Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):m797–m798. doi: 10.1107/S1600536809022612

Diaqua­bis(ethyl­enediamine-κ2 N,N′)copper(II) 2,2′-dithio­dinicotinate sesquihydrate

Turan Kaya Yazicilar a, Serkan Demir a, Ibrahim Uçar b,*, Canan Kazak a
PMCID: PMC2969337  PMID: 21582723

Abstract

In the title compound, [Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2O, there are two half-molecules of the cationic complex in the asymmetric unit. The Cu2+ ions lie on inversion centres and are octa­hedrally coordinated by two ethyl­enediamine (en) and two aqua ligands in a typical Jahn–Teller distorted environment with the water O atoms in the axial positions. Two 2-mercaptonicotinate units (mnic) are linked by a disulfide bridge. All the ethyl­enediamine N—H and O—H groups form inter­molecular hydrogen bonds with acceptor O and N atoms, giving rise to a three-dimensional network. One of the uncoordinated water molecules has a site occupation factor of 0.5.

Related literature

For the oxidation of thiols to disulfides, see: Yiannos & Karaninos (1963); Chowdhury et al. (1994); Yamamoto & Sekine (1984). For metal-organic disulfide salts, see: Briansó et al. (1981); Casals et al. (1987). For related structures, see: Kazak et al. (2004); Harrison et al. (2007). Cargill Thompson et al. (1997). graphic file with name e-65-0m797-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2O

  • M r = 552.14

  • Triclinic, Inline graphic

  • a = 8.8302 (9) Å

  • b = 11.5975 (11) Å

  • c = 11.7132 (11) Å

  • α = 95.800 (8)°

  • β = 101.703 (8)°

  • γ = 93.493 (8)°

  • V = 1164.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 297 K

  • 0.35 × 0.20 × 0.15 mm

Data collection

  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2002) T min = 0.540, T max = 0.751

  • 17957 measured reflections

  • 4964 independent reflections

  • 4034 reflections with I > 2σ(I)

  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.088

  • S = 1.02

  • 4964 reflections

  • 333 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022612/hg2515sup1.cif

e-65-0m797-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022612/hg2515Isup2.hkl

e-65-0m797-Isup2.hkl (238.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N1 2.0053 (19)
Cu1—N2 2.0155 (18)
Cu2—N3 2.0148 (19)
Cu2—N4 2.0248 (18)
Cu1—O1W 2.702 (2)
Cu2—O2W 2.499 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.90 2.25 3.084 (3) 154
N1—H1B⋯O3 0.90 2.48 3.138 (3) 130
N2—H2A⋯O3Wii 0.90 2.38 3.213 (3) 154
N2—H2B⋯O4iii 0.90 2.59 3.345 (4) 142
N4—H4B⋯O2iv 0.90 2.27 3.116 (3) 157
O1W—H2W⋯O2v 0.847 (17) 1.925 (18) 2.771 (2) 175 (3)
O1W—H1W⋯O3W 0.803 (17) 2.095 (18) 2.892 (3) 172 (3)
O2W—H3W⋯O4iii 0.820 (18) 1.95 (2) 2.712 (3) 154 (4)
O2W—H4W⋯O1vi 0.830 (17) 2.079 (18) 2.897 (3) 168 (3)
O3W—H5W⋯O1vi 0.828 (18) 2.025 (19) 2.838 (3) 167 (3)
O3W—H6W⋯O3vii 0.841 (18) 1.980 (19) 2.812 (2) 170 (3)
N3—H3A⋯O4W 0.87 (4) 2.42 (3) 3.045 (4) 129 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors acknowledge the Ondokuz Mayis University Research Fund for financial support through project No. F-416.

supplementary crystallographic information

Comment

As is well known, many oxidizing agents, such as nitric acid, hydrogen peroxide, oxygen, dimethyl sulfoxide and potassium ferricyanide, can oxidize thiols to disulfides (Yiannos & Karaninos, 1963). In several cases, the thiol-to-disulfide conversion can also be quickly completed via oxygen in the presence of certain metal ions (Chowdhury et al., 1994; Yamamoto & Sekine, 1984). In the present case, the formation of the mnic-mnic (mnic: 2-mercaptonicotinate) dianion may be due to the oxidation of mnic via oxygen in the presence of Cu(II). It was of interest to determine the structure of the title compound, as there are a limited number of documented metal-organic disulfide salts (Briansó et al., 1981; Casals et al., 1987). Here, we report the crystal structure of the title compound, (I).

The asymmetric unit of compound (I) contains two crystallographically independent half-complexes in which the ethylenediamine (en) ligands, aqua ligands, 2-mercaptonicotinate anions and water molecules occupy general positions, whereas the Cu(II) ions are located on centres of inversion. In the crystal structure of the title compound, (I), the Cu(II) ions are coordinated by four N atoms of en ligands, forming a slightly distorted square plane. The Cu—N distances of 2.005 (2), 2.016 (2), 2.025 (2), and 2.015 (2)Å are comparable to those in other ethylenediamine-copper(II) complexes, such as trans-Bis(ethylenediamine)bis(p-nitrobenzoxasulfamato)copper(II) (Kazak et al., 2004), Diaquabis(ethylenediamine) copper(II) bis(4-nitrobenzoate) (Harrison et al., 2007), The coordination sphere of the Cu(II)ions is completed by two longer contacts to two symmetry equivalent aqua ligands located above and below the tetragonal plane. The Cu—Ow distances of 2.702 (2)Å (Cu1—O1) and 2.499 (2)Å (Cu2—O2) are strongly elongated due to Jahn-Teller distortion and the coordination polyhedra around the Cu(II) ions can be described as significantly distorted octahedral.

The mnic-mnic dianion acts as a counter anion in title compound. The torsion angle about the S—S bond [C6—S1—S2—C11] is 81.98 (9)°, which is larger than those reported in L—L (76.5°) [Ag(L—L)](PF6) {L—L= 2,2'-bis[6-(2,2'-bipyridyl)]diphenyldisulfide, (Cargill Thompson et al., 1997)}. The S—S bond length is 2.0352 (8) Å, which is comparable with those observed in [C5H9NH(CH3)S]2[CuCl4] [2.02 (2) Å; (Briansó et al., 1981)], [{(CH3)2NH(CH2)3S}2] [CdBr4] [2.013 (3) Å; (Casals et al., 1987)].

The crystal packing of (I) is formed via interesting intermolecular hydrogen bonding interactions. It can be seen from Fig. 2 that two complex cations and two dianions are joined to each other by N—H···O and O—H···O hydrogen bonds (Table 2), which lead to three dimensional extended network in the unitcell.

Experimental

2-mercaptonicotinic acid (0.31 g, 2 mmol) (HMNA) was added into a solution of Cu(II)Cl2.2H2O (0.17 g, 1 mmol) in ethanol (40 ml). After stirring for 30 min, ethylenediamine (0.12 g, 2 mm l) was added into solutions of these compounds, under stirring, and mixtures were allowed to stand at room temperature. After a few days, well formed purple crystals were selected for X-ray studies.

Refinement

H atoms attached to C and ethylenediamine N atoms were placed at calculated positions (C—H=0.93, 0.97 Å; N—H= 0.90 Å) and were allowed to ride on the parent atom [Uiso(H)=1.2eq(C) and Uiso(H)=1.2eq(N)]. The remaining H atoms were located in a difference map. At this stage, the maximum difference density of 3.76 e Å-3 indicated the presence of a possible atom site. A check of the solvent-accessible volume using PLATON (Spek, 2009) showed a total potential volume of 14.6 Å3. Attempts to refine this peak as a water O atom (O4W) resulted in a partial occupancy of 0.5. H atoms attached to O4W were not located.

Figures

Fig. 1.

Fig. 1.

: ORTEPIII (Burnett & Johnson, 1996) plot of the copper(II) complex. Non-H atoms are drawn with displacement ellipsoids at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Water molecules are omitted for the clarity. [Symmetry codes: (i) -x, -y, 1 - z; (ii) 1 - x, -y, -z]

Fig. 2.

Fig. 2.

: Showing of intermolecular hydrogen bonding interactions (dashed lines) in the unitcell.

Crystal data

[Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2O Z = 2
Mr = 552.14 F(000) = 574.0
Triclinic, P1 Dx = 1.575 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 8.8302 (9) Å Cell parameters from 12659 reflections
b = 11.5975 (11) Å θ = 1.8–27.0°
c = 11.7132 (11) Å µ = 1.17 mm1
α = 95.800 (8)° T = 297 K
β = 101.703 (8)° Prism, blue
γ = 93.493 (8)° 0.35 × 0.20 × 0.15 mm
V = 1164.5 (2) Å3

Data collection

Stoe IPDS-2 diffractometer 4964 independent reflections
Radiation source: fine-focus sealed tube 4034 reflections with I > 2σ(I)
graphite Rint = 0.082
Detector resolution: 6.67 pixels mm-1 θmax = 26.8°, θmin = 1.8°
ω scans h = −11→11
Absorption correction: integration (X-RED; Stoe & Cie, 2002) k = −14→14
Tmin = 0.540, Tmax = 0.751 l = −14→14
17957 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.052P)2] where P = (Fo2 + 2Fc2)/3
4964 reflections (Δ/σ)max < 0.001
333 parameters Δρmax = 0.51 e Å3
6 restraints Δρmin = −0.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.0000 0.0000 0.5000 0.04125 (11)
Cu2 0.5000 0.0000 0.0000 0.03352 (10)
C1 0.1188 (3) 0.2239 (2) 0.4661 (2) 0.0450 (5)
H1C 0.2207 0.2211 0.5155 0.054*
H1D 0.1026 0.3042 0.4548 0.054*
C2 0.1061 (3) 0.1519 (2) 0.3502 (2) 0.0423 (5)
H2C 0.0080 0.1608 0.2982 0.051*
H2D 0.1896 0.1764 0.3132 0.051*
C3 0.4528 (3) 0.2196 (2) −0.0834 (3) 0.0594 (7)
H3C 0.3833 0.2806 −0.0981 0.071*
H3D 0.5142 0.2150 −0.1433 0.071*
C4 0.4437 (4) −0.2470 (2) −0.0345 (3) 0.0633 (7)
H4C 0.5049 −0.2639 −0.0933 0.076*
H4D 0.3731 −0.3147 −0.0356 0.076*
C5 0.4242 (2) 0.61714 (17) 0.65562 (17) 0.0306 (4)
C6 0.3127 (2) 0.53935 (17) 0.68329 (17) 0.0311 (4)
C7 0.4656 (3) 0.3882 (2) 0.6739 (2) 0.0415 (5)
H7 0.4796 0.3101 0.6798 0.050*
C8 0.5823 (2) 0.4564 (2) 0.6463 (2) 0.0418 (5)
H8 0.6735 0.4257 0.6346 0.050*
C9 0.5602 (2) 0.5710 (2) 0.63653 (18) 0.0366 (4)
H9 0.6371 0.6189 0.6169 0.044*
C10 0.4048 (2) 0.74330 (18) 0.64540 (18) 0.0343 (4)
C11 0.0755 (2) 0.40673 (18) 0.86336 (18) 0.0331 (4)
C12 0.0124 (2) 0.30855 (19) 0.90351 (18) 0.0358 (4)
C13 0.0685 (3) 0.2922 (2) 1.0193 (2) 0.0470 (5)
H13 0.0294 0.2284 1.0496 0.056*
C14 0.1820 (3) 0.3696 (2) 1.0903 (2) 0.0544 (6)
H14 0.2197 0.3598 1.1685 0.065*
C15 0.2366 (3) 0.4609 (2) 1.0415 (2) 0.0538 (6)
H15 0.3140 0.5130 1.0886 0.065*
C16 −0.1116 (3) 0.2227 (2) 0.8278 (2) 0.0442 (5)
N1 −0.0025 (2) 0.17358 (16) 0.52101 (17) 0.0433 (4)
H1A −0.0961 0.1943 0.4869 0.052*
H1B 0.0163 0.2000 0.5979 0.052*
N2 0.1161 (2) 0.02998 (17) 0.37308 (17) 0.0422 (4)
H2A 0.2162 0.0158 0.3960 0.051*
H2B 0.0746 −0.0176 0.3071 0.051*
N3 0.3630 (2) 0.10872 (18) −0.08804 (19) 0.0421 (4)
N4 0.3548 (2) −0.14487 (17) −0.06077 (17) 0.0417 (4)
H4A 0.2733 −0.1449 −0.0254 0.050*
H4B 0.3189 −0.1473 −0.1387 0.050*
N5 0.3322 (2) 0.42816 (16) 0.69298 (18) 0.0401 (4)
N6 0.1866 (2) 0.48064 (17) 0.93068 (18) 0.0454 (4)
O1 0.51047 (19) 0.80272 (15) 0.61677 (16) 0.0499 (4)
O2 0.28373 (18) 0.78292 (14) 0.66900 (16) 0.0470 (4)
O1W 0.2788 (2) 0.01895 (16) 0.65012 (16) 0.0467 (4)
O3 −0.16845 (19) 0.24297 (16) 0.72768 (16) 0.0533 (4)
O2W 0.3687 (2) 0.04649 (18) 0.16705 (16) 0.0535 (4)
O4 −0.1483 (3) 0.1345 (2) 0.8711 (2) 0.1045 (11)
O3W 0.5707 (2) 0.10145 (16) 0.59883 (17) 0.0509 (4)
S1 0.13210 (6) 0.58824 (5) 0.70793 (5) 0.03837 (13)
S2 0.00794 (5) 0.43656 (5) 0.71566 (5) 0.03637 (13)
O4W 0.0516 (5) −0.0045 (4) −0.0659 (4) 0.0690 (11) 0.50
H1W 0.361 (2) 0.047 (2) 0.642 (2) 0.044 (7)*
H2W 0.286 (3) −0.0529 (16) 0.656 (3) 0.054 (8)*
H3W 0.317 (4) −0.012 (2) 0.176 (3) 0.088 (12)*
H4W 0.403 (3) 0.081 (2) 0.2339 (17) 0.048 (7)*
H5W 0.547 (3) 0.119 (3) 0.5309 (18) 0.062 (9)*
H6W 0.641 (3) 0.149 (2) 0.640 (3) 0.069 (10)*
H3B 0.323 (3) 0.081 (2) −0.162 (3) 0.048 (7)*
H3A 0.284 (4) 0.121 (3) −0.056 (3) 0.081 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0621 (2) 0.02856 (19) 0.0401 (2) 0.00822 (16) 0.02562 (18) 0.00415 (15)
Cu2 0.03532 (18) 0.02982 (18) 0.03488 (19) −0.00104 (13) 0.00566 (14) 0.00699 (14)
C1 0.0421 (11) 0.0343 (11) 0.0562 (14) 0.0004 (9) 0.0045 (10) 0.0070 (10)
C2 0.0387 (11) 0.0446 (13) 0.0486 (13) 0.0060 (9) 0.0162 (9) 0.0139 (10)
C3 0.0743 (17) 0.0412 (14) 0.0640 (17) 0.0082 (12) 0.0107 (14) 0.0180 (12)
C4 0.0822 (19) 0.0350 (13) 0.0671 (18) −0.0033 (12) 0.0051 (15) 0.0062 (12)
C5 0.0314 (9) 0.0326 (10) 0.0256 (9) −0.0009 (7) 0.0020 (7) 0.0026 (7)
C6 0.0297 (9) 0.0316 (10) 0.0314 (10) 0.0019 (7) 0.0052 (7) 0.0042 (8)
C7 0.0451 (11) 0.0346 (11) 0.0446 (12) 0.0138 (9) 0.0059 (9) 0.0044 (9)
C8 0.0324 (10) 0.0526 (13) 0.0391 (11) 0.0126 (9) 0.0043 (8) 0.0000 (10)
C9 0.0287 (9) 0.0478 (12) 0.0310 (10) −0.0022 (8) 0.0045 (7) 0.0006 (9)
C10 0.0369 (10) 0.0329 (10) 0.0305 (10) −0.0030 (8) 0.0027 (8) 0.0043 (8)
C11 0.0290 (9) 0.0314 (10) 0.0378 (11) −0.0007 (7) 0.0081 (8) −0.0014 (8)
C12 0.0360 (10) 0.0352 (11) 0.0348 (10) −0.0062 (8) 0.0094 (8) −0.0016 (8)
C13 0.0566 (13) 0.0442 (13) 0.0379 (12) −0.0096 (10) 0.0095 (10) 0.0034 (10)
C14 0.0611 (14) 0.0569 (16) 0.0374 (12) −0.0071 (12) −0.0023 (11) 0.0015 (11)
C15 0.0542 (13) 0.0481 (14) 0.0476 (14) −0.0138 (11) −0.0055 (11) −0.0054 (11)
C16 0.0495 (12) 0.0442 (13) 0.0366 (12) −0.0186 (10) 0.0123 (9) −0.0001 (9)
N1 0.0597 (11) 0.0339 (10) 0.0393 (10) 0.0088 (8) 0.0172 (8) 0.0013 (8)
N2 0.0476 (10) 0.0399 (10) 0.0429 (10) 0.0075 (8) 0.0186 (8) 0.0027 (8)
N3 0.0464 (10) 0.0428 (11) 0.0381 (11) 0.0088 (8) 0.0084 (9) 0.0072 (8)
N4 0.0453 (9) 0.0402 (10) 0.0384 (10) −0.0057 (8) 0.0095 (8) 0.0035 (8)
N5 0.0393 (9) 0.0307 (9) 0.0519 (11) 0.0060 (7) 0.0109 (8) 0.0082 (8)
N6 0.0446 (10) 0.0380 (10) 0.0469 (11) −0.0096 (8) 0.0008 (8) −0.0016 (8)
O1 0.0482 (9) 0.0410 (9) 0.0621 (11) −0.0096 (7) 0.0154 (8) 0.0137 (8)
O2 0.0450 (8) 0.0341 (8) 0.0657 (11) 0.0056 (7) 0.0161 (7) 0.0133 (8)
O1W 0.0489 (10) 0.0412 (10) 0.0501 (10) 0.0074 (8) 0.0079 (8) 0.0088 (8)
O3 0.0520 (9) 0.0542 (11) 0.0454 (10) −0.0206 (8) −0.0011 (7) 0.0047 (8)
O2W 0.0598 (10) 0.0607 (12) 0.0392 (9) −0.0194 (9) 0.0190 (8) −0.0004 (8)
O4 0.142 (2) 0.0901 (18) 0.0569 (13) −0.0833 (17) −0.0166 (13) 0.0258 (12)
O3W 0.0565 (10) 0.0467 (10) 0.0447 (10) −0.0127 (8) 0.0032 (8) 0.0080 (8)
S1 0.0325 (2) 0.0305 (3) 0.0555 (3) 0.00462 (19) 0.0141 (2) 0.0103 (2)
S2 0.0304 (2) 0.0362 (3) 0.0411 (3) −0.00393 (19) 0.00569 (19) 0.0055 (2)
O4W 0.060 (2) 0.073 (3) 0.076 (3) 0.007 (2) 0.016 (2) 0.017 (2)

Geometric parameters (Å, °)

Cu1—N1 2.0053 (19) C10—O1 1.246 (2)
Cu1—N2 2.0155 (18) C10—O2 1.259 (3)
Cu2—N3 2.0148 (19) C11—N6 1.329 (3)
Cu2—N4 2.0248 (18) C11—C12 1.402 (3)
Cu1—O1W 2.702 (2) C11—S2 1.788 (2)
Cu2—O2W 2.499 (2) C12—C13 1.382 (3)
C1—N1 1.476 (3) C12—C16 1.508 (3)
C1—C2 1.501 (4) C13—C14 1.380 (3)
C1—H1C 0.9700 C13—H13 0.9300
C1—H1D 0.9700 C14—C15 1.362 (4)
C2—N2 1.470 (3) C14—H14 0.9300
C2—H2C 0.9700 C15—N6 1.331 (3)
C2—H2D 0.9700 C15—H15 0.9300
C3—N3 1.460 (3) C16—O3 1.230 (3)
C3—H3C 0.9700 C16—O4 1.240 (3)
C3—H3D 0.9700 N1—H1A 0.9000
C4—N4 1.485 (3) N1—H1B 0.9000
C4—H4C 0.9700 N2—H2A 0.9000
C4—H4D 0.9700 N2—H2B 0.9000
C5—C9 1.393 (3) N3—H3B 0.89 (3)
C5—C6 1.403 (3) N3—H3A 0.87 (4)
C5—C10 1.497 (3) N4—H4A 0.9000
C6—N5 1.324 (3) N4—H4B 0.9000
C6—S1 1.7922 (19) O1W—H1W 0.803 (17)
C7—N5 1.343 (3) O1W—H2W 0.847 (17)
C7—C8 1.371 (3) O2W—H3W 0.820 (18)
C7—H7 0.9300 O2W—H4W 0.830 (17)
C8—C9 1.368 (3) O3W—H5W 0.828 (18)
C8—H8 0.9300 O3W—H6W 0.841 (18)
C9—H9 0.9300 S1—S2 2.0352 (8)
N1—Cu1—N1i 180.00 (12) O1—C10—C5 118.17 (19)
N1—Cu1—N2i 96.00 (8) O2—C10—C5 117.53 (17)
N1i—Cu1—N2i 84.00 (8) N6—C11—C12 122.8 (2)
N1—Cu1—N2 84.00 (8) N6—C11—S2 117.04 (16)
N1i—Cu1—N2 96.00 (8) C12—C11—S2 120.17 (15)
N2i—Cu1—N2 180.0 C13—C12—C11 116.90 (19)
N3ii—Cu2—N3 180.00 (16) C13—C12—C16 119.6 (2)
N3ii—Cu2—N4ii 95.42 (8) C11—C12—C16 123.50 (19)
N3—Cu2—N4ii 84.58 (8) C14—C13—C12 120.7 (2)
N3ii—Cu2—N4 84.58 (8) C14—C13—H13 119.7
N3—Cu2—N4 95.42 (8) C12—C13—H13 119.7
N4ii—Cu2—N4 180.00 (14) C15—C14—C13 117.4 (2)
N1—C1—C2 106.56 (18) C15—C14—H14 121.3
N1—C1—H1C 110.4 C13—C14—H14 121.3
C2—C1—H1C 110.4 N6—C15—C14 124.3 (2)
N1—C1—H1D 110.4 N6—C15—H15 117.8
C2—C1—H1D 110.4 C14—C15—H15 117.8
H1C—C1—H1D 108.6 O3—C16—O4 124.2 (2)
N2—C2—C1 107.41 (19) O3—C16—C12 118.8 (2)
N2—C2—H2C 110.2 O4—C16—C12 117.0 (2)
C1—C2—H2C 110.2 C1—N1—Cu1 108.14 (14)
N2—C2—H2D 110.2 C1—N1—H1A 110.1
C1—C2—H2D 110.2 Cu1—N1—H1A 110.1
H2C—C2—H2D 108.5 C1—N1—H1B 110.1
N3—C3—C4ii 109.0 (2) Cu1—N1—H1B 110.1
N3—C3—H3C 109.9 H1A—N1—H1B 108.4
C4ii—C3—H3C 109.9 C2—N2—Cu1 108.99 (13)
N3—C3—H3D 109.9 C2—N2—H2A 109.9
C4ii—C3—H3D 109.9 Cu1—N2—H2A 109.9
H3C—C3—H3D 108.3 C2—N2—H2B 109.9
N4—C4—C3ii 108.4 (2) Cu1—N2—H2B 109.9
N4—C4—H4C 110.0 H2A—N2—H2B 108.3
C3ii—C4—H4C 110.0 C3—N3—Cu2 108.78 (15)
N4—C4—H4D 110.0 C3—N3—H3B 109.8 (18)
C3ii—C4—H4D 110.0 Cu2—N3—H3B 113.5 (18)
H4C—C4—H4D 108.4 C3—N3—H3A 108 (2)
C9—C5—C6 116.28 (19) Cu2—N3—H3A 110 (2)
C9—C5—C10 119.46 (18) H3B—N3—H3A 106 (3)
C6—C5—C10 124.26 (17) C4—N4—Cu2 107.67 (15)
N5—C6—C5 123.55 (18) C4—N4—H4A 110.2
N5—C6—S1 116.14 (15) Cu2—N4—H4A 110.2
C5—C6—S1 120.31 (15) C4—N4—H4B 110.2
N5—C7—C8 123.6 (2) Cu2—N4—H4B 110.2
N5—C7—H7 118.2 H4A—N4—H4B 108.5
C8—C7—H7 118.2 C6—N5—C7 117.75 (19)
C9—C8—C7 117.90 (19) C11—N6—C15 117.9 (2)
C9—C8—H8 121.0 H1W—O1W—H2W 109 (3)
C7—C8—H8 121.0 H3W—O2W—H4W 106 (3)
C8—C9—C5 120.92 (19) H5W—O3W—H6W 111 (3)
C8—C9—H9 119.5 C6—S1—S2 102.41 (7)
C5—C9—H9 119.5 C11—S2—S1 103.30 (7)
O1—C10—O2 124.3 (2)
N1—C1—C2—N2 −54.5 (2) C11—C12—C16—O4 174.2 (3)
C9—C5—C6—N5 0.8 (3) C2—C1—N1—Cu1 44.0 (2)
C10—C5—C6—N5 −179.42 (19) N2i—Cu1—N1—C1 161.56 (15)
C9—C5—C6—S1 −179.23 (15) N2—Cu1—N1—C1 −18.44 (15)
C10—C5—C6—S1 0.5 (3) C1—C2—N2—Cu1 38.5 (2)
N5—C7—C8—C9 −0.7 (4) N1—Cu1—N2—C2 −11.41 (15)
C7—C8—C9—C5 0.8 (3) N1i—Cu1—N2—C2 168.59 (15)
C6—C5—C9—C8 −0.9 (3) C4ii—C3—N3—Cu2 −38.3 (3)
C10—C5—C9—C8 179.36 (19) N4ii—Cu2—N3—C3 12.94 (18)
C9—C5—C10—O1 1.9 (3) N4—Cu2—N3—C3 −167.06 (18)
C6—C5—C10—O1 −177.85 (19) C3ii—C4—N4—Cu2 39.1 (3)
C9—C5—C10—O2 −176.54 (19) N3ii—Cu2—N4—C4 −14.58 (18)
C6—C5—C10—O2 3.7 (3) N3—Cu2—N4—C4 165.42 (18)
N6—C11—C12—C13 1.5 (3) C5—C6—N5—C7 −0.7 (3)
S2—C11—C12—C13 −178.95 (17) S1—C6—N5—C7 179.35 (17)
N6—C11—C12—C16 −178.9 (2) C8—C7—N5—C6 0.6 (3)
S2—C11—C12—C16 0.7 (3) C12—C11—N6—C15 −1.5 (3)
C11—C12—C13—C14 −0.4 (4) S2—C11—N6—C15 178.94 (19)
C16—C12—C13—C14 −180.0 (2) C14—C15—N6—C11 0.4 (4)
C12—C13—C14—C15 −0.7 (4) N5—C6—S1—S2 −9.32 (17)
C13—C14—C15—N6 0.7 (4) C5—C6—S1—S2 170.74 (15)
C13—C12—C16—O3 174.7 (2) N6—C11—S2—S1 −2.08 (18)
C11—C12—C16—O3 −4.9 (4) C12—C11—S2—S1 178.35 (15)
C13—C12—C16—O4 −6.2 (4) C6—S1—S2—C11 81.99 (10)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2iii 0.90 2.25 3.084 (3) 154
N1—H1B···O3 0.90 2.48 3.138 (3) 130
N2—H2A···O3Wiv 0.90 2.38 3.213 (3) 154
N2—H2B···O4i 0.90 2.59 3.345 (4) 142
N4—H4B···O2v 0.90 2.27 3.116 (3) 157
O1W—H2W···O2vi 0.85 (2) 1.93 (2) 2.771 (2) 175 (3)
O1W—H1W···O3W 0.80 (2) 2.10 (2) 2.892 (3) 172 (3)
O2W—H3W···O4i 0.82 (2) 1.95 (2) 2.712 (3) 154 (4)
O2W—H4W···O1vii 0.83 (2) 2.08 (2) 2.897 (3) 168 (3)
O3W—H5W···O1vii 0.83 (2) 2.03 (2) 2.838 (3) 167 (3)
O3W—H6W···O3viii 0.84 (2) 1.98 (2) 2.812 (2) 170 (3)
N3—H3A···O4W 0.87 (4) 2.42 (3) 3.045 (4) 129 (3)

Symmetry codes: (iii) −x, −y+1, −z+1; (iv) −x+1, −y, −z+1; (i) −x, −y, −z+1; (v) x, y−1, z−1; (vi) x, y−1, z; (vii) −x+1, −y+1, −z+1; (viii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2515).

References

  1. Briansó, M. C., Briansó, J. L., Gaete, W. & Ros, J. (1981). Inorg. Chim. Acta, 49, 263–267.
  2. Burnett, M. & Johnson, C. K. (1996). ORTEPIII Report ORNN-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Cargill Thompson, A. M. W., Blandford, I., Redfearn, H., Jeffery, J. C. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 2661–2665.
  4. Casals, I., Gonzá laz-Duarte, P. & Sola, J. (1987). J. Chem. Soc. Dalton Trans. pp. 2391–2395.
  5. Chowdhury, S., Samuel, P. M., Das, I. & Roy, S. (1994). J. Chem. Soc. Chem. Commun. pp. 1993–1994.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Harrison, W. T. A., Slawin, A. M. Z., Sharma, R. P., Sharma, B. & Bhama, S. (2007). Acta Cryst. E63, m178–m180.
  8. Kazak, C., Yilmaz, V. T. & Yazicilar, T. K. (2004). Acta Cryst. E60, m593–m595.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  12. Yamamoto, T. & Sekine, Y. (1984). Can. J. Chem.39, 1544–1547.
  13. Yiannos, C. N. & Karaninos, J. V. (1963). J. Org. Chem.28, 3246–3248.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022612/hg2515sup1.cif

e-65-0m797-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022612/hg2515Isup2.hkl

e-65-0m797-Isup2.hkl (238.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES