Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):o1484–o1485. doi: 10.1107/S1600536809019461

6-Amino-2,5-bis­(pivaloylamino)pyrimidin-4(3H)-one dihydrate

Hoong-Kun Fun a,*,, Kasthuri Balasubramani a, Anita Hazra b, Manas Kumar Das b, Shyamaprosad Goswami b
PMCID: PMC2969306  PMID: 21582786

Abstract

The asymmetric unit of the title compound, C14H23N5O3·2H2O, contains two crystallographically independent 6-amino-2,5-bis­(pivaloylamino)pyrimidin-4(3H)-one mol­ecules (A and B) with similar geometry and four water mol­ecules. In both independent mol­ecules, one of the amide groups is almost coplanar with the pyrimidine ring [dihedral angle of 12.85 (9) in A and 12.30 (10)° in B], whereas the other amide group is significantly twisted away from it [dihedral angle is 72.18 (7) in A and 71.29 (7)° in B]. In each independent mol­ecule, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. Mol­ecules A and B are linked into chains along the a axis by N—H⋯O and C—H⋯O hydrogen bonds. Adjacent chains are linked into a two-dimensional network parallel to the ac plane by water mol­ecules via N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background on substituted pyrimidines, see: Lednicer & Mitscher (1977); Blackburn & Gait (1996); VanAllan (1976); Goswami et al. (2007); Brown (1988). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-65-o1484-scheme1.jpg

Experimental

Crystal data

  • C14H23N5O3·2H2O

  • M r = 345.41

  • Triclinic, Inline graphic

  • a = 7.5560 (3) Å

  • b = 14.1008 (6) Å

  • c = 18.0713 (6) Å

  • α = 71.079 (2)°

  • β = 89.988 (2)°

  • γ = 86.682 (3)°

  • V = 1817.98 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.57 × 0.19 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.947, T max = 0.991

  • 10525 measured reflections

  • 10525 independent reflections

  • 8199 reflections with I > 2σ(I)

  • R int = 0.0000

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.162

  • S = 1.11

  • 10525 reflections

  • 447 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019461/ci2809sup1.cif

e-65-o1484-sup1.cif (31.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019461/ci2809Isup2.hkl

e-65-o1484-Isup2.hkl (504.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4AA⋯O1Wi 0.86 2.07 2.918 (2) 167
N4B—H4BA⋯O4Wii 0.86 2.08 2.920 (2) 166
N5B—H5BA⋯O4Wiii 0.86 2.32 3.160 (2) 166
N5B—H5BB⋯O1Aiv 0.86 2.09 2.861 (2) 149
O1W—H1W1⋯O2Wv 0.87 2.00 2.857 (2) 167
O1W—H2W1⋯O2Wvi 0.90 1.92 2.819 (2) 178
O2W—H2W2⋯O2Bv 0.89 1.96 2.824 (2) 162
O3W—H1W3⋯O2Aiii 0.86 1.91 2.722 (2) 158
O3W—H2W3⋯O2Avii 0.89 1.97 2.833 (2) 162
O4W—H1W4⋯O3Wviii 0.88 1.99 2.865 (2) 174
N3A—H3AA⋯O3A 0.86 1.98 2.633 (2) 132
N5A—H5AA⋯O1W 0.86 2.32 3.163 (2) 167
N5A—H5AB⋯O1B 0.86 2.08 2.854 (2) 149
N3B—H3BA⋯O3B 0.86 1.97 2.632 (2) 132
O2W—H1W2⋯O2B 0.87 1.91 2.717 (2) 154
O4W—H2W4⋯O3W 0.88 1.93 2.811 (2) 173
C14A—H14A⋯O1B 0.96 2.53 3.355 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

HKF and KB thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KB thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. SG thanks DST (SR/S1/OC-13/2005), Government of India, for financial support. AH and MD thank the CSIR, Government of India, for research fellowships.

supplementary crystallographic information

Comment

Various drugs and biologically active molecules contain substituted pyrimidines (Lednicer & Mitscher, 1977). Adenine, uracil, thyamine are pyrimidine-based bases in nucleic acids (Blackburn & Gait, 1996). 2 5,6-Triamino-3H- pyrimidin-4-one dihydrochloride (VanAllan, 1976; Goswami et al. 2007) is an important component for the synthesis of pterin molecules (Brown, 1988). The title compound was selectively synthesized by the reaction of 2,5,6-triamino-3H-pyrimidin-4-one dihydrochloride with pivalic anhydride and its crystal structure is reported here.

There are two crystallographically independent 6-amino-2,5-dipivaloyl-3H-pyrimidin-4-one molecules, A and B, and four water molecules in the asymmetric unit of the title compound (Fig 1). Molecules A and B have similar geometry. The bond lengths (Allen et al., 1987) and angles are normal. In both A and B, one of the amide groups is almost coplanar with the pyrimidine ring (dihedral angle is 12.85 (9)° in A and 12.30 (10)° in B) whereas the other is significantly twisted away from the pyrimidine ring (dihedral angle is 72.18 (7)° in A and 71.29 (07)° in B) In each independent molecule, an intramolecular N—H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).

The independent molecules are linked into chains along the a axis by N—H···O and C—H···O hydrogen bonds. The adjacent chains are linked into a two-dimensional network parallel to the ac plane (Fig.2) by water molecules via N—H···O and O—H···O hydrogen bonds (Table 1).

Experimental

2,5,6-Triaminopyrimidine-4-(3H)-one dihydrochloride (200mg, 0.93mmol) was heated with pivalic anhydride (1 ml) at 393 K for 6 h in the presence of a catalytic amount of 4-dimethylaminopyridine (DMAP) (10 mol%). After the formation of a major amount of dipivaloyl product as monitored by TLC, the solid residue was washed with petroleum ether to remove the excess pivalic anhydride. The solid residue was purified through silica gel (100–200 mesh) column chromatography eluting 3% methanol in chloroform to get the pure crystalline solid. Single crystals were grown by slow evaporation of a chloroform solution (m.p. 523-525 K). IR: 3416, 3217, 2965, 2873,1645, 1568, 1488, 1438, 1240, 1176, 763 cm-1. 1H NMR (CDCl3, 400 MHz): δ(p.p.m.): 11.61 (bs, 1H), 8.27 (bs, 1H), 7.64 (bs, 1H), 5.35 (bs, 2H), 1.28 (s, 9H), 1.24 (s, 9H). LC—MS: m/z (%): 310.4[(M+H)+,40], 292.3 (100), 186.3.

Refinement

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The H atoms of the water molecules were located in a difference Fourier map and constrained to ride on their parent atom, with Uiso(H) = 1.5Ueq(O). The crystal was a pseudo-merohedral triplet with ratio 0.764 (5):0.155 (5):0.081 (5). The refined BASF parameters are 0.155 (5) and 0.081 (5).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonding.

Fig. 2.

Fig. 2.

Part of the crystal packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonding.

Crystal data

C14H23N5O3·2H2O Z = 4
Mr = 345.41 F(000) = 744
Triclinic, P1 Dx = 1.262 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5560 (3) Å Cell parameters from 8925 reflections
b = 14.1008 (6) Å θ = 3.1–32.5°
c = 18.0713 (6) Å µ = 0.10 mm1
α = 71.079 (2)° T = 100 K
β = 89.988 (2)° Block, colourless
γ = 86.682 (3)° 0.57 × 0.19 × 0.09 mm
V = 1817.98 (12) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 10525 independent reflections
Radiation source: fine-focus sealed tube 8199 reflections with I > 2σ(I)
graphite Rint = 0.0000
φ and ω scans θmax = 30.0°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.947, Tmax = 0.991 k = −18→19
10525 measured reflections l = 0→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0332P)2 + 1.7967P] where P = (Fo2 + 2Fc2)/3
10525 reflections (Δ/σ)max = 0.001
447 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 1.0113 (2) 0.26217 (11) 0.14678 (9) 0.0172 (3)
O2A 0.9781 (2) −0.00932 (11) 0.11107 (8) 0.0163 (3)
O3A 1.2104 (2) −0.26095 (12) 0.29920 (9) 0.0211 (3)
N1A 0.7981 (2) 0.15883 (12) 0.14173 (9) 0.0126 (3)
H1AA 0.6995 0.1522 0.1207 0.015*
N2A 0.9705 (2) −0.00908 (12) 0.33668 (9) 0.0124 (3)
N3A 1.0445 (2) −0.08254 (12) 0.24031 (9) 0.0126 (3)
H3AA 1.0950 −0.1334 0.2306 0.015*
N4A 1.1220 (2) −0.16358 (12) 0.37291 (9) 0.0129 (3)
H4AA 1.1299 −0.1587 0.4190 0.016*
N5A 0.8070 (2) 0.14048 (13) 0.30396 (10) 0.0151 (3)
H5AA 0.8136 0.1356 0.3526 0.018*
H5AB 0.7506 0.1916 0.2712 0.018*
C1A 0.8701 (3) 0.24963 (15) 0.11802 (11) 0.0121 (4)
C2A 0.8808 (3) 0.07412 (14) 0.20033 (11) 0.0121 (4)
C3A 0.8843 (3) 0.06879 (14) 0.27938 (11) 0.0120 (4)
C4A 1.0438 (3) −0.08141 (14) 0.31492 (11) 0.0126 (4)
C5A 0.9655 (3) −0.00353 (15) 0.17828 (11) 0.0120 (4)
C6A 1.1882 (3) −0.25228 (15) 0.36395 (11) 0.0137 (4)
C7A 1.2277 (3) −0.33855 (15) 0.44031 (12) 0.0154 (4)
C8A 1.2899 (3) −0.43211 (17) 0.42020 (13) 0.0211 (5)
H8AA 1.1995 −0.4482 0.3896 0.032*
H8AB 1.3124 −0.4874 0.4676 0.032*
H8AC 1.3967 −0.4196 0.3907 0.032*
C9A 1.3758 (4) −0.31103 (18) 0.48672 (14) 0.0228 (5)
H9AA 1.3385 −0.2512 0.4983 0.034*
H9AB 1.4811 −0.2995 0.4561 0.034*
H9AC 1.4001 −0.3652 0.5347 0.034*
C10A 1.0576 (3) −0.35827 (17) 0.48821 (13) 0.0217 (5)
H10A 0.9629 −0.3673 0.4562 0.033*
H10B 1.0265 −0.3021 0.5056 0.033*
H10C 1.0771 −0.4178 0.5328 0.033*
C11A 0.7768 (3) 0.33580 (15) 0.05214 (12) 0.0152 (4)
C12A 0.9017 (4) 0.3536 (2) −0.01777 (14) 0.0334 (6)
H12A 0.8555 0.4103 −0.0604 0.050*
H12B 0.9102 0.2951 −0.0340 0.050*
H12C 1.0172 0.3666 −0.0026 0.050*
C13A 0.7607 (4) 0.42818 (17) 0.07890 (17) 0.0278 (5)
H13A 0.6818 0.4161 0.1222 0.042*
H13B 0.7147 0.4852 0.0365 0.042*
H13C 0.8754 0.4413 0.0948 0.042*
C14A 0.5943 (3) 0.31374 (17) 0.02795 (14) 0.0226 (5)
H14A 0.5179 0.2988 0.0722 0.034*
H14B 0.6054 0.2572 0.0093 0.034*
H14C 0.5447 0.3714 −0.0129 0.034*
O1B 0.5105 (2) 0.26137 (11) 0.21892 (9) 0.0177 (3)
O2B 0.4795 (2) −0.01130 (11) 0.39406 (8) 0.0160 (3)
O3B 0.7098 (2) −0.26303 (12) 0.33417 (9) 0.0213 (3)
N1B 0.3005 (2) 0.15684 (12) 0.27823 (10) 0.0124 (3)
H1BA 0.2027 0.1501 0.3032 0.015*
N2B 0.4710 (2) −0.01103 (12) 0.16825 (9) 0.0124 (3)
N3B 0.5460 (2) −0.08400 (12) 0.30196 (9) 0.0125 (3)
H3BA 0.5972 −0.1345 0.3374 0.015*
N4B 0.6226 (2) −0.16539 (13) 0.21065 (10) 0.0135 (3)
H4BA 0.6310 −0.1607 0.1622 0.016*
N5B 0.3072 (2) 0.13860 (13) 0.12500 (10) 0.0143 (3)
H5BA 0.3129 0.1333 0.0790 0.017*
H5BB 0.2512 0.1899 0.1319 0.017*
C1B 0.3719 (3) 0.24772 (15) 0.25544 (11) 0.0123 (4)
C2B 0.3819 (3) 0.07227 (14) 0.26221 (11) 0.0124 (4)
C3B 0.3855 (3) 0.06723 (14) 0.18588 (11) 0.0113 (3)
C4B 0.5443 (3) −0.08344 (14) 0.22681 (11) 0.0118 (4)
C5B 0.4673 (3) −0.00523 (15) 0.32382 (11) 0.0129 (4)
C6B 0.6886 (3) −0.25413 (15) 0.26499 (12) 0.0149 (4)
C7B 0.7303 (3) −0.34013 (16) 0.23251 (12) 0.0162 (4)
C8B 0.7917 (4) −0.43431 (17) 0.30020 (14) 0.0226 (5)
H8BA 0.7000 −0.4511 0.3382 0.034*
H8BB 0.8970 −0.4216 0.3242 0.034*
H8BC 0.8165 −0.4892 0.2805 0.034*
C9B 0.8798 (4) −0.31215 (18) 0.17286 (14) 0.0232 (5)
H9BA 0.8418 −0.2534 0.1302 0.035*
H9BB 0.9078 −0.3669 0.1534 0.035*
H9BC 0.9832 −0.2987 0.1978 0.035*
C10B 0.5631 (3) −0.36058 (17) 0.19338 (14) 0.0231 (5)
H10D 0.5312 −0.3038 0.1481 0.035*
H10E 0.4676 −0.3716 0.2297 0.035*
H10F 0.5858 −0.4191 0.1779 0.035*
C11B 0.2801 (3) 0.33333 (16) 0.27831 (12) 0.0150 (4)
C12B 0.4114 (4) 0.3547 (2) 0.33506 (17) 0.0323 (6)
H12D 0.4266 0.2970 0.3813 0.049*
H12E 0.3659 0.4114 0.3491 0.049*
H12F 0.5235 0.3691 0.3102 0.049*
C13B 0.2533 (3) 0.42518 (17) 0.20411 (14) 0.0214 (5)
H13D 0.1719 0.4108 0.1689 0.032*
H13E 0.3650 0.4404 0.1791 0.032*
H13F 0.2062 0.4817 0.2180 0.032*
C14B 0.1021 (4) 0.30911 (17) 0.31798 (15) 0.0236 (5)
H14D 0.0220 0.2929 0.2833 0.035*
H14E 0.0533 0.3663 0.3305 0.035*
H14F 0.1191 0.2529 0.3651 0.035*
O1W 0.8987 (2) 0.12286 (11) 0.47888 (8) 0.0179 (3)
H1W1 0.8648 0.0614 0.4942 0.027*
H2W1 1.0149 0.1036 0.4798 0.027*
O2W 0.2630 (2) 0.06473 (13) 0.48386 (9) 0.0219 (3)
H1W2 0.3371 0.0602 0.4483 0.033*
H2W2 0.3376 0.0610 0.5230 0.033*
O3W 0.2385 (2) 0.93480 (13) 0.01760 (9) 0.0225 (3)
H1W3 0.1642 0.9417 −0.0197 0.034*
H2W3 0.1705 0.9430 0.0559 0.034*
O4W 0.6016 (2) 0.87651 (11) 0.04160 (9) 0.0181 (3)
H1W4 0.6432 0.9365 0.0213 0.027*
H2W4 0.4873 0.8911 0.0321 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0161 (7) 0.0141 (7) 0.0198 (7) −0.0005 (6) −0.0036 (6) −0.0033 (6)
O2A 0.0219 (8) 0.0187 (7) 0.0083 (6) 0.0010 (6) −0.0016 (5) −0.0050 (5)
O3A 0.0304 (9) 0.0205 (8) 0.0122 (7) 0.0059 (7) −0.0003 (6) −0.0064 (6)
N1A 0.0131 (8) 0.0133 (8) 0.0096 (7) −0.0008 (6) −0.0027 (6) −0.0013 (6)
N2A 0.0155 (8) 0.0121 (8) 0.0091 (7) 0.0010 (6) −0.0006 (6) −0.0032 (6)
N3A 0.0166 (9) 0.0113 (7) 0.0098 (7) 0.0017 (6) 0.0001 (6) −0.0038 (6)
N4A 0.0181 (9) 0.0128 (8) 0.0076 (7) 0.0011 (6) −0.0022 (6) −0.0034 (6)
N5A 0.0211 (9) 0.0140 (8) 0.0099 (7) 0.0028 (7) −0.0001 (6) −0.0039 (6)
C1A 0.0135 (9) 0.0124 (9) 0.0104 (8) 0.0001 (7) 0.0030 (7) −0.0039 (7)
C2A 0.0139 (9) 0.0117 (8) 0.0093 (8) −0.0004 (7) −0.0003 (7) −0.0016 (6)
C3A 0.0122 (9) 0.0121 (8) 0.0115 (8) −0.0020 (7) 0.0008 (7) −0.0034 (7)
C4A 0.0144 (9) 0.0121 (9) 0.0101 (8) −0.0021 (7) −0.0001 (7) −0.0018 (7)
C5A 0.0130 (9) 0.0123 (9) 0.0100 (8) −0.0011 (7) −0.0006 (7) −0.0025 (7)
C6A 0.0161 (10) 0.0127 (9) 0.0117 (8) 0.0008 (7) −0.0024 (7) −0.0036 (7)
C7A 0.0212 (11) 0.0116 (9) 0.0123 (8) 0.0031 (8) −0.0009 (7) −0.0028 (7)
C8A 0.0267 (12) 0.0162 (10) 0.0195 (10) 0.0064 (9) −0.0036 (9) −0.0060 (8)
C9A 0.0289 (13) 0.0181 (10) 0.0203 (10) 0.0041 (9) −0.0108 (9) −0.0058 (8)
C10A 0.0285 (12) 0.0152 (10) 0.0176 (10) 0.0022 (9) 0.0055 (9) −0.0008 (8)
C11A 0.0162 (10) 0.0114 (9) 0.0134 (9) 0.0014 (7) 0.0011 (7) 0.0020 (7)
C12A 0.0294 (14) 0.0379 (14) 0.0190 (11) 0.0033 (11) 0.0085 (10) 0.0091 (10)
C13A 0.0262 (13) 0.0136 (10) 0.0416 (14) 0.0029 (9) −0.0079 (11) −0.0068 (10)
C14A 0.0252 (12) 0.0180 (10) 0.0197 (10) 0.0009 (9) −0.0074 (9) 0.0003 (8)
O1B 0.0167 (8) 0.0150 (7) 0.0211 (7) −0.0010 (6) 0.0034 (6) −0.0054 (6)
O2B 0.0196 (8) 0.0199 (7) 0.0100 (6) 0.0030 (6) −0.0009 (5) −0.0078 (5)
O3B 0.0317 (9) 0.0179 (7) 0.0140 (7) 0.0072 (6) −0.0030 (6) −0.0061 (6)
N1B 0.0126 (8) 0.0126 (8) 0.0144 (7) 0.0003 (6) 0.0023 (6) −0.0077 (6)
N2B 0.0147 (8) 0.0128 (8) 0.0109 (7) 0.0001 (6) 0.0002 (6) −0.0057 (6)
N3B 0.0163 (9) 0.0116 (7) 0.0096 (7) 0.0020 (6) −0.0005 (6) −0.0039 (6)
N4B 0.0189 (9) 0.0134 (8) 0.0099 (7) 0.0019 (7) 0.0003 (6) −0.0065 (6)
N5B 0.0188 (9) 0.0136 (8) 0.0112 (7) 0.0028 (6) −0.0018 (6) −0.0055 (6)
C1B 0.0147 (10) 0.0115 (9) 0.0109 (8) 0.0016 (7) −0.0033 (7) −0.0045 (7)
C2B 0.0141 (9) 0.0123 (9) 0.0131 (8) −0.0008 (7) 0.0005 (7) −0.0075 (7)
C3B 0.0111 (9) 0.0118 (8) 0.0115 (8) −0.0015 (7) −0.0005 (7) −0.0046 (7)
C4B 0.0120 (9) 0.0120 (8) 0.0128 (8) −0.0008 (7) 0.0012 (7) −0.0060 (7)
C5B 0.0136 (9) 0.0144 (9) 0.0128 (8) −0.0017 (7) 0.0026 (7) −0.0072 (7)
C6B 0.0149 (10) 0.0137 (9) 0.0167 (9) 0.0006 (7) 0.0012 (7) −0.0061 (7)
C7B 0.0213 (11) 0.0139 (9) 0.0151 (9) 0.0025 (8) −0.0003 (8) −0.0077 (7)
C8B 0.0314 (13) 0.0146 (10) 0.0207 (10) 0.0058 (9) −0.0015 (9) −0.0052 (8)
C9B 0.0279 (13) 0.0197 (11) 0.0213 (10) 0.0055 (9) 0.0072 (9) −0.0070 (8)
C10B 0.0278 (13) 0.0183 (10) 0.0254 (11) 0.0016 (9) −0.0080 (9) −0.0104 (9)
C11B 0.0182 (10) 0.0127 (9) 0.0156 (9) 0.0024 (8) −0.0023 (8) −0.0072 (7)
C12B 0.0392 (16) 0.0310 (13) 0.0356 (14) 0.0070 (11) −0.0154 (12) −0.0244 (11)
C13B 0.0234 (12) 0.0134 (10) 0.0259 (11) 0.0010 (8) 0.0008 (9) −0.0048 (8)
C14B 0.0283 (13) 0.0164 (10) 0.0272 (11) 0.0030 (9) 0.0100 (10) −0.0092 (9)
O1W 0.0225 (8) 0.0167 (7) 0.0140 (7) 0.0023 (6) 0.0011 (6) −0.0049 (5)
O2W 0.0174 (8) 0.0347 (9) 0.0155 (7) 0.0048 (7) 0.0001 (6) −0.0119 (6)
O3W 0.0190 (8) 0.0352 (9) 0.0148 (7) 0.0039 (7) −0.0031 (6) −0.0111 (6)
O4W 0.0209 (8) 0.0176 (7) 0.0162 (7) 0.0037 (6) −0.0026 (6) −0.0067 (6)

Geometric parameters (Å, °)

O1A—C1A 1.233 (3) N1B—C2B 1.422 (2)
O2A—C5A 1.247 (2) N1B—H1BA 0.86
O3A—C6A 1.226 (2) N2B—C4B 1.305 (3)
N1A—C1A 1.358 (2) N2B—C3B 1.372 (2)
N1A—C2A 1.426 (2) N3B—C4B 1.355 (2)
N1A—H1AA 0.86 N3B—C5B 1.397 (2)
N2A—C4A 1.302 (3) N3B—H3BA 0.86
N2A—C3A 1.372 (3) N4B—C6B 1.382 (3)
N3A—C4A 1.354 (2) N4B—C4B 1.382 (2)
N3A—C5A 1.403 (2) N4B—H4BA 0.86
N3A—H3AA 0.86 N5B—C3B 1.336 (2)
N4A—C6A 1.378 (3) N5B—H5BA 0.86
N4A—C4A 1.387 (2) N5B—H5BB 0.86
N4A—H4AA 0.86 C1B—C11B 1.529 (3)
N5A—C3A 1.335 (3) C2B—C3B 1.404 (3)
N5A—H5AA 0.86 C2B—C5B 1.407 (3)
N5A—H5AB 0.86 C6B—C7B 1.527 (3)
C1A—C11A 1.534 (3) C7B—C8B 1.533 (3)
C2A—C5A 1.403 (3) C7B—C10B 1.535 (3)
C2A—C3A 1.406 (3) C7B—C9B 1.539 (3)
C6A—C7A 1.531 (3) C8B—H8BA 0.96
C7A—C8A 1.527 (3) C8B—H8BB 0.96
C7A—C10A 1.538 (3) C8B—H8BC 0.96
C7A—C9A 1.538 (3) C9B—H9BA 0.96
C8A—H8AA 0.96 C9B—H9BB 0.96
C8A—H8AB 0.96 C9B—H9BC 0.96
C8A—H8AC 0.96 C10B—H10D 0.96
C9A—H9AA 0.96 C10B—H10E 0.96
C9A—H9AB 0.96 C10B—H10F 0.96
C9A—H9AC 0.96 C11B—C14B 1.527 (3)
C10A—H10A 0.96 C11B—C13B 1.536 (3)
C10A—H10B 0.96 C11B—C12B 1.537 (3)
C10A—H10C 0.96 C12B—H12D 0.96
C11A—C14A 1.526 (3) C12B—H12E 0.96
C11A—C13A 1.528 (3) C12B—H12F 0.96
C11A—C12A 1.539 (3) C13B—H13D 0.96
C12A—H12A 0.96 C13B—H13E 0.96
C12A—H12B 0.96 C13B—H13F 0.96
C12A—H12C 0.96 C14B—H14D 0.96
C13A—H13A 0.96 C14B—H14E 0.96
C13A—H13B 0.96 C14B—H14F 0.96
C13A—H13C 0.96 O1W—H1W1 0.87
C14A—H14A 0.96 O1W—H2W1 0.90
C14A—H14B 0.96 O2W—H1W2 0.87
C14A—H14C 0.96 O2W—H2W2 0.89
O1B—C1B 1.229 (3) O3W—H1W3 0.85
O2B—C5B 1.247 (2) O3W—H2W3 0.89
O3B—C6B 1.225 (3) O4W—H1W4 0.88
N1B—C1B 1.357 (3) O4W—H2W4 0.88
C1A—N1A—C2A 122.09 (17) C2B—N1B—H1BA 118.9
C1A—N1A—H1AA 119.0 C4B—N2B—C3B 116.57 (16)
C2A—N1A—H1AA 119.0 C4B—N3B—C5B 122.21 (17)
C4A—N2A—C3A 116.50 (16) C4B—N3B—H3BA 118.9
C4A—N3A—C5A 122.14 (17) C5B—N3B—H3BA 118.9
C4A—N3A—H3AA 118.9 C6B—N4B—C4B 126.21 (17)
C5A—N3A—H3AA 118.9 C6B—N4B—H4BA 116.9
C6A—N4A—C4A 126.41 (17) C4B—N4B—H4BA 116.9
C6A—N4A—H4AA 116.8 C3B—N5B—H5BA 120.0
C4A—N4A—H4AA 116.8 C3B—N5B—H5BB 120.0
C3A—N5A—H5AA 120.0 H5BA—N5B—H5BB 120.0
C3A—N5A—H5AB 120.0 O1B—C1B—N1B 121.35 (18)
H5AA—N5A—H5AB 120.0 O1B—C1B—C11B 119.82 (18)
O1A—C1A—N1A 120.91 (18) N1B—C1B—C11B 118.79 (18)
O1A—C1A—C11A 120.20 (18) C3B—C2B—C5B 119.80 (17)
N1A—C1A—C11A 118.84 (18) C3B—C2B—N1B 121.26 (17)
C5A—C2A—C3A 119.52 (17) C5B—C2B—N1B 118.87 (17)
C5A—C2A—N1A 119.35 (17) N5B—C3B—N2B 115.08 (17)
C3A—C2A—N1A 121.09 (17) N5B—C3B—C2B 122.54 (18)
N5A—C3A—N2A 114.99 (17) N2B—C3B—C2B 122.38 (17)
N5A—C3A—C2A 122.35 (18) N2B—C4B—N3B 124.38 (18)
N2A—C3A—C2A 122.64 (18) N2B—C4B—N4B 117.28 (17)
N2A—C4A—N3A 124.42 (18) N3B—C4B—N4B 118.33 (17)
N2A—C4A—N4A 117.21 (17) O2B—C5B—N3B 117.56 (18)
N3A—C4A—N4A 118.35 (17) O2B—C5B—C2B 127.85 (18)
O2A—C5A—N3A 117.72 (18) N3B—C5B—C2B 114.59 (17)
O2A—C5A—C2A 127.59 (18) O3B—C6B—N4B 122.21 (18)
N3A—C5A—C2A 114.70 (17) O3B—C6B—C7B 122.76 (19)
O3A—C6A—N4A 121.84 (18) N4B—C6B—C7B 115.02 (17)
O3A—C6A—C7A 123.05 (18) C6B—C7B—C8B 108.78 (17)
N4A—C6A—C7A 115.10 (17) C6B—C7B—C10B 109.49 (19)
C8A—C7A—C6A 108.48 (17) C8B—C7B—C10B 109.59 (19)
C8A—C7A—C10A 109.87 (19) C6B—C7B—C9B 109.57 (18)
C6A—C7A—C10A 109.06 (18) C8B—C7B—C9B 109.16 (19)
C8A—C7A—C9A 109.16 (19) C10B—C7B—C9B 110.22 (19)
C6A—C7A—C9A 109.61 (18) C7B—C8B—H8BA 109.5
C10A—C7A—C9A 110.63 (18) C7B—C8B—H8BB 109.5
C7A—C8A—H8AA 109.5 H8BA—C8B—H8BB 109.5
C7A—C8A—H8AB 109.5 C7B—C8B—H8BC 109.5
H8AA—C8A—H8AB 109.5 H8BA—C8B—H8BC 109.5
C7A—C8A—H8AC 109.5 H8BB—C8B—H8BC 109.5
H8AA—C8A—H8AC 109.5 C7B—C9B—H9BA 109.5
H8AB—C8A—H8AC 109.5 C7B—C9B—H9BB 109.5
C7A—C9A—H9AA 109.5 H9BA—C9B—H9BB 109.5
C7A—C9A—H9AB 109.5 C7B—C9B—H9BC 109.5
H9AA—C9A—H9AB 109.5 H9BA—C9B—H9BC 109.5
C7A—C9A—H9AC 109.5 H9BB—C9B—H9BC 109.5
H9AA—C9A—H9AC 109.5 C7B—C10B—H10D 109.5
H9AB—C9A—H9AC 109.5 C7B—C10B—H10E 109.5
C7A—C10A—H10A 109.5 H10D—C10B—H10E 109.5
C7A—C10A—H10B 109.5 C7B—C10B—H10F 109.5
H10A—C10A—H10B 109.5 H10D—C10B—H10F 109.5
C7A—C10A—H10C 109.5 H10E—C10B—H10F 109.5
H10A—C10A—H10C 109.5 C14B—C11B—C1B 114.60 (18)
H10B—C10A—H10C 109.5 C14B—C11B—C13B 109.37 (19)
C14A—C11A—C13A 109.63 (19) C1B—C11B—C13B 108.17 (17)
C14A—C11A—C1A 114.71 (17) C14B—C11B—C12B 109.6 (2)
C13A—C11A—C1A 107.86 (18) C1B—C11B—C12B 104.75 (18)
C14A—C11A—C12A 109.2 (2) C13B—C11B—C12B 110.2 (2)
C13A—C11A—C12A 110.5 (2) C11B—C12B—H12D 109.5
C1A—C11A—C12A 104.87 (18) C11B—C12B—H12E 109.5
C11A—C12A—H12A 109.5 H12D—C12B—H12E 109.5
C11A—C12A—H12B 109.5 C11B—C12B—H12F 109.5
H12A—C12A—H12B 109.5 H12D—C12B—H12F 109.5
C11A—C12A—H12C 109.5 H12E—C12B—H12F 109.5
H12A—C12A—H12C 109.5 C11B—C13B—H13D 109.5
H12B—C12A—H12C 109.5 C11B—C13B—H13E 109.5
C11A—C13A—H13A 109.5 H13D—C13B—H13E 109.5
C11A—C13A—H13B 109.5 C11B—C13B—H13F 109.5
H13A—C13A—H13B 109.5 H13D—C13B—H13F 109.5
C11A—C13A—H13C 109.5 H13E—C13B—H13F 109.5
H13A—C13A—H13C 109.5 C11B—C14B—H14D 109.5
H13B—C13A—H13C 109.5 C11B—C14B—H14E 109.5
C11A—C14A—H14A 109.5 H14D—C14B—H14E 109.5
C11A—C14A—H14B 109.5 C11B—C14B—H14F 109.5
H14A—C14A—H14B 109.5 H14D—C14B—H14F 109.5
C11A—C14A—H14C 109.5 H14E—C14B—H14F 109.5
H14A—C14A—H14C 109.5 H1W1—O1W—H2W1 93.9
H14B—C14A—H14C 109.5 H1W2—O2W—H2W2 100.6
C1B—N1B—C2B 122.25 (17) H1W3—O3W—H2W3 103.4
C1B—N1B—H1BA 118.9 H1W4—O4W—H2W4 100.7
C2A—N1A—C1A—O1A −0.1 (3) C2B—N1B—C1B—O1B 0.7 (3)
C2A—N1A—C1A—C11A 177.39 (17) C2B—N1B—C1B—C11B −177.27 (17)
C1A—N1A—C2A—C5A −106.0 (2) C1B—N1B—C2B—C3B −70.7 (3)
C1A—N1A—C2A—C3A 71.8 (3) C1B—N1B—C2B—C5B 106.3 (2)
C4A—N2A—C3A—N5A 178.46 (18) C4B—N2B—C3B—N5B −178.07 (18)
C4A—N2A—C3A—C2A −2.9 (3) C4B—N2B—C3B—C2B 2.5 (3)
C5A—C2A—C3A—N5A 179.67 (19) C5B—C2B—C3B—N5B −179.83 (19)
N1A—C2A—C3A—N5A 1.9 (3) N1B—C2B—C3B—N5B −2.9 (3)
C5A—C2A—C3A—N2A 1.2 (3) C5B—C2B—C3B—N2B −0.4 (3)
N1A—C2A—C3A—N2A −176.57 (19) N1B—C2B—C3B—N2B 176.56 (18)
C3A—N2A—C4A—N3A 2.1 (3) C3B—N2B—C4B—N3B −2.3 (3)
C3A—N2A—C4A—N4A −176.13 (18) C3B—N2B—C4B—N4B 176.55 (17)
C5A—N3A—C4A—N2A 0.5 (3) C5B—N3B—C4B—N2B 0.0 (3)
C5A—N3A—C4A—N4A 178.75 (18) C5B—N3B—C4B—N4B −178.80 (18)
C6A—N4A—C4A—N2A 172.1 (2) C6B—N4B—C4B—N2B −172.0 (2)
C6A—N4A—C4A—N3A −6.3 (3) C6B—N4B—C4B—N3B 6.9 (3)
C4A—N3A—C5A—O2A 177.46 (19) C4B—N3B—C5B—O2B −178.21 (19)
C4A—N3A—C5A—C2A −2.3 (3) C4B—N3B—C5B—C2B 2.0 (3)
C3A—C2A—C5A—O2A −178.3 (2) C3B—C2B—C5B—O2B 178.5 (2)
N1A—C2A—C5A—O2A −0.5 (3) N1B—C2B—C5B—O2B 1.4 (3)
C3A—C2A—C5A—N3A 1.4 (3) C3B—C2B—C5B—N3B −1.8 (3)
N1A—C2A—C5A—N3A 179.19 (17) N1B—C2B—C5B—N3B −178.80 (17)
C4A—N4A—C6A—O3A 12.3 (3) C4B—N4B—C6B—O3B −12.1 (3)
C4A—N4A—C6A—C7A −166.52 (19) C4B—N4B—C6B—C7B 167.13 (19)
O3A—C6A—C7A—C8A −1.9 (3) O3B—C6B—C7B—C8B 2.4 (3)
N4A—C6A—C7A—C8A 176.91 (19) N4B—C6B—C7B—C8B −176.8 (2)
O3A—C6A—C7A—C10A −121.5 (2) O3B—C6B—C7B—C10B 122.1 (2)
N4A—C6A—C7A—C10A 57.3 (2) N4B—C6B—C7B—C10B −57.1 (2)
O3A—C6A—C7A—C9A 117.2 (2) O3B—C6B—C7B—C9B −116.9 (2)
N4A—C6A—C7A—C9A −64.0 (2) N4B—C6B—C7B—C9B 63.9 (2)
O1A—C1A—C11A—C14A −173.80 (19) O1B—C1B—C11B—C14B 175.6 (2)
N1A—C1A—C11A—C14A 8.7 (3) N1B—C1B—C11B—C14B −6.4 (3)
O1A—C1A—C11A—C13A −51.3 (3) O1B—C1B—C11B—C13B 53.3 (3)
N1A—C1A—C11A—C13A 131.2 (2) N1B—C1B—C11B—C13B −128.7 (2)
O1A—C1A—C11A—C12A 66.4 (3) O1B—C1B—C11B—C12B −64.3 (2)
N1A—C1A—C11A—C12A −111.1 (2) N1B—C1B—C11B—C12B 113.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4A—H4AA···O1Wi 0.86 2.07 2.918 (2) 167
N4B—H4BA···O4Wii 0.86 2.08 2.920 (2) 166
N5B—H5BA···O4Wiii 0.86 2.32 3.160 (2) 166
N5B—H5BB···O1Aiv 0.86 2.09 2.861 (2) 149
O1W—H1W1···O2Wv 0.87 2.00 2.857 (2) 167
O1W—H2W1···O2Wvi 0.90 1.92 2.819 (2) 178
O2W—H2W2···O2Bv 0.89 1.96 2.824 (2) 162
O3W—H1W3···O2Aiii 0.86 1.91 2.722 (2) 158
O3W—H2W3···O2Avii 0.89 1.97 2.833 (2) 162
O4W—H1W4···O3Wviii 0.88 1.99 2.865 (2) 174
N3A—H3AA···O3A 0.86 1.98 2.633 (2) 132
N5A—H5AA···O1W 0.86 2.32 3.163 (2) 167
N5A—H5AB···O1B 0.86 2.08 2.854 (2) 149
N3B—H3BA···O3B 0.86 1.97 2.632 (2) 132
O2W—H1W2···O2B 0.87 1.91 2.717 (2) 154
O4W—H2W4···O3W 0.88 1.93 2.811 (2) 173
C14A—H14A···O1B 0.96 2.53 3.355 (3) 144

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x, y−1, z; (iii) −x+1, −y+1, −z; (iv) x−1, y, z; (v) −x+1, −y, −z+1; (vi) x+1, y, z; (vii) x−1, y+1, z; (viii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2809).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Blackburn, G. M. & Gait, M. J. (1996). In Nucleic Acids in Chemistry and Biology Oxford and New York: Oxford University Press.
  4. Brown, D. J. (1988). Fused Pyrimidines: the Chemistry of Heterocyclic Compounds, Vol. 24, p. 3. New York: John Wiley and Sons.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  7. Goswami, S., Jana, S., Dey, S. & Adak, A. K. (2007). Aust. J. Chem.60, 120–123.
  8. Lednicer, D. & Mitscher, L. A. (1977). The Organic Chemistry of Drug Synthesis, Vols. 1, 2, 3 and 4. New York: John Wiley and Sons.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. VanAllan, J. A. (1976). Organic Syntheses, Coll. Vol. 4, p. 245. New York, Chichester, Brisbane, Toronto, Singapore. John Wiley & Sons, Inc.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019461/ci2809sup1.cif

e-65-o1484-sup1.cif (31.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019461/ci2809Isup2.hkl

e-65-o1484-Isup2.hkl (504.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES