); Hill (1998). Baerwald (1885) probably reported the first peroxidomolybdate. Stomberg et al. have prepared a range of peroxidomolybdates and obtained crystal structures of these species, see: Larking & Stomberg (1970, 1972); Olson & Stomberg (1996, 1997a ,b ); Persdotter et al. (1986a ,b ,c ); Stomberg (1968, 1969, 1970, 1988a ,b , 1992, 1995); Stomberg & Trysberg (1969); Stomberg & Olson (1996); Trysberg & Stomberg (1968, 1981). The versatile MoO6 octa­hedron building block [see: Pope & Müller (1991); Chen & Zubieta (1992)] results in an exceptionally large family of polyoxidomolybdates, see: Michailovski & Patzke (2006). For a review of the structural chemistry of peroxidomolybdates, see: Dickman & Pope (1994): Sergienko (2008). The tetra­ammonium salt of the centrosymmetric [Mo8O24(O2)2(H2O)2]4− anion has been characterized with moderate precision, see: Trysberg & Stomberg (1981): Olson & Stomberg (1997a ). For bonds lengths in polyoxidomolybdates, see: Feng & Mao (2004); Long et al. (2003); Shi et al. (2006). graphic file with name e-65-00i53-scheme1.jpg

Experimental

Crystal data

  • (NH4)4[Mo8O24(O2)2(H2O)2]·4H2O

  • M r = 1395.78

  • Monoclinic, Inline graphic

  • a = 10.405 (3) Å

  • b = 7.8706 (19) Å

  • c = 18.063 (4) Å

  • β = 96.991 (4)°

  • V = 1468.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 150 K

  • 0.32 × 0.19 × 0.08 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: gaussian (XPREP; Bruker, 1995; Coppens et al., 1965) T min = 0.398, T max = 0.773

  • 14005 measured reflections

  • 3542 independent reflections

  • 3434 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019

  • wR(F 2) = 0.043

  • S = 1.16

  • 3542 reflections

  • 250 parameters

  • 14 restraints

  • Only H-atom coordinates refined

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: SMART (Bruker, 1995); cell refinement: SAINT (Bruker, 1995); data reduction: SAINT and XPREP (Bruker, 1995; Coppens et al., 1965); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: TEXSAN for Windows (Molecular Structure Corporation, 1998), Xtal3.7 (Hall et al., 2000), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023460/br2108sup1.cif

e-65-00i53-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023460/br2108Isup2.hkl

e-65-00i53-Isup2.hkl (173.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12A⋯O2i 0.947 (10) 1.802 (15) 2.715 (3) 161 (3)
O12—H12A⋯O1i 0.947 (10) 2.391 (16) 3.299 (3) 161 (3)
O12—H12B⋯O17ii 0.949 (10) 1.658 (12) 2.599 (3) 171 (4)
O16—H16B⋯O4iii 0.94 (3) 2.01 (3) 2.939 (3) 170 (3)
O16—H16A⋯O7 0.943 (10) 2.00 (2) 2.803 (3) 142 (3)
O17—H17A⋯O1 0.94 (3) 1.883 (16) 2.776 (3) 159 (3)
O17—H17B⋯O7iv 0.939 (10) 1.983 (12) 2.909 (3) 169 (3)
N1—H1B⋯O10iv 0.948 (10) 2.09 (3) 2.795 (3) 130 (3)
N1—H1B⋯O10ii 0.948 (10) 2.24 (3) 2.929 (3) 129 (3)
N1—H1A⋯O9ii 0.94 (3) 2.16 (2) 2.992 (3) 146 (3)
N1—H1A⋯O14 0.94 (3) 2.40 (3) 2.985 (3) 120 (3)
N1—H1C⋯O16ii 0.948 (10) 1.96 (2) 2.811 (3) 148 (3)
N1—H1C⋯O6v 0.948 (10) 2.36 (3) 3.038 (3) 128 (3)
N1—H1D⋯O17 0.95 (3) 2.17 (3) 2.859 (3) 129 (3)
N1—H1D⋯O8v 0.95 (3) 2.47 (3) 3.097 (3) 124 (3)
N1—H1D⋯O5 0.95 (3) 2.60 (3) 3.203 (3) 122 (3)
N2—H2A⋯O16 0.946 (10) 2.001 (14) 2.923 (3) 164 (3)
N2—H2B⋯O4 0.945 (10) 1.927 (14) 2.852 (3) 165 (3)
N2—H2C⋯O11vi 0.946 (10) 1.999 (15) 2.912 (3) 162 (3)
N2—H2C⋯O7iii 0.946 (10) 2.65 (3) 3.169 (3) 115 (3)
N2—H2D⋯O3vii 0.94 (3) 2.36 (3) 3.089 (3) 134 (3)
N2—H2D⋯O14ii 0.94 (3) 2.29 (3) 2.961 (3) 128 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors acknowledge funding from the Australian Research Council.

supplementary crystallographic information

Comment

Polyoxometalates, which constitute an enormous class of metal-oxygen cluster compounds, have become very widely utilized inorganic components due to the extreme variability of their composition, molecular characteristics and properties - see Pope (1983), Pope & Muller (2001), Hill (1998).

The aqueous chemistry of molybdenum is dominated by the formation of polyoxoanions, the key structural motif being the MoO6 octahedron - see Pope & Muller (1991), Chen & Zubieta (1992). This motif is a versatile building block that gives rise to an exceptionally large family of polyoxomolybdates which range from 3 to 368 metal ions in a single molecule - see Michailovski & Patzke (2006). Baerwald (1885) probably reported the first peroxomolybdate, the species resulting from the dissolution of ammonium paramolybdate in excess H2O2, which was formulated as 14NH3.18MoO3.3H2O2.18H2O, .

The structure of the title complex consists of an octamolybdate unit possessing an inversion centre (Figure 1). In the complex there is a peroxide ligand coordinated to Mo1, one water molecule bound to Mo3, two triply coordinated oxygen atoms, O9, O13, and one quadruply coordinated oxygen atom, O15. The Mo—O bond lengths with the polyvalent O atoms range from 2.0125 (18) to 2.3338 (19) Å. The bridging Mo—O bonds range in length length from 1.8753 (19) to 1.9753 (19) Å. The bond lengths for the terminal Mo=O bonds range from 1.686 (2) to 1.722 (2) Å. These bonds lengths are in good agreement with previously published polyoxomolybdate structures - see Long et al. (2003), Feng & Mao (2004), Shi et al. (2006). However, there are two bond lengths that show significant deviation from the expected: the Mo1—O5 bond length of 2.2836 (19) Å is extremely long for a bridging Mo—O bond while the Mo4—O9 bond length of 1.86089 (19) Å is considerably shorter than expected for a bond involving a triply bridging oxygen.

The packing of the title complex (Figure 2) shows the individual units to be stacked in a cubic close packing arrangement with water and ammonium ions distributed in the channels formed. Hydrogen bonding interactions exist between ammonium ions and the molybdenum cluster: H2B with O4, H1B with O10. In addition there exist hydrogen bonding interactions between the ammonium ions and the O atoms of neighbouring clusters: H2C with 011, H2D with O3, H1A with O9, and H1B with O10. The water molecules also hydrogen bond with the ammonium ions: O16 with H2A, O16 with H1C, and O17 with H1D. There is H-bonding between the H atoms of the water molecules with oxygen atoms of the molybdenum cluster: the strongest being that between O1 and H17A while 07 and H16A has a slightly longer hydrogen bond length. There also exists hydrogen bonding with the protons of the coordinated water molecules (H12A) of one cluster with the O2 atom in a neighbouring cluster while the other proton (H12B) has a strong hydrogen bond to 017. The water molecules also exhibit weak interactions with neighbouring clusters whereby H16A and H16B interact with O3 and H17A and H17B interact with O10.

Experimental

Ammonium molybdate tetrahydrate (10 g, 8.1 mmol) was dissolved in a solution of hydrogen peroxide (30%, 50 ml) acidified to pH 2 with nitric acid (70%, 5 ml). Slow evaporation of the yellow solution afforded crystals of the title compound (7.45 g, 93%). Crystals suitable for XRD studies were obtained from an aqueous solution of the complex that was kept at 288 K and 80% humidity in order to reduce the rate of evaporation.

Refinement

O-bound H atoms were located in the difference Fourier map and refined with bond length restraints of 0.95 (1) Å with Uiso(H) 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex, with displacement ellipsoids drawn at 50% probability level. Water solvent and ammonnium ions omitted for clarity. Symmetry code used for generating equivalent atoms: 1 - x, -y, 1 - z.

Fig. 2.

Fig. 2.

View along (a) the a axis and (b) the b axis of the crystal lattice of the title complex.

Crystal data

(NH4)4[Mo8O24(O2)2(H2O)2]·4H2O F(000) = 1328
Mr = 1395.78 Dx = 3.157 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1023 reflections
a = 10.405 (3) Å θ = 2.8–28.3°
b = 7.8706 (19) Å µ = 3.43 mm1
c = 18.063 (4) Å T = 150 K
β = 96.991 (4)° Blade, yellow
V = 1468.3 (6) Å3 0.32 × 0.19 × 0.08 mm
Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer 3542 independent reflections
Radiation source: sealed tube 3434 reflections with I > 2σ(I)
graphite Rint = 0.032
ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: gaussian (XPREP; Bruker, 1995; Coppens et al., 1965) h = −13→13
Tmin = 0.398, Tmax = 0.773 k = −10→10
14005 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043 Only H-atom coordinates refined
S = 1.16 w = 1/[σ2(Fo2) + (0.016P)2 + 2.2853P] where P = (Fo2 + 2Fc2)/3
3542 reflections (Δ/σ)max = 0.001
250 parameters Δρmax = 1.01 e Å3
14 restraints Δρmin = −0.70 e Å3

Special details

Experimental. attached with Exxon Paratone N, to a short length of fibre supported on a thin piece of copper wire inserted in a copper mounting pin. The crystal was quenched in a cold nitrogen gas stream from an Oxford Cryosystems Cryostream.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.578257 (18) 0.03860 (2) 0.654717 (10) 0.00883 (5)
Mo2 0.267481 (18) 0.07806 (2) 0.612704 (10) 0.00964 (5)
Mo3 0.153081 (18) 0.16838 (2) 0.442190 (11) 0.00992 (5)
Mo4 0.473839 (18) 0.21902 (2) 0.486860 (10) 0.00802 (5)
O1 0.75337 (18) 0.1060 (2) 0.69344 (10) 0.0214 (4)
O2 0.65823 (18) 0.2109 (2) 0.72269 (10) 0.0216 (4)
O3 0.54977 (16) −0.1215 (2) 0.71260 (9) 0.0146 (3)
O4 0.42192 (15) 0.1707 (2) 0.66940 (9) 0.0111 (3)
O5 0.59440 (16) 0.2362 (2) 0.56376 (9) 0.0117 (3)
O6 0.25417 (17) −0.1077 (2) 0.65969 (9) 0.0153 (3)
O7 0.15724 (16) 0.2132 (2) 0.64528 (10) 0.0154 (3)
O8 0.17259 (16) 0.0052 (2) 0.51832 (9) 0.0123 (3)
O9 0.32211 (15) 0.2731 (2) 0.52672 (9) 0.0112 (3)
O10 0.06078 (16) 0.3204 (2) 0.47923 (10) 0.0154 (3)
O11 0.05378 (17) 0.0689 (2) 0.37343 (10) 0.0178 (4)
O12 0.20013 (18) 0.3722 (2) 0.36953 (10) 0.0165 (3)
O13 0.32947 (15) 0.0976 (2) 0.41274 (9) 0.0108 (3)
O14 0.50583 (16) 0.3819 (2) 0.42998 (9) 0.0133 (3)
O15 0.55751 (15) 0.02784 (19) 0.43622 (9) 0.0095 (3)
O16 0.1645 (2) 0.5543 (2) 0.69018 (11) 0.0235 (4)
O17 0.89009 (18) 0.3251 (2) 0.61140 (10) 0.0181 (4)
N1 0.7945 (2) 0.3830 (3) 0.45833 (12) 0.0163 (4)
N2 0.4450 (3) 0.5128 (3) 0.72139 (13) 0.0225 (5)
H12A 0.203 (3) 0.354 (5) 0.3179 (7) 0.034*
H12B 0.162 (3) 0.481 (2) 0.372 (2) 0.034*
H16B 0.128 (3) 0.597 (4) 0.7317 (13) 0.034*
H16A 0.135 (3) 0.441 (2) 0.691 (2) 0.034*
H17A 0.854 (3) 0.267 (4) 0.6492 (15) 0.034*
H17B 0.9770 (14) 0.290 (4) 0.615 (2) 0.034*
H1B 0.8775 (17) 0.434 (4) 0.465 (2) 0.034*
H1A 0.728 (2) 0.462 (4) 0.463 (2) 0.034*
H1C 0.797 (3) 0.361 (5) 0.4069 (7) 0.034*
H1D 0.797 (4) 0.303 (4) 0.4976 (14) 0.034*
H2A 0.3570 (14) 0.546 (5) 0.716 (2) 0.034*
H2B 0.447 (4) 0.405 (2) 0.6981 (19) 0.034*
H2C 0.468 (3) 0.505 (5) 0.7736 (7) 0.034*
H2D 0.494 (3) 0.589 (4) 0.6960 (18) 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.00872 (9) 0.00944 (9) 0.00819 (9) 0.00024 (6) 0.00051 (7) −0.00073 (6)
Mo2 0.00888 (9) 0.01032 (9) 0.00991 (9) −0.00013 (7) 0.00191 (7) −0.00078 (7)
Mo3 0.00759 (9) 0.01116 (9) 0.01077 (9) 0.00088 (7) 0.00020 (7) −0.00090 (7)
Mo4 0.00759 (9) 0.00779 (9) 0.00865 (9) 0.00016 (6) 0.00085 (7) −0.00025 (6)
O1 0.0209 (9) 0.0228 (9) 0.0195 (9) −0.0036 (8) −0.0015 (7) −0.0021 (7)
O2 0.0199 (9) 0.0253 (10) 0.0186 (9) −0.0046 (8) −0.0013 (7) −0.0022 (7)
O3 0.0155 (8) 0.0143 (8) 0.0137 (8) 0.0014 (7) 0.0009 (6) 0.0009 (6)
O4 0.0108 (7) 0.0116 (7) 0.0111 (7) 0.0002 (6) 0.0016 (6) −0.0033 (6)
O5 0.0115 (8) 0.0109 (7) 0.0126 (8) −0.0006 (6) 0.0012 (6) −0.0001 (6)
O6 0.0167 (8) 0.0146 (8) 0.0148 (8) −0.0021 (7) 0.0030 (7) −0.0002 (6)
O7 0.0119 (8) 0.0166 (8) 0.0183 (8) 0.0013 (6) 0.0045 (7) −0.0031 (7)
O8 0.0120 (7) 0.0119 (7) 0.0129 (8) −0.0017 (6) 0.0010 (6) −0.0009 (6)
O9 0.0105 (7) 0.0099 (7) 0.0132 (8) −0.0002 (6) 0.0010 (6) −0.0007 (6)
O10 0.0108 (8) 0.0181 (8) 0.0177 (8) 0.0022 (7) 0.0029 (6) −0.0019 (7)
O11 0.0145 (8) 0.0201 (9) 0.0177 (8) 0.0001 (7) −0.0019 (7) −0.0040 (7)
O12 0.0211 (9) 0.0143 (8) 0.0144 (8) 0.0035 (7) 0.0031 (7) 0.0034 (7)
O13 0.0093 (7) 0.0116 (7) 0.0113 (7) −0.0001 (6) 0.0001 (6) −0.0013 (6)
O14 0.0144 (8) 0.0123 (8) 0.0129 (8) 0.0003 (6) 0.0005 (6) 0.0008 (6)
O15 0.0090 (7) 0.0100 (7) 0.0093 (7) 0.0008 (6) 0.0008 (6) −0.0012 (6)
O16 0.0344 (11) 0.0182 (9) 0.0186 (9) −0.0031 (8) 0.0056 (8) −0.0005 (7)
O17 0.0171 (9) 0.0166 (8) 0.0207 (9) 0.0037 (7) 0.0023 (7) 0.0026 (7)
N1 0.0146 (10) 0.0173 (10) 0.0166 (10) −0.0010 (8) −0.0004 (8) −0.0002 (8)
N2 0.0322 (13) 0.0187 (11) 0.0159 (10) −0.0009 (10) 0.0001 (9) 0.0021 (9)

Geometric parameters (Å, °)

Mo1—O3 1.6864 (17) Mo4—O15 2.0131 (16)
Mo1—O1 1.9443 (19) Mo4—O13 2.1148 (16)
Mo1—O2 1.9468 (19) Mo4—O15i 2.4335 (16)
Mo1—O13i 1.9599 (16) O1—O2 1.438 (3)
Mo1—O4 1.9755 (16) O12—H12A 0.947 (10)
Mo1—O15i 2.0983 (16) O12—H12B 0.949 (10)
Mo1—O5 2.2836 (17) O13—Mo1i 1.9599 (16)
Mo2—O6 1.7045 (18) O15—Mo1i 2.0983 (16)
Mo2—O7 1.7200 (17) O15—Mo2i 2.2768 (16)
Mo2—O4 1.9397 (16) O15—Mo4i 2.4335 (16)
Mo2—O8 1.9496 (16) O16—H16B 0.94 (3)
Mo2—O15i 2.2768 (16) O16—H16A 0.943 (10)
Mo2—O9 2.3037 (17) O17—H17A 0.94 (3)
Mo3—O11 1.7062 (18) O17—H17B 0.939 (10)
Mo3—O10 1.7198 (17) N1—H1B 0.948 (10)
Mo3—O8 1.8744 (17) N1—H1A 0.94 (3)
Mo3—O13 2.0493 (17) N1—H1C 0.948 (10)
Mo3—O12 2.1663 (18) N1—H1D 0.95 (3)
Mo3—O9 2.3348 (16) N2—H2A 0.946 (10)
Mo4—O14 1.7007 (17) N2—H2B 0.945 (10)
Mo4—O5 1.7600 (16) N2—H2C 0.946 (10)
Mo4—O9 1.8626 (17) N2—H2D 0.94 (3)
O3—Mo1—O1 102.03 (8) O12—Mo3—O9 85.81 (6)
O3—Mo1—O2 102.90 (8) O14—Mo4—O5 104.22 (8)
O1—Mo1—O2 43.38 (8) O14—Mo4—O9 107.38 (8)
O3—Mo1—O13i 96.49 (8) O5—Mo4—O9 103.51 (8)
O1—Mo1—O13i 82.20 (8) O14—Mo4—O15 99.30 (7)
O2—Mo1—O13i 124.68 (8) O5—Mo4—O15 96.32 (7)
O3—Mo1—O4 95.75 (8) O9—Mo4—O15 141.30 (7)
O1—Mo1—O4 123.99 (8) O14—Mo4—O13 97.71 (7)
O2—Mo1—O4 81.05 (8) O5—Mo4—O13 156.59 (7)
O13i—Mo1—O4 147.69 (7) O9—Mo4—O13 77.16 (7)
O3—Mo1—O15i 98.44 (7) O15—Mo4—O13 71.81 (6)
O1—Mo1—O15i 149.52 (7) O14—Mo4—O15i 175.07 (7)
O2—Mo1—O15i 149.62 (7) O5—Mo4—O15i 75.11 (7)
O13i—Mo1—O15i 73.21 (7) O9—Mo4—O15i 77.47 (6)
O4—Mo1—O15i 75.48 (6) O15—Mo4—O15i 76.00 (7)
O3—Mo1—O5 171.45 (7) O13—Mo4—O15i 82.33 (6)
O1—Mo1—O5 85.71 (7) O2—O1—Mo1 68.40 (11)
O2—Mo1—O5 85.18 (7) O1—O2—Mo1 68.21 (11)
O13i—Mo1—O5 80.85 (7) Mo2—O4—Mo1 111.97 (8)
O4—Mo1—O5 82.64 (6) Mo4—O5—Mo1 114.05 (8)
O15i—Mo1—O5 73.02 (6) Mo3—O8—Mo2 115.98 (8)
O6—Mo2—O7 105.20 (9) Mo4—O9—Mo2 113.49 (7)
O6—Mo2—O4 99.89 (8) Mo4—O9—Mo3 105.84 (7)
O7—Mo2—O4 97.53 (8) Mo2—O9—Mo3 88.71 (6)
O6—Mo2—O8 96.89 (8) Mo3—O12—H12A 121 (2)
O7—Mo2—O8 101.14 (8) Mo3—O12—H12B 121 (2)
O4—Mo2—O8 150.60 (7) H12A—O12—H12B 104 (3)
O6—Mo2—O15i 89.80 (7) Mo1i—O13—Mo3 146.31 (9)
O7—Mo2—O15i 163.24 (7) Mo1i—O13—Mo4 106.07 (7)
O4—Mo2—O15i 72.07 (6) Mo3—O13—Mo4 107.61 (7)
O8—Mo2—O15i 84.07 (6) Mo4—O15—Mo1i 104.76 (7)
O6—Mo2—O9 161.61 (7) Mo4—O15—Mo2i 149.38 (8)
O7—Mo2—O9 92.75 (7) Mo1i—O15—Mo2i 95.68 (6)
O4—Mo2—O9 81.31 (6) Mo4—O15—Mo4i 104.00 (7)
O8—Mo2—O9 75.33 (6) Mo1i—O15—Mo4i 97.11 (6)
O15i—Mo2—O9 73.00 (6) Mo2i—O15—Mo4i 95.65 (6)
O11—Mo3—O10 106.56 (9) H16B—O16—H16A 99 (3)
O11—Mo3—O8 102.80 (8) H17A—O17—H17B 105 (3)
O10—Mo3—O8 101.94 (8) H1B—N1—H1A 112 (3)
O11—Mo3—O13 99.70 (8) H1B—N1—H1C 94 (3)
O10—Mo3—O13 148.24 (7) H1A—N1—H1C 108 (3)
O8—Mo3—O13 89.08 (7) H1B—N1—H1D 104 (3)
O11—Mo3—O12 93.46 (8) H1A—N1—H1D 110 (3)
O10—Mo3—O12 84.18 (8) H1C—N1—H1D 128 (3)
O8—Mo3—O12 159.99 (7) H2A—N2—H2B 106 (3)
O13—Mo3—O12 76.61 (7) H2A—N2—H2C 104 (3)
O11—Mo3—O9 168.36 (7) H2B—N2—H2C 112 (3)
O10—Mo3—O9 84.95 (7) H2A—N2—H2D 111 (3)
O8—Mo3—O9 75.90 (6) H2B—N2—H2D 108 (3)
O13—Mo3—O9 68.81 (6) H2C—N2—H2D 116 (3)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O12—H12A···O2ii 0.95 (1) 1.80 (2) 2.715 (3) 161 (3)
O12—H12A···O1ii 0.95 (1) 2.39 (2) 3.299 (3) 161 (3)
O12—H12B···O17iii 0.95 (1) 1.66 (1) 2.599 (3) 171 (4)
O16—H16B···O4iv 0.94 (3) 2.01 (3) 2.939 (3) 170 (3)
O16—H16A···O7 0.94 (1) 2.00 (2) 2.803 (3) 142 (3)
O17—H17A···O1 0.94 (3) 1.88 (2) 2.776 (3) 159 (3)
O17—H17B···O7v 0.94 (1) 1.98 (1) 2.909 (3) 169 (3)
N1—H1B···O10v 0.95 (1) 2.09 (3) 2.795 (3) 130 (3)
N1—H1B···O10iii 0.95 (1) 2.24 (3) 2.929 (3) 129 (3)
N1—H1A···O9iii 0.94 (3) 2.16 (2) 2.992 (3) 146 (3)
N1—H1A···O14 0.94 (3) 2.40 (3) 2.985 (3) 120 (3)
N1—H1C···O16iii 0.95 (1) 1.96 (2) 2.811 (3) 148 (3)
N1—H1C···O6i 0.95 (1) 2.36 (3) 3.038 (3) 128 (3)
N1—H1D···O17 0.95 (3) 2.17 (3) 2.859 (3) 129 (3)
N1—H1D···O8i 0.95 (3) 2.47 (3) 3.097 (3) 124 (3)
N1—H1D···O5 0.95 (3) 2.60 (3) 3.203 (3) 122 (3)
N2—H2A···O16 0.95 (1) 2.00 (1) 2.923 (3) 164 (3)
N2—H2B···O4 0.95 (1) 1.93 (1) 2.852 (3) 165 (3)
N2—H2C···O11vi 0.95 (1) 2.00 (2) 2.912 (3) 162 (3)
N2—H2C···O7iv 0.95 (1) 2.65 (3) 3.169 (3) 115 (3)
N2—H2D···O3vii 0.94 (3) 2.36 (3) 3.089 (3) 134 (3)
N2—H2D···O14iii 0.94 (3) 2.29 (3) 2.961 (3) 128 (3)

Symmetry codes: (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y+1/2, −z+3/2; (v) x+1, y, z; (i) −x+1, −y, −z+1; (vi) x+1/2, −y+1/2, z+1/2; (vii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2108).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Baerwald, C. (1885). Thesis, University of Berlin, Germany.
  4. Bruker, (1995). SMART, SAINT and XPREP Bruker Inc., Madison, Wisconsin, USA.
  5. Chen, Q. & Zubieta, J. (1992). Coord. Chem. Rev.114, 107-167.
  6. Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst.18, 1035–1038.
  7. Dickman, M. H. & Pope, M. T. (1994). Chem. Rev.94, 569–584.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Feng, M.-L. & Mao, J.-G. (2004). Eur. J. Inorg. Chem. pp. 3712–3717.
  10. Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (2000). Editors. Xtal3.7 System University of Western Australia, Perth, Australia.
  11. Hill, C. L. (1998). Chem. Rev.98, 1–387. [DOI] [PubMed]
  12. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  13. Larking, I. & Stomberg, R. (1970). Acta Chem. Scand.24, 2043–2054.
  14. Larking, I. & Stomberg, R. (1972). Acta Chem. Scand.26, 3708–3722.
  15. Long, D.-L., Kogerler, P., Farrugia, L. J. & Cronin, L. (2003). Angew. Chem. Int. Ed.42, 4180-4183. [DOI] [PubMed]
  16. Michailovski, A. & Patzke, G. R. (2006). Chem. Eur. J.12, 9122–9134. [DOI] [PubMed]
  17. Molecular Structure Corporation (1998). TEXSAN for Windows MSC, The Woodlands, Texas, USA.
  18. Olson, S. & Stomberg, R. (1996). Z. Kristallogr.211, 895–899.
  19. Olson, S. & Stomberg, R. (1997a). Z. Kristallogr.212, 699–703.
  20. Olson, S. & Stomberg, R. (1997b). Z. Kristallogr. New Cryst. Struct.212, 311–312.
  21. Persdotter, I., Trysberg, L. & Stomberg, R. (1986a). Acta Chem. Scand. Ser. A, 40, 335–343.
  22. Persdotter, I., Trysberg, L. & Stomberg, R. (1986b). Acta Chem. Scand. Ser. A, 40, 83–90.
  23. Persdotter, I., Trysberg, L. & Stomberg, R. (1986c). Acta Chem. Scand. Ser. A, 40, 1–7.
  24. Pope, M. T. (1983). In Heteropoly and Isopoly Oxometallates Berlin: Springer.
  25. Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–48.
  26. Pope, M. T. & Müller, A. (2001). In Polyoxometalate Chemistry From Topology via Self Assembly to Applications Berlin: Springer-Verlag.
  27. Sergienko, V. S. C. R. (2008). Crystallogr. Rep.53, 18–46.
  28. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  29. Shi, Y., Yang, W., Xue, G., Hu, H. & Wang, J. (2006). J. Mol. Struct., 784, 244–248.
  30. Stomberg, R. (1968). Acta. Chem. Scand.22, 1076–1090.
  31. Stomberg, R. (1969). Acta. Chem. Scand.23, 2755–2763.
  32. Stomberg, R. (1970). Acta. Chem. Scand.24, 2024–2036.
  33. Stomberg, R. (1988a). J. Less-Common Met.144, 109–116.
  34. Stomberg, R. (1988b). J. Crystallogr. Spectrosc. Res.18, 659–669.
  35. Stomberg, R. (1992). J. Alloys Compd, 186, 271–278.
  36. Stomberg, R. (1995). J. Alloys Compd, 229, 227–232.
  37. Stomberg, R. & Olson, S. (1996). J. Alloys Compd, 237, 39–44.
  38. Stomberg, R. & Trysberg, L. (1969). Acta. Chem. Scand.23, 314–317.
  39. Trysberg, L. & Stomberg, R. (1968). Acta Chem. Scand.22, 2027–2028.
  40. Trysberg, L. & Stomberg, R. (1981). Acta Chem. Scand. Ser A, 35, 823–825.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023460/br2108sup1.cif

e-65-00i53-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023460/br2108Isup2.hkl

e-65-00i53-Isup2.hkl (173.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES