Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1640. doi: 10.1107/S160053680902248X

Tris(2-hydroxy­ethyl)ammonium 1,3-benzo­thia­zole-2-thiol­ate

Ji-Qin Zhu a, Hua-Cai Fang a, Bi-Yun Chen a, Mao-Song Feng a, Jing-Ning Li a,*
PMCID: PMC2969305  PMID: 21582904

Abstract

In the title compound, C6H16NO3 +·C7H4NS2 , the cations and anions are connected by O—H⋯N and O—H⋯S hydrogen bonding. Weak C—H⋯O hydrogen bonding between adjacent cations helps to stabilize the crystal structure.

Related literature

For related structures, see Bethge et al. (2008); Siracusa et al. (2008); Solar et al. (2008); Varlamov et al. (2005).graphic file with name e-65-o1640-scheme1.jpg

Experimental

Crystal data

  • C6H16NO3 +·C7H4NS2

  • M r = 316.43

  • Monoclinic, Inline graphic

  • a = 16.496 (2) Å

  • b = 5.7184 (8) Å

  • c = 17.462 (3) Å

  • β = 111.524 (2)°

  • V = 1532.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.56 × 0.38 × 0.23 mm

Data collection

  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.803, T max = 0.921

  • 7572 measured reflections

  • 2827 independent reflections

  • 2185 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.092

  • S = 1.04

  • 2827 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902248X/xu2531sup1.cif

e-65-o1640-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902248X/xu2531Isup2.hkl

e-65-o1640-Isup2.hkl (138.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.96 2.770 (2) 168
O2—H2⋯S2i 0.82 2.43 3.2258 (17) 165
O3—H3⋯S2 0.82 2.35 3.1621 (16) 169
C8—H8A⋯O1ii 0.97 2.50 3.385 (3) 151
C10—H10B⋯O3iii 0.97 2.47 3.425 (3) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 20772037) and the NSF of Guangdong Province, China (No. 06025033).

supplementary crystallographic information

Comment

Some related compounds involving the 2-mercaptobenzothiazole and its derivatives has reported previously (Varlamov et al., 2005; Solar et al., 2008; Siracusa et al. 2008; Bethge et al., 2008). The crystal structure of the title compound consists of tris(2-hydroxyethyl)ammonium cations and benzothiazole-2-thiolate anions (Fig. 1). The cations and anions are connected by O—H···N and O—H···S hydrogen bonding (Table 1).

Experimental

A mixture of benzothiazole (335 mg, 2 mmol), triethanolamine (0.4 ml and 3 mmol) in ethyl acetate (20 ml) was refluxed for 20 h. The resultant yellow solution was delaminated into two layers at room temperature and then filtered. Single crystals suitable for X-ray diffraction were obtained in two day by slow diffusion of diethyl ether into a dilute solution of the title complex in ethyl acetate. The elemental analysis; calculated for C13H20N2O3S2: C 49.37, H 6.33, N 8.86%; found: C 49.31, H 6.38, N 8.82%.

Refinement

H atoms were placed in idealized positions with C—H = 0.93 or 0.97 Å, O—H = 0.82 Å, N—H = 0.91 Å, and refined in riding-model approximation. Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N,C).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with 50% probability displacement ellipsoids.

Crystal data

C6H16NO3+·C7H4NS2 F(000) = 672
Mr = 316.43 Dx = 1.372 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 236 reflections
a = 16.496 (2) Å θ = 2.4–25.5°
b = 5.7184 (8) Å µ = 0.36 mm1
c = 17.462 (3) Å T = 296 K
β = 111.524 (2)° Block, colorless
V = 1532.3 (4) Å3 0.56 × 0.38 × 0.23 mm
Z = 4

Data collection

Bruker SMART area-detector diffractometer 2827 independent reflections
Radiation source: fine-focus sealed tube 2185 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −19→19
Tmin = 0.803, Tmax = 0.921 k = −6→6
7572 measured reflections l = −20→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.2793P] where P = (Fo2 + 2Fc2)/3
2827 reflections (Δ/σ)max < 0.001
185 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.26675 (13) 1.1324 (4) 0.12815 (11) 0.0361 (5)
C2 0.39268 (13) 0.8624 (4) 0.15930 (11) 0.0347 (5)
C3 0.39516 (12) 1.0658 (3) 0.11586 (11) 0.0347 (5)
C4 0.46629 (14) 1.1048 (4) 0.09259 (13) 0.0459 (5)
H4 0.4692 1.2382 0.0632 0.055*
C5 0.53229 (15) 0.9413 (5) 0.11398 (14) 0.0521 (6)
H5 0.5803 0.9667 0.0992 0.062*
C6 0.52890 (15) 0.7410 (4) 0.15671 (13) 0.0498 (6)
H6 0.5743 0.6335 0.1699 0.060*
C7 0.45902 (14) 0.6983 (4) 0.18000 (12) 0.0445 (5)
H7 0.4565 0.5634 0.2088 0.053*
C8 0.25776 (13) 0.6974 (4) 0.44442 (12) 0.0412 (5)
H8A 0.2820 0.5472 0.4383 0.049*
H8B 0.2541 0.7025 0.4986 0.049*
C9 0.31648 (14) 0.8890 (4) 0.43727 (13) 0.0451 (5)
H9A 0.3726 0.8760 0.4819 0.054*
H9B 0.3257 0.8727 0.3858 0.054*
C10 0.09961 (15) 0.6154 (4) 0.40603 (14) 0.0501 (6)
H10A 0.1175 0.4593 0.4272 0.060*
H10B 0.0458 0.6019 0.3585 0.060*
C11 0.08354 (14) 0.7592 (4) 0.47092 (14) 0.0485 (6)
H11A 0.0323 0.7022 0.4798 0.058*
H11B 0.1330 0.7479 0.5224 0.058*
C12 0.16366 (15) 0.6302 (4) 0.29797 (12) 0.0477 (6)
H12A 0.1524 0.4633 0.2951 0.057*
H12B 0.2190 0.6556 0.2916 0.057*
C13 0.09228 (15) 0.7522 (5) 0.22968 (13) 0.0537 (6)
H13A 0.0969 0.7155 0.1772 0.064*
H13B 0.0359 0.6984 0.2282 0.064*
N1 0.32350 (11) 1.2134 (3) 0.09787 (10) 0.0371 (4)
N2 0.16844 (9) 0.7219 (3) 0.38008 (9) 0.0318 (4)
H2A 0.1569 0.8778 0.3736 0.038*
O1 0.28024 (11) 1.1097 (3) 0.44019 (9) 0.0515 (4)
H1 0.2898 1.1449 0.4882 0.077*
O2 0.07100 (11) 0.9936 (3) 0.44415 (9) 0.0581 (4)
H2 0.0927 1.0808 0.4837 0.087*
O3 0.09930 (10) 0.9968 (3) 0.24292 (9) 0.0533 (4)
H3 0.1244 1.0551 0.2148 0.080*
S1 0.29720 (3) 0.86166 (10) 0.17920 (3) 0.04177 (18)
S2 0.16918 (4) 1.25406 (11) 0.11908 (4) 0.04881 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0443 (12) 0.0320 (12) 0.0297 (10) −0.0048 (9) 0.0107 (9) −0.0028 (9)
C2 0.0382 (11) 0.0340 (12) 0.0270 (9) −0.0052 (9) 0.0063 (8) −0.0007 (9)
C3 0.0405 (11) 0.0326 (11) 0.0289 (9) −0.0054 (9) 0.0103 (8) −0.0021 (9)
C4 0.0496 (13) 0.0463 (15) 0.0453 (12) −0.0018 (11) 0.0215 (10) 0.0073 (11)
C5 0.0451 (13) 0.0620 (17) 0.0543 (14) −0.0008 (11) 0.0245 (11) −0.0012 (12)
C6 0.0465 (13) 0.0513 (16) 0.0478 (13) 0.0115 (11) 0.0128 (11) −0.0004 (11)
C7 0.0509 (13) 0.0388 (13) 0.0379 (11) 0.0017 (10) 0.0094 (10) 0.0031 (10)
C8 0.0392 (12) 0.0404 (13) 0.0411 (11) 0.0054 (9) 0.0114 (9) 0.0034 (10)
C9 0.0449 (12) 0.0458 (14) 0.0457 (12) −0.0063 (10) 0.0181 (10) −0.0091 (11)
C10 0.0506 (13) 0.0500 (15) 0.0526 (13) −0.0124 (11) 0.0225 (11) −0.0010 (11)
C11 0.0449 (13) 0.0574 (16) 0.0485 (13) −0.0021 (11) 0.0234 (11) 0.0049 (12)
C12 0.0649 (15) 0.0422 (14) 0.0375 (11) 0.0001 (11) 0.0204 (11) −0.0070 (10)
C13 0.0533 (14) 0.0671 (18) 0.0342 (11) −0.0093 (12) 0.0082 (10) 0.0001 (11)
N1 0.0436 (10) 0.0307 (10) 0.0375 (9) −0.0019 (8) 0.0154 (8) 0.0030 (7)
N2 0.0351 (9) 0.0275 (9) 0.0319 (8) 0.0001 (7) 0.0110 (7) 0.0011 (7)
O1 0.0690 (10) 0.0380 (10) 0.0454 (8) −0.0041 (8) 0.0186 (8) −0.0074 (7)
O2 0.0705 (11) 0.0570 (12) 0.0490 (9) 0.0164 (9) 0.0244 (8) 0.0038 (8)
O3 0.0591 (10) 0.0590 (12) 0.0462 (9) 0.0122 (8) 0.0244 (7) 0.0144 (8)
S1 0.0457 (3) 0.0401 (3) 0.0402 (3) −0.0032 (2) 0.0166 (2) 0.0092 (2)
S2 0.0518 (4) 0.0470 (4) 0.0536 (4) 0.0074 (3) 0.0263 (3) 0.0074 (3)

Geometric parameters (Å, °)

C1—N1 1.317 (2) C9—H9A 0.9700
C1—S2 1.707 (2) C9—H9B 0.9700
C1—S1 1.765 (2) C10—N2 1.497 (2)
C2—C7 1.385 (3) C10—C11 1.500 (3)
C2—C3 1.398 (3) C10—H10A 0.9700
C2—S1 1.733 (2) C10—H10B 0.9700
C3—N1 1.391 (2) C11—O2 1.410 (3)
C3—C4 1.393 (3) C11—H11A 0.9700
C4—C5 1.379 (3) C11—H11B 0.9700
C4—H4 0.9300 C12—N2 1.501 (2)
C5—C6 1.379 (3) C12—C13 1.505 (3)
C5—H5 0.9300 C12—H12A 0.9700
C6—C7 1.378 (3) C12—H12B 0.9700
C6—H6 0.9300 C13—O3 1.415 (3)
C7—H7 0.9300 C13—H13A 0.9700
C8—N2 1.496 (2) C13—H13B 0.9700
C8—C9 1.497 (3) N2—H2A 0.9100
C8—H8A 0.9700 O1—H1 0.8200
C8—H8B 0.9700 O2—H2 0.8200
C9—O1 1.405 (3) O3—H3 0.8200
N1—C1—S2 127.19 (16) N2—C10—H10A 109.3
N1—C1—S1 113.51 (15) C11—C10—H10A 109.3
S2—C1—S1 119.24 (11) N2—C10—H10B 109.3
C7—C2—C3 121.86 (19) C11—C10—H10B 109.3
C7—C2—S1 129.44 (16) H10A—C10—H10B 107.9
C3—C2—S1 108.70 (15) O2—C11—C10 108.40 (17)
N1—C3—C4 125.02 (18) O2—C11—H11A 110.0
N1—C3—C2 115.84 (17) C10—C11—H11A 110.0
C4—C3—C2 119.13 (19) O2—C11—H11B 110.0
C5—C4—C3 118.6 (2) C10—C11—H11B 110.0
C5—C4—H4 120.7 H11A—C11—H11B 108.4
C3—C4—H4 120.7 N2—C12—C13 110.28 (18)
C4—C5—C6 121.7 (2) N2—C12—H12A 109.6
C4—C5—H5 119.2 C13—C12—H12A 109.6
C6—C5—H5 119.2 N2—C12—H12B 109.6
C7—C6—C5 120.7 (2) C13—C12—H12B 109.6
C7—C6—H6 119.6 H12A—C12—H12B 108.1
C5—C6—H6 119.6 O3—C13—C12 109.59 (18)
C6—C7—C2 118.0 (2) O3—C13—H13A 109.8
C6—C7—H7 121.0 C12—C13—H13A 109.8
C2—C7—H7 121.0 O3—C13—H13B 109.8
N2—C8—C9 110.98 (17) C12—C13—H13B 109.8
N2—C8—H8A 109.4 H13A—C13—H13B 108.2
C9—C8—H8A 109.4 C1—N1—C3 111.49 (17)
N2—C8—H8B 109.4 C8—N2—C10 112.46 (15)
C9—C8—H8B 109.4 C8—N2—C12 112.13 (15)
H8A—C8—H8B 108.0 C10—N2—C12 111.54 (16)
O1—C9—C8 110.92 (17) C8—N2—H2A 106.8
O1—C9—H9A 109.5 C10—N2—H2A 106.8
C8—C9—H9A 109.5 C12—N2—H2A 106.8
O1—C9—H9B 109.5 C9—O1—H1 109.5
C8—C9—H9B 109.5 C11—O2—H2 109.5
H9A—C9—H9B 108.0 C13—O3—H3 109.5
N2—C10—C11 111.68 (18) C2—S1—C1 90.44 (9)
C7—C2—C3—N1 178.88 (18) S2—C1—N1—C3 −178.71 (15)
S1—C2—C3—N1 −1.0 (2) S1—C1—N1—C3 −1.5 (2)
C7—C2—C3—C4 0.1 (3) C4—C3—N1—C1 −179.62 (19)
S1—C2—C3—C4 −179.79 (15) C2—C3—N1—C1 1.7 (2)
N1—C3—C4—C5 −179.2 (2) C9—C8—N2—C10 −153.34 (17)
C2—C3—C4—C5 −0.5 (3) C9—C8—N2—C12 80.0 (2)
C3—C4—C5—C6 0.7 (3) C11—C10—N2—C8 72.5 (2)
C4—C5—C6—C7 −0.4 (3) C11—C10—N2—C12 −160.57 (18)
C5—C6—C7—C2 −0.1 (3) C13—C12—N2—C8 −153.34 (18)
C3—C2—C7—C6 0.2 (3) C13—C12—N2—C10 79.5 (2)
S1—C2—C7—C6 −179.94 (16) C7—C2—S1—C1 −179.76 (19)
N2—C8—C9—O1 55.1 (2) C3—C2—S1—C1 0.09 (14)
N2—C10—C11—O2 49.9 (2) N1—C1—S1—C2 0.85 (15)
N2—C12—C13—O3 48.2 (2) S2—C1—S1—C2 178.27 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 1.96 2.770 (2) 168
O2—H2···S2i 0.82 2.43 3.2258 (17) 165
O3—H3···S2 0.82 2.35 3.1621 (16) 169
C8—H8A···O1ii 0.97 2.50 3.385 (3) 151
C10—H10B···O3iii 0.97 2.47 3.425 (3) 167

Symmetry codes: (i) x, −y+5/2, z+1/2; (ii) x, y−1, z; (iii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2531).

References

  1. Bethge, L., Jarikote, D. V. & Seitz, O. (2008). Bioorg. Med. Chem. 16, 114–125. [DOI] [PubMed]
  2. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siracusa, M. A., Salerno, L., Modica, M. N., Pittala, V., Romeo, G., Amato, M. E., Nowak, M., Bojarski, A. J., Mereghetti, I., Cagnotto, A. & Mennini, T. (2008). J. Med. Chem.51, 4529–4538.
  7. Solar, M., del Ghosh, A. K. & Zajc, B. (2008). J. Org. Chem.73, 8206–8211. [DOI] [PMC free article] [PubMed]
  8. Varlamov, V. T., Ferreri, C. & Chatgilialoglu, C. (2005). J. Organomet. Chem.690, 1756–1762.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902248X/xu2531sup1.cif

e-65-o1640-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902248X/xu2531Isup2.hkl

e-65-o1640-Isup2.hkl (138.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES