Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 13;65(Pt 7):m768–m769. doi: 10.1107/S1600536809021710

Diaqua­bis(2-bromo­benzoato-κO)bis­(nicotinamide-κN 1)nickel(II)

Tuncer Hökelek a,*, Filiz Yılmaz b, Barış Tercan c, F Elif Özbek d, Hacali Necefoğlu d
PMCID: PMC2969345  PMID: 21582699

Abstract

The title NiII complex, [Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2], is centrosymmetric. It contains two 2-bromo­benzoate (BB) ligands, two nicotinamide (NA) ligands and two water mol­ecules, all of them being monodentate. The four O atoms in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 30.81 (17)°, while the pyridine and benzene rings are oriented at a dihedral angle of 84.66 (6)°. In the crystal structure, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular structure. A weak C—H⋯π inter­action is also found.

Related literature

For general background, see: Antolini et al. (1982); Bigoli et al. (1972); Krishnamachari (1974); Nadzhafov et al. (1981); Shnulin et al. (1981). For related structures, see: Hökelek et al. (2009a ,b ,c ); Özbek et al. (2009); Sertçelik et al. (2009a ,b ,c ); Tercan et al. (2009).graphic file with name e-65-0m768-scheme1.jpg

Experimental

Crystal data

  • [Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2]

  • M r = 739.02

  • Monoclinic, Inline graphic

  • a = 7.8851 (2) Å

  • b = 18.2865 (4) Å

  • c = 9.7574 (3) Å

  • β = 106.609 (2)°

  • V = 1348.23 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.74 mm−1

  • T = 100 K

  • 0.52 × 0.27 × 0.22 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.306, T max = 0.436

  • 12686 measured reflections

  • 3368 independent reflections

  • 2899 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.090

  • S = 1.06

  • 3368 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.48 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021710/xu2538sup1.cif

e-65-0m768-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021710/xu2538Isup2.hkl

e-65-0m768-Isup2.hkl (161.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O1 2.0806 (16)
Ni1—O4 2.1012 (17)
Ni1—N1 2.068 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O2i 0.82 (4) 2.09 (4) 2.864 (3) 156 (4)
N2—H22⋯O3ii 0.79 (4) 2.22 (4) 2.951 (3) 153 (4)
O4—H41⋯O2iii 0.86 (4) 1.77 (4) 2.612 (2) 165 (5)
O4—H42⋯O3iv 0.83 (4) 2.09 (4) 2.886 (2) 162 (3)
C9—H9⋯Cg1v 0.93 2.89 3.617 (3) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic. Cg1 is the centroid of the C2–C7 ring.

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

supplementary crystallographic information

Comment

Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Nicotinamide (NA) is one form of niacin and a deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). On the other hand, the nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).

The structure determination of the title compound, (I), a nickel complex with two 2-bromobenzoate (BB), two nicotinamide (NA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the Ni atom on a centre of symmetry. It contains two BB, two NA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.260 (3) Å] and C1—O2 [1.258 (3) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.262 (3) and 1.249 (3) Å in [Mn(DENA)2(C8H5O3)2(H2O)2], (II) (Sertçelik et al., 2009a), 1.263 (4) and 1.249 (4) Å in [Ni(DENA)2(C8H5O3)2(H2O)2], (III) (Sertçelik et al., 2009b), 1.262 (5) and 1.257 (5) Å in [Co(DENA)2(C8H5O3)2(H2O)2], (IV) (Sertçelik et al., 2009c), 1.244 (4) and 1.270 (4) Å in [Co(NA)2(H2O)4](C7H4FO2)2, (V) (Özbek et al., 2009), 1.284 (2), 1.248 (2) and 1.278 (2), 1.241 (2) Å in [Zn(NA)2(C8H8NO2)2], (VI) (Tercan et al., 2009), 1.267 (3) and 1.258 (3) Å in [Ni(NA)2(C7H4ClO2)2(H2O)2], (VII) (Hökelek et al., 2009a), 1.263 (2) and 1.240 (2) Å in [Zn(DENA)2(C7H4BrO2)2(H2O)2], (VIII) (Hökelek et al., 2009b), and 1.2611 (17) and 1.2396 (19) Å in [Mn(DENA)2(C7H4BrO2)2(H2O)2], (IX) (Hökelek et al., 2009c). In (I), the average Ni—O bond length is 2.0909 (17) Å and the Ni atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.595 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 30.81 (17)°, while that between rings A and B (N1/C8—C12) is 84.66 (6)°.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure. A weak C—H···π interaction (Table 2) is also found.

Experimental

The title compound was prepared by the reaction of Ni(SO4).6(H2O) (1.31 g, 5 mmol) in H2O (20 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 2-bromobenzoate (2.23 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for 2 d, giving blue single crystals.

Refinement

H atoms of water molecule and NH2 group were located in difference Fourier maps and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 Å, for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator (1 - x, 1-y, 1-z).

Crystal data

[Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2] F(000) = 740
Mr = 739.02 Dx = 1.820 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5380 reflections
a = 7.8851 (2) Å θ = 2.5–28.4°
b = 18.2865 (4) Å µ = 3.74 mm1
c = 9.7574 (3) Å T = 100 K
β = 106.609 (2)° Block, blue
V = 1348.23 (6) Å3 0.52 × 0.27 × 0.22 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer 3368 independent reflections
Radiation source: fine-focus sealed tube 2899 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.306, Tmax = 0.436 k = −24→21
12686 measured reflections l = −12→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.96P] where P = (Fo2 + 2Fc2)/3
3368 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 1.48 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.40260 (3) 0.212024 (14) 0.17902 (3) 0.02187 (10)
Ni1 0.5000 0.5000 0.5000 0.01048 (11)
O1 0.6201 (2) 0.40537 (9) 0.45455 (18) 0.0137 (3)
O2 0.3946 (2) 0.36790 (10) 0.27275 (19) 0.0162 (4)
O3 0.9542 (2) 0.51033 (10) 0.17931 (19) 0.0184 (4)
O4 0.7554 (2) 0.54252 (10) 0.58888 (19) 0.0149 (4)
H41 0.724 (6) 0.574 (2) 0.643 (4) 0.045 (11)*
H42 0.838 (5) 0.5193 (19) 0.643 (4) 0.024 (8)*
N1 0.5076 (3) 0.54372 (11) 0.3063 (2) 0.0129 (4)
N2 0.8578 (3) 0.57987 (14) −0.0186 (2) 0.0194 (5)
H21 0.776 (5) 0.6019 (19) −0.074 (4) 0.034 (10)*
H22 0.935 (5) 0.5647 (18) −0.048 (4) 0.023 (8)*
C1 0.5546 (3) 0.36682 (13) 0.3452 (2) 0.0126 (4)
C2 0.6793 (3) 0.31957 (13) 0.2910 (3) 0.0130 (4)
C3 0.6274 (3) 0.25649 (14) 0.2082 (3) 0.0138 (5)
C4 0.7416 (3) 0.22059 (13) 0.1454 (3) 0.0160 (5)
H4 0.7036 0.1793 0.0893 0.019*
C5 0.9119 (3) 0.24655 (15) 0.1666 (3) 0.0176 (5)
H5 0.9876 0.2235 0.1227 0.021*
C6 0.9699 (3) 0.30671 (14) 0.2531 (3) 0.0175 (5)
H6 1.0859 0.3230 0.2705 0.021*
C7 0.8537 (3) 0.34266 (13) 0.3137 (3) 0.0143 (5)
H7 0.8934 0.3833 0.3711 0.017*
C8 0.3703 (3) 0.58033 (13) 0.2194 (3) 0.0143 (5)
H8 0.2668 0.5848 0.2464 0.017*
C9 0.3762 (3) 0.61133 (14) 0.0923 (3) 0.0167 (5)
H9 0.2792 0.6367 0.0354 0.020*
C10 0.5299 (3) 0.60410 (14) 0.0504 (3) 0.0159 (5)
H10 0.5376 0.6246 −0.0348 0.019*
C11 0.6709 (3) 0.56580 (13) 0.1378 (3) 0.0131 (5)
C12 0.6545 (3) 0.53690 (13) 0.2651 (3) 0.0134 (5)
H12 0.7500 0.5117 0.3243 0.016*
C13 0.8401 (3) 0.55041 (14) 0.1008 (3) 0.0152 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01372 (14) 0.01967 (16) 0.03198 (17) −0.00559 (9) 0.00611 (11) −0.00455 (10)
Ni1 0.00719 (19) 0.0141 (2) 0.0102 (2) 0.00053 (14) 0.00254 (15) 0.00033 (15)
O1 0.0115 (8) 0.0168 (9) 0.0122 (8) 0.0021 (6) 0.0022 (6) −0.0009 (6)
O2 0.0082 (7) 0.0226 (10) 0.0164 (8) 0.0018 (6) 0.0015 (6) −0.0023 (7)
O3 0.0133 (8) 0.0269 (10) 0.0156 (9) 0.0064 (7) 0.0049 (7) 0.0048 (7)
O4 0.0083 (8) 0.0191 (10) 0.0166 (9) 0.0012 (7) 0.0024 (7) −0.0005 (7)
N1 0.0108 (9) 0.0138 (10) 0.0142 (10) 0.0004 (7) 0.0036 (8) −0.0001 (8)
N2 0.0131 (10) 0.0324 (13) 0.0143 (10) 0.0074 (9) 0.0063 (9) 0.0062 (9)
C1 0.0105 (10) 0.0152 (12) 0.0126 (11) 0.0013 (8) 0.0043 (9) 0.0026 (9)
C2 0.0103 (10) 0.0143 (12) 0.0143 (11) 0.0018 (8) 0.0034 (9) 0.0015 (9)
C3 0.0102 (10) 0.0162 (12) 0.0137 (11) −0.0005 (8) 0.0013 (9) 0.0018 (9)
C4 0.0166 (11) 0.0127 (12) 0.0172 (12) 0.0027 (9) 0.0025 (9) −0.0012 (9)
C5 0.0165 (12) 0.0207 (14) 0.0166 (12) 0.0065 (9) 0.0064 (10) 0.0025 (10)
C6 0.0113 (11) 0.0205 (13) 0.0209 (12) −0.0004 (9) 0.0051 (10) 0.0010 (10)
C7 0.0110 (10) 0.0149 (12) 0.0165 (11) 0.0010 (8) 0.0031 (9) 0.0005 (9)
C8 0.0095 (10) 0.0163 (12) 0.0167 (11) 0.0020 (8) 0.0029 (9) 0.0001 (9)
C9 0.0093 (10) 0.0211 (13) 0.0175 (12) 0.0051 (9) 0.0002 (9) 0.0043 (10)
C10 0.0132 (11) 0.0224 (13) 0.0130 (11) 0.0022 (9) 0.0052 (9) 0.0032 (9)
C11 0.0117 (11) 0.0146 (12) 0.0139 (11) 0.0007 (8) 0.0051 (9) −0.0004 (9)
C12 0.0117 (10) 0.0135 (12) 0.0155 (11) 0.0011 (8) 0.0046 (9) 0.0000 (9)
C13 0.0113 (11) 0.0203 (13) 0.0145 (11) 0.0005 (9) 0.0044 (9) −0.0019 (9)

Geometric parameters (Å, °)

Br1—C3 1.896 (2) C3—C4 1.390 (3)
Ni1—O1i 2.0806 (16) C4—C5 1.383 (4)
Ni1—O1 2.0806 (16) C4—H4 0.9300
Ni1—O4 2.1012 (17) C5—C6 1.382 (4)
Ni1—O4i 2.1012 (17) C5—H5 0.9300
Ni1—N1 2.068 (2) C6—C7 1.390 (3)
Ni1—N1i 2.068 (2) C6—H6 0.9300
O1—C1 1.260 (3) C7—H7 0.9300
O2—C1 1.258 (3) C8—H8 0.9300
O3—C13 1.241 (3) C9—C8 1.377 (3)
O4—H41 0.86 (4) C9—H9 0.9300
O4—H42 0.83 (4) C10—C9 1.391 (3)
N1—C8 1.347 (3) C10—H10 0.9300
N1—C12 1.337 (3) C11—C10 1.383 (3)
N2—H21 0.82 (4) C11—C12 1.390 (3)
N2—H22 0.79 (4) C12—H12 0.9300
C1—C2 1.513 (3) C13—N2 1.327 (3)
C2—C7 1.394 (3) C13—C11 1.505 (3)
C3—C2 1.400 (4)
O1i—Ni1—O1 180.000 (1) C4—C3—Br1 115.24 (18)
O1—Ni1—O4 87.40 (7) C4—C3—C2 121.6 (2)
O1i—Ni1—O4 92.60 (7) C3—C4—H4 120.2
O1i—Ni1—O4i 87.40 (7) C5—C4—C3 119.7 (2)
O1—Ni1—O4i 92.60 (7) C5—C4—H4 120.2
O4—Ni1—O4i 180.00 (10) C4—C5—H5 119.9
N1—Ni1—O1 89.60 (7) C6—C5—C4 120.2 (2)
N1i—Ni1—O1 90.40 (7) C6—C5—H5 119.9
N1—Ni1—O1i 90.40 (7) C5—C6—C7 119.5 (2)
N1i—Ni1—O1i 89.60 (7) C5—C6—H6 120.3
N1—Ni1—O4 87.68 (7) C7—C6—H6 120.3
N1i—Ni1—O4 92.32 (7) C2—C7—H7 119.0
N1—Ni1—O4i 92.32 (7) C6—C7—C2 122.0 (2)
N1i—Ni1—O4i 87.68 (7) C6—C7—H7 119.0
N1—Ni1—N1i 180.00 (10) N1—C8—C9 123.0 (2)
C1—O1—Ni1 122.99 (15) N1—C8—H8 118.5
Ni1—O4—H41 95 (3) C9—C8—H8 118.5
Ni1—O4—H42 124 (2) C8—C9—C10 118.8 (2)
H42—O4—H41 105 (4) C8—C9—H9 120.6
C8—N1—Ni1 122.66 (15) C10—C9—H9 120.6
C12—N1—Ni1 119.53 (16) C9—C10—H10 120.6
C12—N1—C8 117.8 (2) C11—C10—C9 118.8 (2)
C13—N2—H21 121 (3) C11—C10—H10 120.6
C13—N2—H22 118 (2) C10—C11—C12 118.7 (2)
H21—N2—H22 118 (3) C10—C11—C13 124.0 (2)
O1—C1—C2 117.8 (2) C12—C11—C13 117.3 (2)
O2—C1—O1 124.7 (2) N1—C12—C11 123.0 (2)
O2—C1—C2 117.4 (2) N1—C12—H12 118.5
C3—C2—C1 124.1 (2) C11—C12—H12 118.5
C7—C2—C1 118.8 (2) O3—C13—N2 122.8 (2)
C7—C2—C3 117.0 (2) O3—C13—C11 119.9 (2)
C2—C3—Br1 123.11 (17) N2—C13—C11 117.2 (2)
O4—Ni1—O1—C1 −145.89 (18) C1—C2—C7—C6 −172.5 (2)
O4i—Ni1—O1—C1 34.11 (18) C3—C2—C7—C6 2.3 (4)
N1—Ni1—O1—C1 −58.20 (18) Br1—C3—C2—C1 −10.9 (3)
N1i—Ni1—O1—C1 121.80 (18) Br1—C3—C2—C7 174.53 (17)
O1—Ni1—N1—C8 137.00 (19) C4—C3—C2—C1 171.3 (2)
O1i—Ni1—N1—C8 −43.00 (19) C4—C3—C2—C7 −3.2 (4)
O1—Ni1—N1—C12 −44.08 (18) Br1—C3—C4—C5 −176.67 (19)
O1i—Ni1—N1—C12 135.92 (18) C2—C3—C4—C5 1.2 (4)
O4—Ni1—N1—C12 43.33 (18) C3—C4—C5—C6 1.7 (4)
O4i—Ni1—N1—C12 −136.67 (18) C4—C5—C6—C7 −2.6 (4)
O4—Ni1—N1—C8 −135.59 (19) C5—C6—C7—C2 0.5 (4)
O4i—Ni1—N1—C8 44.41 (19) C10—C9—C8—N1 0.7 (4)
Ni1—O1—C1—O2 −19.9 (3) C11—C10—C9—C8 0.2 (4)
Ni1—O1—C1—C2 155.74 (16) C12—C11—C10—C9 −0.9 (4)
Ni1—N1—C8—C9 178.11 (19) C13—C11—C10—C9 176.4 (2)
C12—N1—C8—C9 −0.8 (4) C10—C11—C12—N1 0.8 (4)
Ni1—N1—C12—C11 −178.89 (18) C13—C11—C12—N1 −176.7 (2)
C8—N1—C12—C11 0.1 (4) O3—C13—C11—C10 −173.8 (2)
O1—C1—C2—C3 156.0 (2) O3—C13—C11—C12 3.5 (4)
O1—C1—C2—C7 −29.6 (3) N2—C13—C11—C10 4.7 (4)
O2—C1—C2—C3 −28.0 (4) N2—C13—C11—C12 −178.0 (2)
O2—C1—C2—C7 146.4 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H21···O2ii 0.82 (4) 2.09 (4) 2.864 (3) 156 (4)
N2—H22···O3iii 0.79 (4) 2.22 (4) 2.951 (3) 153 (4)
O4—H41···O2i 0.86 (4) 1.77 (4) 2.612 (2) 165 (5)
O4—H42···O3iv 0.83 (4) 2.09 (4) 2.886 (2) 162 (3)
C9—H9···Cg1v 0.93 2.89 3.617 (3) 136

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) −x+2, −y+1, −z; (i) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2538).

References

  1. Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem 21, 1391–1395.
  2. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467. [DOI] [PMC free article] [PubMed]
  8. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m481–m482. [DOI] [PMC free article] [PubMed]
  9. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m533–m534. [DOI] [PMC free article] [PubMed]
  10. Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr.27, 108–111. [DOI] [PubMed]
  11. Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim.22, 124–128.
  12. Özbek, F. E., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m341–m342. [DOI] [PMC free article] [PubMed]
  13. Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m324–m325. [DOI] [PMC free article] [PubMed]
  14. Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m326–m327. [DOI] [PMC free article] [PubMed]
  15. Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009c). Acta Cryst. E65, m389–m390. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim.7, 1409–1416.
  18. Tercan, B., Hökelek, T., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m109–m110. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021710/xu2538sup1.cif

e-65-0m768-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021710/xu2538Isup2.hkl

e-65-0m768-Isup2.hkl (161.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES