Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 17;65(Pt 7):o1599. doi: 10.1107/S1600536809022181

(E)-2-[2-(4-Fluoro­benzyl­idene)hydrazinocarbon­yl]-N-isopropyl­benzamide

Ming Liu a,*, Yousheng Duan a, Yi Wang a, Wen-Xiong Zhang b, Shangzhong Liu a
PMCID: PMC2969323  PMID: 21582873

Abstract

The title compound, C18H18FN3O2, adopts a trans conformation with respect to the C=N double bond. The dihedral angle between the two benzene rings is: 59.73 (6)°. Two independent N—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (101).

Related literature

For biologically active phthalic diamides, see: Coronado et al. (1994); Tohnishi et al. (2000). For the preparation of the title compound, see: Zaky (2002); Shigeru et al. (2003).graphic file with name e-65-o1599-scheme1.jpg

Experimental

Crystal data

  • C18H18FN3O2

  • M r = 327.35

  • Monoclinic, Inline graphic

  • a = 13.316 (3) Å

  • b = 8.8904 (18) Å

  • c = 14.102 (3) Å

  • β = 91.10 (3)°

  • V = 1669.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.30 × 0.30 × 0.30 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi,1995) T min = 0.944, T max = 0.972

  • 15335 measured reflections

  • 3833 independent reflections

  • 2302 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.069

  • S = 1.02

  • 3833 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Molecular Structure Corporation and Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022181/ya2090sup1.cif

e-65-o1599-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022181/ya2090Isup2.hkl

e-65-o1599-Isup2.hkl (187.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O2i 0.875 (15) 2.127 (15) 2.9887 (16) 168.4 (14)
N1—H2⋯O1ii 0.850 (15) 1.976 (15) 2.8256 (16) 177.8 (15)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20572129), National Basic Research Program of China (2003CB114405) and National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China (No. 2006BAE01AE01–11).

supplementary crystallographic information

Comment

Phthalic diamides possess insecticidal properties due to their ability to activate ryanodine receptor (Coronado et al., 1994; Tohnishi et al., 2000). The title compound (I), a new phthalic diamide derivative, was synthesized by the condensation of N-aminophthalimide with 4-fluorobenzaldehyde followed by a ring-opening reaction using isopropyl amine (Zaky, 2002; Shigeru et al., 2003).

The molecular structure of the title compound is shown in Fig. 1. Molecule was proved to be a trans -isomer with respect to the C9=N2 double bond.

There are two independent N—H···O bonds (Table 1), which link molecules into the layers parallel to (101) plane (Fig. 2).

Experimental

To a solution of N-aminophthalimide (1.62 g, 10 mmol) and 4-fluorobenzaldehyde (1.24 g, 10 mmol) in 1,4-dioxane (100 ml), 12 N HCl (0.1 ml) was added at room temperature. After stirring for 5–10 min, a solution of isopropyl amine (1.16 g, 20 mmol) in 1,4-dioxane (10 ml) was added; the reaction mixture was stirred overnight at room temperature. After the solvent was evaporated under reduced pressure, the resulting mixture was dissolved in ethyl acetate (80 ml), washed with H2O (3×30 ml) and dried with anhydrous sodium sulfate to give the title compound (2.01 g, 61.5%). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of ethanol solution at room temperature over one week.

Refinement

The H atoms bound to N atoms were located in a difference Fourier map and refined isotropically [N—H 0.850 (15), 0.875 (15) Å]. The remaining H atoms were positioned geometrically and included in the refinement in riding model approximation with C—H 0.95 (aromatic), 0.98 (methyl), 1.00 (methyne), and Uiso(H) = 1.2Ueq(C)[1.5Ueq(C) for methyl H atoms].

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I); displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small circles of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed along the [101] direction; hydrogen bonds are shown as dashed lines.

Crystal data

C18H18FN3O2 F(000) = 688
Mr = 327.35 Dx = 1.303 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 15335 reflections
a = 13.316 (3) Å θ = 2.1–27.5°
b = 8.8904 (18) Å µ = 0.09 mm1
c = 14.102 (3) Å T = 123 K
β = 91.10 (3)° Block, colourless
V = 1669.2 (6) Å3 0.30 × 0.30 × 0.30 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer 3833 independent reflections
Radiation source: fine-focus sealed tube 2302 reflections with I > 2σ(I)
graphite Rint = 0.046
Detector resolution: 10.00 pixels mm-1 θmax = 27.5°, θmin = 2.1°
Ω scans h = −17→17
Absorption correction: multi-scan (ABSCOR; Higashi,1995) k = −11→11
Tmin = 0.944, Tmax = 0.972 l = −18→18
15335 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.015P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3833 reflections Δρmax = 0.24 e Å3
228 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0285 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.62786 (10) 0.87434 (17) 0.48465 (10) 0.0197 (3)
C2 0.70864 (10) 0.80962 (16) 0.29308 (10) 0.0179 (3)
C3 0.72241 (10) 0.78555 (15) 0.47071 (10) 0.0168 (3)
C4 0.76143 (10) 0.75512 (15) 0.38154 (10) 0.0162 (3)
C5 0.85500 (10) 0.68578 (15) 0.37629 (10) 0.0197 (3)
H5 0.8819 0.6634 0.3160 0.024*
C6 0.90921 (11) 0.64909 (16) 0.45774 (11) 0.0228 (4)
H6 0.9739 0.6050 0.4531 0.027*
C7 0.86928 (10) 0.67651 (16) 0.54567 (11) 0.0236 (4)
H7 0.9057 0.6494 0.6017 0.028*
C8 0.77595 (10) 0.74366 (16) 0.55190 (10) 0.0216 (4)
H8 0.7482 0.7613 0.6124 0.026*
C9 0.44987 (11) 0.65483 (17) 0.36494 (10) 0.0222 (4)
H9 0.3990 0.7297 0.3628 0.027*
C10 0.43139 (10) 0.50842 (17) 0.32041 (10) 0.0215 (4)
C11 0.35688 (11) 0.49509 (19) 0.24980 (11) 0.0299 (4)
H11 0.3173 0.5803 0.2331 0.036*
C12 0.33975 (12) 0.3594 (2) 0.20378 (12) 0.0384 (5)
H12 0.2904 0.3510 0.1545 0.046*
C13 0.39601 (13) 0.2385 (2) 0.23155 (12) 0.0366 (5)
C14 0.46863 (12) 0.24391 (18) 0.30209 (11) 0.0307 (4)
H14 0.5053 0.1565 0.3202 0.037*
C15 0.48647 (11) 0.38099 (17) 0.34587 (11) 0.0237 (4)
H15 0.5371 0.3882 0.3940 0.028*
C16 0.66213 (10) 0.75633 (16) 0.12683 (10) 0.0221 (4)
H16 0.6111 0.8369 0.1373 0.027*
C17 0.60856 (12) 0.61917 (18) 0.08583 (11) 0.0326 (4)
H17A 0.6574 0.5385 0.0758 0.049*
H17B 0.5762 0.6458 0.0251 0.049*
H17C 0.5576 0.5848 0.1301 0.049*
C18 0.74105 (11) 0.81707 (18) 0.05991 (11) 0.0311 (4)
H18A 0.7736 0.9053 0.0886 0.047*
H18B 0.7087 0.8457 −0.0004 0.047*
H18C 0.7915 0.7392 0.0486 0.047*
F1 0.37958 (8) 0.10376 (12) 0.18747 (7) 0.0603 (4)
N1 0.53997 (9) 0.82179 (14) 0.44990 (9) 0.0204 (3)
N2 0.53387 (8) 0.68275 (13) 0.40673 (8) 0.0196 (3)
N3 0.70850 (9) 0.71718 (14) 0.21866 (9) 0.0214 (3)
O1 0.63114 (7) 0.99350 (11) 0.53105 (7) 0.0257 (3)
O2 0.66866 (7) 0.93655 (11) 0.29200 (7) 0.0217 (3)
H1 0.7381 (11) 0.6294 (17) 0.2210 (11) 0.038 (5)*
H2 0.4879 (11) 0.8765 (18) 0.4542 (10) 0.039 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0210 (8) 0.0190 (8) 0.0193 (9) −0.0014 (7) 0.0050 (6) 0.0005 (7)
C2 0.0172 (8) 0.0152 (8) 0.0215 (9) −0.0017 (7) 0.0023 (6) 0.0018 (7)
C3 0.0184 (7) 0.0108 (7) 0.0214 (8) −0.0035 (6) 0.0021 (6) −0.0015 (6)
C4 0.0178 (8) 0.0110 (7) 0.0197 (8) −0.0028 (6) 0.0009 (6) 0.0006 (7)
C5 0.0210 (8) 0.0172 (8) 0.0210 (9) −0.0002 (7) 0.0043 (6) −0.0024 (7)
C6 0.0191 (8) 0.0187 (8) 0.0305 (10) 0.0035 (7) −0.0017 (7) 0.0004 (7)
C7 0.0258 (8) 0.0215 (8) 0.0233 (9) −0.0006 (7) −0.0052 (7) 0.0030 (7)
C8 0.0260 (8) 0.0222 (8) 0.0168 (8) −0.0028 (7) 0.0026 (6) −0.0006 (7)
C9 0.0184 (8) 0.0221 (9) 0.0262 (9) 0.0009 (7) 0.0017 (7) 0.0001 (7)
C10 0.0181 (8) 0.0267 (9) 0.0197 (9) −0.0052 (7) 0.0038 (6) −0.0024 (7)
C11 0.0228 (9) 0.0406 (10) 0.0264 (10) −0.0045 (8) −0.0005 (7) −0.0008 (8)
C12 0.0292 (10) 0.0578 (13) 0.0284 (11) −0.0181 (10) 0.0031 (8) −0.0149 (10)
C13 0.0406 (11) 0.0358 (11) 0.0339 (11) −0.0211 (9) 0.0180 (8) −0.0213 (9)
C14 0.0332 (10) 0.0252 (9) 0.0343 (10) −0.0042 (8) 0.0161 (8) −0.0049 (8)
C15 0.0219 (8) 0.0259 (9) 0.0235 (9) −0.0045 (7) 0.0056 (7) −0.0009 (8)
C16 0.0262 (9) 0.0204 (8) 0.0197 (9) 0.0081 (7) −0.0045 (7) −0.0010 (7)
C17 0.0368 (10) 0.0280 (9) 0.0326 (10) 0.0038 (8) −0.0088 (8) −0.0045 (8)
C18 0.0387 (10) 0.0294 (9) 0.0253 (10) 0.0072 (8) 0.0010 (7) 0.0025 (8)
F1 0.0638 (7) 0.0548 (7) 0.0630 (8) −0.0279 (6) 0.0211 (6) −0.0401 (6)
N1 0.0160 (7) 0.0170 (7) 0.0283 (8) 0.0009 (6) 0.0017 (6) −0.0049 (6)
N2 0.0213 (7) 0.0164 (6) 0.0211 (7) −0.0029 (6) 0.0028 (5) −0.0033 (6)
N3 0.0283 (8) 0.0166 (7) 0.0192 (7) 0.0067 (6) −0.0036 (6) −0.0018 (6)
O1 0.0229 (6) 0.0202 (6) 0.0340 (7) −0.0007 (5) 0.0037 (5) −0.0103 (5)
O2 0.0267 (6) 0.0135 (5) 0.0247 (6) 0.0028 (5) 0.0004 (5) 0.0015 (5)

Geometric parameters (Å, °)

C1—O1 1.2455 (16) C11—H11 0.9500
C1—N1 1.3438 (18) C12—C13 1.363 (2)
C1—C3 1.5022 (19) C12—H12 0.9500
C2—O2 1.2476 (16) C13—F1 1.3656 (18)
C2—N3 1.3330 (18) C13—C14 1.375 (2)
C2—C4 1.500 (2) C14—C15 1.385 (2)
C3—C8 1.3879 (19) C14—H14 0.9500
C3—C4 1.3964 (19) C15—H15 0.9500
C4—C5 1.3934 (18) C16—N3 1.4658 (18)
C5—C6 1.3836 (19) C16—C17 1.521 (2)
C5—H5 0.9500 C16—C18 1.5247 (19)
C6—C7 1.380 (2) C16—H16 1.0000
C6—H6 0.9500 C17—H17A 0.9800
C7—C8 1.3831 (18) C17—H17B 0.9800
C7—H7 0.9500 C17—H17C 0.9800
C8—H8 0.9500 C18—H18A 0.9800
C9—N2 1.2786 (17) C18—H18B 0.9800
C9—C10 1.464 (2) C18—H18C 0.9800
C9—H9 0.9500 N1—N2 1.3796 (16)
C10—C15 1.393 (2) N1—H2 0.850 (15)
C10—C11 1.3972 (19) N3—H1 0.875 (15)
C11—C12 1.386 (2)
O1—C1—N1 120.58 (13) C11—C12—H12 121.1
O1—C1—C3 119.65 (13) C12—C13—F1 118.60 (17)
N1—C1—C3 119.72 (13) C12—C13—C14 123.75 (16)
O2—C2—N3 123.63 (14) F1—C13—C14 117.65 (18)
O2—C2—C4 119.68 (13) C13—C14—C15 117.74 (17)
N3—C2—C4 116.68 (13) C13—C14—H14 121.1
C8—C3—C4 119.79 (13) C15—C14—H14 121.1
C8—C3—C1 116.84 (13) C14—C15—C10 121.07 (15)
C4—C3—C1 123.16 (13) C14—C15—H15 119.5
C5—C4—C3 118.82 (13) C10—C15—H15 119.5
C5—C4—C2 120.26 (13) N3—C16—C17 109.39 (12)
C3—C4—C2 120.64 (12) N3—C16—C18 110.32 (12)
C6—C5—C4 120.86 (14) C17—C16—C18 111.86 (13)
C6—C5—H5 119.6 N3—C16—H16 108.4
C4—C5—H5 119.6 C17—C16—H16 108.4
C7—C6—C5 120.02 (14) C18—C16—H16 108.4
C7—C6—H6 120.0 C16—C17—H17A 109.5
C5—C6—H6 120.0 C16—C17—H17B 109.5
C6—C7—C8 119.69 (14) H17A—C17—H17B 109.5
C6—C7—H7 120.2 C16—C17—H17C 109.5
C8—C7—H7 120.2 H17A—C17—H17C 109.5
C7—C8—C3 120.76 (13) H17B—C17—H17C 109.5
C7—C8—H8 119.6 C16—C18—H18A 109.5
C3—C8—H8 119.6 C16—C18—H18B 109.5
N2—C9—C10 120.58 (14) H18A—C18—H18B 109.5
N2—C9—H9 119.7 C16—C18—H18C 109.5
C10—C9—H9 119.7 H18A—C18—H18C 109.5
C15—C10—C11 118.54 (15) H18B—C18—H18C 109.5
C15—C10—C9 121.96 (14) C1—N1—N2 121.06 (13)
C11—C10—C9 119.49 (14) C1—N1—H2 118.7 (11)
C12—C11—C10 121.04 (16) N2—N1—H2 120.2 (11)
C12—C11—H11 119.5 C9—N2—N1 114.89 (12)
C10—C11—H11 119.5 C2—N3—C16 122.92 (13)
C13—C12—C11 117.83 (16) C2—N3—H1 121.8 (10)
C13—C12—H12 121.1 C16—N3—H1 115.3 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1···O2i 0.875 (15) 2.127 (15) 2.9887 (16) 168.4 (14)
N1—H2···O1ii 0.850 (15) 1.976 (15) 2.8256 (16) 177.8 (15)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2090).

References

  1. Coronado, R., Morrissette, J., Sukhareva, M. & Vaughan, D. M. (1994). Am. J. Physiol.266, 1485–1504. [DOI] [PubMed]
  2. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  3. Molecular Structure Corporation and Rigaku (2000). CrystalStructure MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  4. Rigaku (2000). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shigeru, N., Takeshi, S., Etsuko, M. & Yasuo, K. (2003). Synth. Commun.33, 87–98.
  7. Tohnishi, M., Nakao, H., Kohno, E., Nishida, T., Furuya, T., Shimizu, T., Seo, A., Sakata, K., Fujioka, S. & Kanno, H. (2000). Eur. Patent No. EP1006107.
  8. Zaky, H. T. (2002). Heterocycl. Commun 8, 355–360.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022181/ya2090sup1.cif

e-65-o1599-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022181/ya2090Isup2.hkl

e-65-o1599-Isup2.hkl (187.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES