Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):o1701. doi: 10.1107/S1600536809023757

6,6′-Dihydr­oxy-3,3′-dithio­dibenzoic acid

Shu-Wen Sun a,*, Fu-Lin Zhou b, Gao-Feng Wang a, Gui-Hua Cui a
PMCID: PMC2969348  PMID: 21582954

Abstract

In the title compound, C14H10O6S2, the dihedral angle between the planes of the two phenyl­ene rings is 55.9 (1)°. Both hydr­oxy groups form intra­molecular hydrogen bonds; however, one of them also engages in inter­molecular hydrogen bonding. In the crystal, mol­ecules are connected into helical chains by O—H⋯O hydrogen bonds. The crystal studied was an inversion twin with a domain ratio of 0.51 (13):0.49 (13).

Related literature

For hydrogen bonds and π–π stacking inter­actions in aromatic compounds, see: Janiak (2000); Hunter & Sanders (1990); Orr et al. (1999); Kaafarani et al. (2001). For a comparison of bond dimensions for disulfide compounds, see: Kaitner & Pavlovic (1997); Korp & Bernal (1984); Ni et al. (2004); Sacerdoti et al. (1975).graphic file with name e-65-o1701-scheme1.jpg

Experimental

Crystal data

  • C14H10O6S2

  • M r = 338.34

  • Orthorhombic, Inline graphic

  • a = 5.3065 (6) Å

  • b = 11.1657 (13) Å

  • c = 23.906 (2) Å

  • V = 1416.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.24 × 0.15 × 0.14 mm

Data collection

  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.910, T max = 0.946

  • 6436 measured reflections

  • 2502 independent reflections

  • 2060 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.103

  • S = 1.09

  • 2502 reflections

  • 211 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983), 1007 Friedel pairs

  • Flack parameter: 0.49 (13)

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023757/ng2599sup1.cif

e-65-o1701-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023757/ng2599Isup2.hkl

e-65-o1701-Isup2.hkl (122.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5i 0.85 (3) 1.90 (3) 2.739 (4) 171 (4)
O3—H3⋯O1 0.84 (4) 1.91 (5) 2.616 (4) 142 (5)
O3—H3⋯O6ii 0.84 (4) 2.52 (4) 3.063 (5) 123 (4)
O4—H4⋯O1iii 0.85 (4) 1.79 (4) 2.636 (4) 175 (4)
O6—H6⋯O5 0.85 (4) 1.90 (4) 2.642 (4) 146 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to Professor Da-QI Wang, Liaocheng University, for the X-ray structure determination.

supplementary crystallographic information

Comment

Hydrogen bonds and π–π stacking interactions play an important role in the self-assembly and recognition of aromatic compounds((Janiak, 2000; Hunter & Sanders, 1990) as an auxiliary stabilizing short contact (Orr et al., 1999; Kaafarani et al., 2001).

The two phenyl rings of the title compound are bonded with two S atoms at a distance of 1.781 (4)Å (S2—C13) and 1.793 (4) Å (S1—C6), and the C—C distances of two phenyl groups range from 1.371 (5) to 1.407 (6) Å (Figure. 1 and Table 1). Interestingly, there are intermolecular S···S interactions in the crystal structures, which are not common in diphenyl disulfide derivaties (Korp & Bernal, 1984; Kaitner & Pavlovic 1997; Ni et al., 2004; Sacerdoti et al., 1975). The intermolecular S···S interactions distance is 3.414 (2) Å, whereas the shorter intramolecular S—S distance is 2.051 (2) Å. The dihedral angle of these two phenyl rings is 55.9 (1)°, which is different from other molecules such as 4, 4'-dithiodiphenol (48.1 (2)°) (Ni et al., 2004) and diphenyl disulfide (76.7 (3)°) (Sacerdoti et al., 1975).

The crystal structure of 5, 5'-dithiodisalicylic acid demonstrates the self-assembly of molecules into three dimensional networks via hydrogen bonds(Table 2) and intermolecular S···S interactions.

Experimental

The title compound (I) was prepared as follows: To a solution of 5-(chlorosulfonyl)-2-hydroxybenzoic acid(19 mmol, 4.5 g) in conc. HCl (30 ml) cooled to 0 °C in an ice bath, Sn(118 mmol, 14.0 g) was added. The reaction mixture was stirred for 12 h and then refluxed for 6 h. The precipitate was separated and dissolved in Et2O. After filtration the organic layer was concentrated under reduced pressure to afford a solid that was subsequently purified by recrystallization using a mixture of EtOH and H2O. Yellow needle crystals of (I) were obtained by slow evaporation from EtOH/acetone/DMSO/DMF(5:1:3:3) after five months. Analysis calculated for C14H10O6S2: C 49.70, H 2.98%; found: C 49.18, H 2.75%.

Refinement

All H atoms were placed in calculated positions and treated as riding, with C—H in the range 0.93–0.98 Å and with Uiso(H)=1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C14H10O6S2 Dx = 1.587 Mg m3
Mr = 338.34 Melting point: 523 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2489 reflections
a = 5.3065 (6) Å θ = 2.5–25.5°
b = 11.1657 (13) Å µ = 0.40 mm1
c = 23.906 (2) Å T = 298 K
V = 1416.5 (3) Å3 Needle, yellow
Z = 4 0.24 × 0.15 × 0.14 mm
F(000) = 696

Data collection

Bruker SMART area-detector diffractometer 2502 independent reflections
Radiation source: fine-focus sealed tube 2060 reflections with I > 2σ(I)
graphite Rint = 0.043
φ and ω scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→6
Tmin = 0.910, Tmax = 0.946 k = −13→13
6436 measured reflections l = −28→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.9484P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2502 reflections Δρmax = 0.40 e Å3
211 parameters Δρmin = −0.28 e Å3
4 restraints Absolute structure: Flack (1983), 1007 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.49 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.4934 (6) 0.8216 (2) 0.21892 (11) 0.0439 (7)
O2 −0.6036 (6) 0.6399 (3) 0.18732 (11) 0.0439 (8)
H2 −0.717 (6) 0.643 (4) 0.2123 (14) 0.066*
O3 −0.1299 (6) 0.9391 (3) 0.16941 (13) 0.0519 (8)
H3 −0.254 (6) 0.934 (5) 0.1911 (17) 0.078*
O4 −0.1551 (7) 0.3528 (3) 0.20456 (12) 0.0505 (8)
H4 −0.269 (7) 0.338 (4) 0.2286 (15) 0.076*
O5 −0.0215 (6) 0.1743 (3) 0.23556 (11) 0.0438 (7)
O6 0.3765 (6) 0.0759 (3) 0.18767 (12) 0.0503 (8)
H6 0.252 (6) 0.080 (5) 0.2099 (17) 0.075*
S1 −0.0244 (2) 0.52404 (9) 0.01641 (4) 0.0370 (3)
S2 0.34345 (19) 0.46809 (9) 0.01989 (4) 0.0360 (2)
C1 −0.4622 (8) 0.7376 (4) 0.18627 (14) 0.0343 (9)
C2 −0.2645 (7) 0.7386 (3) 0.14288 (15) 0.0303 (9)
C3 −0.1095 (8) 0.8396 (3) 0.13723 (15) 0.0360 (10)
C4 0.0804 (8) 0.8402 (4) 0.09698 (16) 0.0391 (10)
H4A 0.1880 0.9057 0.0942 0.047*
C5 0.1095 (8) 0.7447 (3) 0.06154 (16) 0.0391 (10)
H5 0.2337 0.7470 0.0341 0.047*
C6 −0.0443 (8) 0.6441 (3) 0.06607 (15) 0.0324 (9)
C7 −0.2280 (8) 0.6406 (3) 0.10693 (15) 0.0339 (9)
H7 −0.3285 0.5729 0.1107 0.041*
C8 −0.0058 (8) 0.2582 (4) 0.20199 (16) 0.0367 (9)
C9 0.1795 (7) 0.2604 (3) 0.15645 (15) 0.0314 (9)
C10 0.3593 (8) 0.1685 (3) 0.15118 (15) 0.0356 (9)
C11 0.5317 (8) 0.1726 (3) 0.10729 (16) 0.0404 (10)
H11 0.6534 0.1130 0.1041 0.048*
C12 0.5236 (8) 0.2640 (3) 0.06854 (16) 0.0387 (9)
H12 0.6396 0.2651 0.0394 0.046*
C13 0.3440 (8) 0.3550 (3) 0.07246 (14) 0.0312 (9)
C14 0.1790 (8) 0.3533 (3) 0.11681 (15) 0.0350 (9)
H14 0.0637 0.4155 0.1207 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0515 (18) 0.0345 (16) 0.0456 (15) 0.0031 (16) 0.0185 (17) −0.0067 (13)
O2 0.047 (2) 0.0394 (16) 0.0449 (16) −0.0082 (15) 0.0179 (15) −0.0035 (14)
O3 0.057 (2) 0.0356 (16) 0.063 (2) −0.0068 (15) 0.0226 (17) −0.0158 (15)
O4 0.0540 (19) 0.0474 (18) 0.0502 (18) 0.0124 (17) 0.0237 (16) 0.0074 (15)
O5 0.0474 (18) 0.0416 (17) 0.0423 (16) 0.0038 (16) 0.0113 (16) 0.0068 (13)
O6 0.050 (2) 0.0404 (17) 0.0605 (19) 0.0127 (16) 0.0138 (17) 0.0138 (16)
S1 0.0372 (6) 0.0428 (5) 0.0311 (5) 0.0055 (5) −0.0017 (5) −0.0050 (5)
S2 0.0371 (5) 0.0370 (5) 0.0340 (5) 0.0005 (5) 0.0064 (5) 0.0011 (5)
C1 0.034 (2) 0.040 (2) 0.0291 (19) 0.005 (2) 0.0003 (19) 0.0052 (18)
C2 0.031 (2) 0.0292 (19) 0.031 (2) 0.0008 (18) −0.0014 (18) 0.0029 (17)
C3 0.040 (2) 0.032 (2) 0.036 (2) 0.0092 (19) 0.002 (2) −0.0012 (18)
C4 0.036 (3) 0.033 (2) 0.049 (2) −0.0035 (19) 0.006 (2) 0.004 (2)
C5 0.044 (3) 0.040 (2) 0.033 (2) 0.007 (2) 0.009 (2) 0.009 (2)
C6 0.036 (2) 0.031 (2) 0.0302 (19) 0.0064 (19) −0.0022 (19) 0.0001 (16)
C7 0.039 (2) 0.031 (2) 0.032 (2) 0.0007 (19) −0.0032 (19) 0.0034 (17)
C8 0.032 (2) 0.038 (2) 0.040 (2) 0.003 (2) −0.001 (2) −0.0059 (19)
C9 0.031 (2) 0.034 (2) 0.0297 (19) −0.0025 (18) 0.0036 (18) −0.0039 (17)
C10 0.041 (2) 0.034 (2) 0.032 (2) 0.000 (2) −0.002 (2) −0.0023 (17)
C11 0.034 (2) 0.034 (2) 0.052 (2) 0.011 (2) 0.009 (2) −0.0032 (19)
C12 0.033 (2) 0.045 (2) 0.038 (2) 0.003 (2) 0.008 (2) −0.0022 (19)
C13 0.031 (2) 0.033 (2) 0.0293 (19) −0.0027 (19) 0.0005 (19) −0.0065 (17)
C14 0.035 (2) 0.035 (2) 0.035 (2) 0.0044 (19) −0.0009 (19) −0.0021 (18)

Geometric parameters (Å, °)

O1—C1 1.231 (4) C4—C5 1.371 (5)
O2—C1 1.324 (5) C4—H4A 0.9300
O2—H2 0.848 (10) C5—C6 1.393 (5)
O3—C3 1.356 (5) C5—H5 0.9300
O3—H3 0.842 (10) C6—C7 1.380 (5)
O4—C8 1.322 (5) C7—H7 0.9300
O4—H4 0.848 (10) C8—C9 1.467 (5)
O5—C8 1.236 (5) C9—C14 1.405 (5)
O6—C10 1.356 (4) C9—C10 1.407 (6)
O6—H6 0.849 (10) C10—C11 1.393 (5)
S1—C6 1.793 (4) C11—C12 1.380 (5)
S1—S2 2.0511 (15) C11—H11 0.9300
S2—C13 1.781 (4) C12—C13 1.396 (5)
C1—C2 1.476 (5) C12—H12 0.9300
C2—C3 1.402 (5) C13—C14 1.375 (5)
C2—C7 1.404 (5) C14—H14 0.9300
C3—C4 1.394 (5)
C1—O2—H2 113 (3) C6—C7—C2 120.6 (4)
C3—O3—H3 111 (4) C6—C7—H7 119.7
C8—O4—H4 108 (4) C2—C7—H7 119.7
C10—O6—H6 108 (4) O5—C8—O4 122.4 (4)
C6—S1—S2 104.89 (14) O5—C8—C9 122.7 (4)
C13—S2—S1 104.24 (14) O4—C8—C9 115.0 (4)
O1—C1—O2 122.6 (4) C14—C9—C10 118.6 (3)
O1—C1—C2 122.4 (4) C14—C9—C8 120.8 (4)
O2—C1—C2 115.0 (3) C10—C9—C8 120.6 (3)
C3—C2—C7 119.1 (3) O6—C10—C11 117.7 (4)
C3—C2—C1 119.4 (3) O6—C10—C9 123.0 (3)
C7—C2—C1 121.5 (3) C11—C10—C9 119.3 (4)
O3—C3—C4 116.4 (4) C12—C11—C10 120.6 (4)
O3—C3—C2 123.9 (4) C12—C11—H11 119.7
C4—C3—C2 119.6 (4) C10—C11—H11 119.7
C5—C4—C3 120.3 (4) C11—C12—C13 121.0 (4)
C5—C4—H4A 119.9 C11—C12—H12 119.5
C3—C4—H4A 119.9 C13—C12—H12 119.5
C4—C5—C6 120.9 (4) C14—C13—C12 118.4 (4)
C4—C5—H5 119.6 C14—C13—S2 123.6 (3)
C6—C5—H5 119.6 C12—C13—S2 118.0 (3)
C7—C6—C5 119.4 (3) C13—C14—C9 121.9 (4)
C7—C6—S1 119.3 (3) C13—C14—H14 119.0
C5—C6—S1 121.1 (3) C9—C14—H14 119.0
C6—S1—S2—C13 89.96 (17) O5—C8—C9—C14 175.4 (4)
O1—C1—C2—C3 −1.7 (5) O4—C8—C9—C14 −4.7 (5)
O2—C1—C2—C3 178.1 (3) O5—C8—C9—C10 −3.8 (6)
O1—C1—C2—C7 178.4 (4) O4—C8—C9—C10 176.1 (4)
O2—C1—C2—C7 −1.7 (5) C14—C9—C10—O6 179.2 (4)
C7—C2—C3—O3 179.5 (3) C8—C9—C10—O6 −1.6 (6)
C1—C2—C3—O3 −0.3 (6) C14—C9—C10—C11 0.4 (6)
C7—C2—C3—C4 −1.3 (6) C8—C9—C10—C11 179.5 (4)
C1—C2—C3—C4 178.9 (3) O6—C10—C11—C12 179.7 (4)
O3—C3—C4—C5 −178.1 (4) C9—C10—C11—C12 −1.4 (6)
C2—C3—C4—C5 2.7 (6) C10—C11—C12—C13 0.4 (6)
C3—C4—C5—C6 −1.9 (6) C11—C12—C13—C14 1.8 (6)
C4—C5—C6—C7 −0.2 (6) C11—C12—C13—S2 −178.8 (3)
C4—C5—C6—S1 174.9 (3) S1—S2—C13—C14 −29.0 (3)
S2—S1—C6—C7 −127.2 (3) S1—S2—C13—C12 151.6 (3)
S2—S1—C6—C5 57.7 (3) C12—C13—C14—C9 −2.9 (6)
C5—C6—C7—C2 1.5 (6) S2—C13—C14—C9 177.8 (3)
S1—C6—C7—C2 −173.7 (3) C10—C9—C14—C13 1.8 (6)
C3—C2—C7—C6 −0.8 (6) C8—C9—C14—C13 −177.4 (4)
C1—C2—C7—C6 179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O5i 0.85 (3) 1.90 (3) 2.739 (4) 171 (4)
O3—H3···O1 0.84 (4) 1.91 (5) 2.616 (4) 142 (5)
O3—H3···O6ii 0.84 (4) 2.52 (4) 3.063 (5) 123 (4)
O4—H4···O1iii 0.85 (4) 1.79 (4) 2.636 (4) 175 (4)
O6—H6···O5 0.85 (4) 1.90 (4) 2.642 (4) 146 (5)

Symmetry codes: (i) −x−1, y+1/2, −z+1/2; (ii) x−1, y+1, z; (iii) −x−1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2599).

References

  1. Bruker (2004). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Hunter, C. A. & Sanders, J. K. (1990). J. Am. Chem. Soc.112, 5525–5534.
  4. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  5. Kaafarani, B. R., Pinkerton, A. A. & Neckers, D. C. (2001). Tetrahedron Lett.42, 8137–8139.
  6. Kaitner, B. & Pavlovic, G. (1997). Acta Cryst. C53, 1103–1105.
  7. Korp, J. D. & Bernal, I. (1984). J. Mol. Struct.118, 157–164.
  8. Ni, Q.-L., Wang, X.-J., Zeng, J.-Q. & Jian, H.-X. (2004). Acta Cryst. E60, o2318–o2320.
  9. Orr, G. W., Barbour, L. J. & Atwood, J. L. (1999). Science, 285, 1049–1052. [DOI] [PubMed]
  10. Sacerdoti, M., Gilli, G. & Domiano, P. (1975). Acta Cryst. B31, 327–329.
  11. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023757/ng2599sup1.cif

e-65-o1701-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023757/ng2599Isup2.hkl

e-65-o1701-Isup2.hkl (122.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES