Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 17;65(Pt 7):m780–m781. doi: 10.1107/S1600536809022077

(Acetone-2κO){μ-6,6′-dimeth­oxy-2,2′-[propane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-κ81:2O 6,O 1,O 1′,O 6′:O 1,N,N′,O 1′}tris(nitrato-1κ2 O,O′)copper(II)terbium(III)

Wen-Bin Sun a, Peng-Fei Yan a, Guang-Ming Li a,*, Guang-Feng Hou b
PMCID: PMC2969354  PMID: 21582709

Abstract

In the title heteronuclear complex, [CuTb(C19H20N2O4)(NO3)3(CH3COCH3)], the CuII ion is five-coordinated by two O and two N atoms from the 6,6′-dimeth­oxy-2,2′-[propane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate ligand (L) and an O atom from the acetone mol­ecule in a square-pyramidal geometry. The TbIII ion is ten-coordinated by six O atoms from three chelating nitrate ligands and four O atoms from the L ligand. In L, the CH2–CH–CH3 fragment is disordered over two conformations, with refined occupancies of 0.725 (11) and 0.275 (11).

Related literature

For the copper–gadolinium and copper–praseodymium complexes of the N,N′-bis­(3-methoxy­salicyl­idene)propane-1,2-diamino ligand, see: Kara et al. (2000) and Sun et al. (2007), respectively.graphic file with name e-65-0m780-scheme1.jpg

Experimental

Crystal data

  • [CuTb(C19H20N2O4)(NO3)3(C3H6O)]

  • M r = 806.94

  • Monoclinic, Inline graphic

  • a = 9.8923 (9) Å

  • b = 18.8321 (18) Å

  • c = 15.5982 (15) Å

  • β = 95.085 (2)°

  • V = 2894.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.23 mm−1

  • T = 291 K

  • 0.20 × 0.19 × 0.18 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.563, T max = 0.591 (expected range = 0.532–0.559)

  • 15732 measured reflections

  • 5696 independent reflections

  • 4296 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.092

  • S = 1.02

  • 5696 reflections

  • 421 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022077/cv2566sup1.cif

e-65-0m780-sup1.cif (27.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022077/cv2566Isup2.hkl

e-65-0m780-Isup2.hkl (278.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 20572018 and 20672032), Heilongjiang Province (grant Nos. 11531284, 1055HZ001, ZJG0504 and JC200605) and Heilongjiang University (grant Nos. 09k137, 09k117 and 09k118).

supplementary crystallographic information

Comment

The Schiff base Cu—Ln (Ln = rare earth) dinuclear complexes have attracted an attention due to their magnetic properties. In the title compound (Fig. 1), the octadentate Schiff base ligand links Cu and Tb atoms into a dinuclear complex through two phenolate O atoms, that is similar with the bonding reported for other copper-gadolinium and copper-praseodymium complexes of the ligand L = N,N'-bis(3- Methoxysalicylidene)propane-1,2-diamine (Kara et al., 2000; Sun et al., 2007). The TbIII centre in the title complex is ten-coordinated by four oxygen atoms from ligand L and six oxygen atoms from three nitrato ligands. The CuII center is five-coordinate by two nitrogen atoms and two oxygen atoms from the ligand and one oxygen atom from acetone in a square-pyramidal geometry.

Experimental

To a 1:1 MeOH/Me2CO solution (20 ml) of the ligand L (0.086 g, 0.250 mmol) was slowly added an aqueous solution (8 ml) of [Cu(Ac)2H2O] (0.050 g, 0.25 mmol). After refluxing and stirring for 3 h, was slowly added a MeOH solution (10 ml) of Tb(NO3)36H2O (0.114 g, 0.25 mmol) at ambient temperature. After stirring for 5 h, red solid was collected by filtration and washed with MeOH, [CuTb(C19H20N2O4)(CH3COCH3)(NO3)3], yield 0.172 g (85%). Single crystals suitable for X-ray determination were obtained by slow diffusion of diethylether into a methanol solution of the powder sample over one week. Analysis calculated for C22H26CuN5O14Tb: C, 32.75; H, 3.25; N, 8.68; found: C, 32.81; H, 3.30; N, 8.80%.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.98 Å (methylene C), C—H = 0.96 Å (methly C) and with Uiso(H) = 1.2Ueq(C). Atoms C8, C9 and C10 with the attached H atoms were treated as disordered over two positions with the occupancies refined to 0.725 (11) and 0.275 (11), respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids. Only major part of the disordered fragment is shown. H atoms omitted for clarity.

Crystal data

[CuTb(C19H20N2O4)(NO3)3(C3H6O)] F(000) = 1596
Mr = 806.94 Dx = 1.852 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3804 reflections
a = 9.8923 (9) Å θ = 2.3–21.9°
b = 18.8321 (18) Å µ = 3.23 mm1
c = 15.5982 (15) Å T = 291 K
β = 95.085 (2)° Block, red
V = 2894.4 (5) Å3 0.20 × 0.19 × 0.18 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 5696 independent reflections
Radiation source: fine-focus sealed tube 4296 reflections with I > 2σ(I)
graphite Rint = 0.037
ω scans θmax = 26.1°, θmin = 1.7°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −12→12
Tmin = 0.563, Tmax = 0.591 k = −23→16
15732 measured reflections l = −19→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.3818P] where P = (Fo2 + 2Fc2)/3
5696 reflections (Δ/σ)max = 0.003
421 parameters Δρmax = 1.12 e Å3
48 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Tb1 0.28678 (3) 0.074476 (12) 0.751003 (15) 0.04448 (10)
Cu1 0.20813 (8) 0.24090 (4) 0.67475 (5) 0.0633 (2)
N1 0.2390 (6) 0.3365 (3) 0.7107 (4) 0.0942 (19)
N2 0.1210 (6) 0.2826 (3) 0.5712 (4) 0.0845 (17)
N3 0.5440 (5) 0.0470 (3) 0.6857 (3) 0.0578 (12)
N4 0.0279 (7) 0.0890 (3) 0.8196 (4) 0.0816 (17)
N5 0.2699 (6) −0.0635 (2) 0.8377 (3) 0.0685 (14)
O1 0.4538 (4) 0.12109 (18) 0.8774 (2) 0.0554 (9)
O2 0.3134 (4) 0.19791 (18) 0.7687 (2) 0.0580 (10)
O3 0.1984 (4) 0.14580 (18) 0.6349 (2) 0.0586 (10)
O4 0.2368 (4) 0.01506 (19) 0.6000 (2) 0.0560 (9)
O5 0.4863 (4) 0.1047 (2) 0.6734 (3) 0.0729 (12)
O6 0.4893 (4) 0.0038 (2) 0.7354 (3) 0.0671 (11)
O7 0.6477 (5) 0.0309 (3) 0.6551 (4) 0.1129 (18)
O8 0.1350 (6) 0.1106 (3) 0.8570 (3) 0.1117 (19)
O9 0.0401 (5) 0.0624 (3) 0.7478 (3) 0.0940 (15)
O10 −0.0824 (6) 0.0945 (3) 0.8491 (4) 0.130 (2)
O11 0.3161 (5) −0.0093 (2) 0.8754 (3) 0.0913 (15)
O12 0.2238 (5) −0.0545 (2) 0.7621 (3) 0.0768 (13)
O13 0.2657 (6) −0.1202 (2) 0.8738 (3) 0.1142 (19)
C19 0.5588 (7) 0.0802 (3) 0.9243 (4) 0.080 (2)
H1A 0.6425 0.1062 0.9276 0.120*
H1B 0.5700 0.0359 0.8953 0.120*
H1C 0.5338 0.0711 0.9814 0.120*
C2 0.4457 (5) 0.1926 (3) 0.8984 (3) 0.0519 (13)
C3 0.5042 (6) 0.2224 (3) 0.9726 (4) 0.0738 (18)
H1 0.5525 0.1948 1.0143 0.089*
C4 0.4894 (7) 0.2961 (4) 0.9841 (5) 0.088 (2)
H2 0.5261 0.3173 1.0347 0.106*
C5 0.4232 (6) 0.3357 (3) 0.9229 (5) 0.084 (2)
H3 0.4171 0.3844 0.9319 0.101*
C6 0.3635 (6) 0.3078 (3) 0.8468 (4) 0.0629 (16)
C1 0.3703 (5) 0.2330 (3) 0.8362 (4) 0.0512 (13)
C7 0.3023 (6) 0.3546 (3) 0.7814 (6) 0.088 (2)
H4 0.3102 0.4030 0.7922 0.106*
C8 0.1969 (14) 0.3843 (6) 0.6358 (7) 0.098 (4) 0.688 (12)
H8 0.1681 0.4294 0.6598 0.118* 0.688 (12)
C9 0.0831 (18) 0.3580 (4) 0.5792 (11) 0.159 (10) 0.688 (12)
H9A 0.0767 0.3819 0.5239 0.191* 0.688 (12)
H9B −0.0020 0.3632 0.6050 0.191* 0.688 (12)
C10 0.2949 (16) 0.4011 (8) 0.5767 (10) 0.165 (7) 0.688 (12)
H10A 0.3065 0.3610 0.5401 0.247* 0.688 (12)
H10B 0.3799 0.4125 0.6081 0.247* 0.688 (12)
H10C 0.2638 0.4411 0.5422 0.247* 0.688 (12)
C8' 0.128 (2) 0.3834 (11) 0.6722 (16) 0.086 (6) 0.312 (12)
H8' 0.0445 0.3815 0.7011 0.104* 0.312 (12)
C9' 0.114 (4) 0.3599 (6) 0.5828 (18) 0.093 (7) 0.312 (12)
H9'1 0.1845 0.3819 0.5527 0.112* 0.312 (12)
H9'2 0.0272 0.3766 0.5563 0.112* 0.312 (12)
C10' 0.160 (3) 0.4509 (17) 0.642 (2) 0.145 (13) 0.312 (12)
H10D 0.1263 0.4866 0.6781 0.217* 0.312 (12)
H10E 0.1187 0.4568 0.5840 0.217* 0.312 (12)
H10F 0.2566 0.4556 0.6418 0.217* 0.312 (12)
C11 0.0870 (7) 0.2485 (5) 0.5039 (5) 0.090 (2)
H5 0.0502 0.2748 0.4570 0.108*
C12 0.0984 (6) 0.1733 (4) 0.4908 (4) 0.0711 (18)
C13 0.0550 (7) 0.1448 (5) 0.4103 (4) 0.088 (2)
H6 0.0158 0.1747 0.3676 0.105*
C14 0.0686 (7) 0.0750 (5) 0.3928 (4) 0.093 (3)
H7 0.0362 0.0576 0.3391 0.112*
C15 0.1290 (6) 0.0298 (4) 0.4528 (3) 0.0719 (18)
H15 0.1404 −0.0179 0.4397 0.086*
C16 0.1730 (5) 0.0556 (3) 0.5332 (3) 0.0553 (14)
C17 0.1551 (5) 0.1262 (3) 0.5541 (3) 0.0555 (14)
C18 0.2845 (7) −0.0536 (3) 0.5759 (4) 0.0720 (17)
H18A 0.2083 −0.0841 0.5608 0.108*
H18B 0.3397 −0.0738 0.6234 0.108*
H18C 0.3372 −0.0487 0.5275 0.108*
O14 −0.0246 (4) 0.2439 (2) 0.7447 (3) 0.0792 (13)
C20 −0.2527 (8) 0.2460 (5) 0.7791 (5) 0.113 (3)
H20A −0.2683 0.2062 0.8154 0.169*
H20B −0.3344 0.2568 0.7437 0.169*
H20C −0.2263 0.2864 0.8143 0.169*
C21 −0.1421 (7) 0.2283 (3) 0.7233 (4) 0.0689 (17)
C22 −0.1803 (7) 0.1933 (4) 0.6404 (4) 0.090 (2)
H22A −0.1000 0.1768 0.6162 0.135*
H22B −0.2272 0.2265 0.6017 0.135*
H22C −0.2385 0.1537 0.6492 0.135*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tb1 0.05575 (17) 0.03633 (15) 0.04035 (16) 0.00036 (12) −0.00140 (11) 0.00182 (11)
Cu1 0.0784 (5) 0.0434 (4) 0.0669 (5) 0.0103 (3) 0.0002 (4) 0.0158 (3)
N1 0.104 (5) 0.044 (3) 0.128 (5) 0.001 (3) −0.023 (4) 0.018 (3)
N2 0.104 (4) 0.077 (4) 0.073 (4) 0.034 (3) 0.011 (3) 0.037 (3)
N3 0.058 (3) 0.047 (3) 0.071 (3) 0.001 (2) 0.021 (3) −0.004 (3)
N4 0.088 (5) 0.073 (4) 0.088 (5) 0.007 (3) 0.032 (4) 0.006 (3)
N5 0.091 (4) 0.043 (3) 0.068 (4) −0.016 (3) −0.014 (3) 0.016 (3)
O1 0.066 (2) 0.046 (2) 0.051 (2) 0.0027 (18) −0.0140 (18) −0.0006 (17)
O2 0.073 (3) 0.036 (2) 0.062 (2) 0.0043 (17) −0.012 (2) −0.0011 (17)
O3 0.080 (3) 0.053 (2) 0.041 (2) 0.0143 (19) −0.0046 (19) 0.0065 (17)
O4 0.069 (2) 0.055 (2) 0.044 (2) 0.0031 (19) 0.0036 (18) −0.0063 (18)
O5 0.077 (3) 0.056 (3) 0.089 (3) 0.009 (2) 0.023 (2) 0.021 (2)
O6 0.069 (3) 0.047 (2) 0.086 (3) 0.005 (2) 0.011 (2) 0.010 (2)
O7 0.098 (4) 0.084 (3) 0.166 (5) 0.015 (3) 0.063 (3) 0.012 (3)
O8 0.089 (4) 0.157 (5) 0.093 (4) −0.015 (4) 0.031 (3) −0.047 (4)
O9 0.072 (3) 0.121 (4) 0.089 (4) −0.004 (3) 0.006 (3) −0.021 (3)
O10 0.089 (4) 0.160 (6) 0.150 (6) −0.001 (4) 0.060 (4) −0.004 (4)
O11 0.151 (4) 0.059 (3) 0.058 (3) −0.038 (3) −0.016 (3) 0.006 (2)
O12 0.099 (3) 0.066 (3) 0.061 (3) −0.022 (2) −0.019 (2) 0.012 (2)
O13 0.170 (5) 0.058 (3) 0.106 (4) −0.032 (3) −0.037 (4) 0.035 (3)
C19 0.093 (5) 0.061 (4) 0.079 (5) 0.007 (3) −0.034 (4) 0.002 (3)
C2 0.055 (3) 0.042 (3) 0.058 (3) −0.006 (2) 0.000 (3) −0.012 (3)
C3 0.071 (4) 0.073 (4) 0.075 (4) −0.005 (3) −0.009 (3) −0.018 (4)
C4 0.078 (5) 0.079 (5) 0.108 (6) −0.018 (4) 0.001 (4) −0.051 (4)
C5 0.060 (4) 0.052 (4) 0.139 (7) 0.000 (3) 0.003 (4) −0.032 (4)
C6 0.050 (3) 0.049 (4) 0.090 (5) −0.008 (3) 0.008 (3) −0.018 (3)
C1 0.042 (3) 0.047 (3) 0.063 (4) −0.001 (2) 0.002 (3) −0.007 (3)
C7 0.067 (4) 0.034 (3) 0.162 (8) 0.000 (3) −0.002 (5) 0.005 (4)
C8 0.125 (8) 0.042 (5) 0.129 (8) 0.015 (5) 0.024 (7) 0.035 (5)
C9 0.25 (3) 0.102 (12) 0.117 (12) 0.018 (12) −0.056 (14) 0.049 (10)
C10 0.170 (11) 0.142 (10) 0.186 (11) −0.007 (8) 0.030 (8) −0.002 (8)
C8' 0.090 (10) 0.072 (9) 0.098 (9) 0.012 (8) 0.017 (8) 0.016 (7)
C9' 0.103 (11) 0.085 (9) 0.092 (9) 0.032 (9) 0.010 (8) 0.009 (9)
C10' 0.150 (16) 0.142 (16) 0.145 (16) 0.002 (10) 0.025 (10) 0.001 (10)
C11 0.082 (5) 0.121 (7) 0.068 (5) 0.039 (5) 0.014 (4) 0.043 (5)
C12 0.055 (3) 0.106 (6) 0.052 (4) 0.012 (4) 0.007 (3) 0.029 (4)
C13 0.070 (4) 0.144 (8) 0.047 (4) 0.008 (5) −0.006 (3) 0.025 (5)
C14 0.076 (5) 0.165 (9) 0.037 (4) −0.015 (5) −0.001 (3) 0.006 (5)
C15 0.059 (4) 0.115 (6) 0.042 (4) −0.013 (4) 0.005 (3) −0.009 (4)
C16 0.048 (3) 0.071 (4) 0.047 (3) −0.001 (3) 0.006 (3) −0.003 (3)
C17 0.046 (3) 0.087 (5) 0.033 (3) 0.006 (3) 0.004 (2) 0.008 (3)
C18 0.084 (4) 0.067 (4) 0.065 (4) 0.010 (3) 0.009 (3) −0.016 (3)
O14 0.068 (3) 0.082 (3) 0.088 (3) −0.014 (2) 0.010 (2) −0.017 (2)
C20 0.085 (5) 0.128 (7) 0.131 (7) −0.005 (5) 0.046 (5) −0.018 (6)
C21 0.063 (4) 0.058 (4) 0.086 (5) −0.002 (3) 0.009 (4) 0.006 (3)
C22 0.074 (4) 0.098 (6) 0.096 (5) −0.015 (4) −0.005 (4) −0.014 (4)

Geometric parameters (Å, °)

Tb1—O2 2.353 (3) C4—H2 0.9300
Tb1—O3 2.360 (3) C5—C6 1.382 (8)
Tb1—O8 2.427 (5) C5—H3 0.9300
Tb1—O6 2.436 (4) C6—C1 1.419 (7)
Tb1—O9 2.446 (5) C6—C7 1.441 (9)
Tb1—O5 2.472 (4) C7—H4 0.9300
Tb1—O11 2.498 (4) C8—C10 1.431 (7)
Tb1—O12 2.517 (4) C8—C9 1.455 (7)
Tb1—O1 2.610 (3) C8—H8 0.9800
Tb1—O4 2.616 (3) C9—H9A 0.9700
Tb1—N3 2.871 (5) C9—H9B 0.9700
Tb1—N4 2.875 (6) C10—H10A 0.9600
Cu1—O3 1.895 (4) C10—H10B 0.9600
Cu1—O2 1.901 (3) C10—H10C 0.9600
Cu1—N1 1.903 (6) C8'—C10' 1.40 (4)
Cu1—N2 1.929 (5) C8'—C9' 1.457 (7)
N1—C7 1.265 (9) C8'—H8' 0.9800
N1—C8' 1.490 (7) C9'—H9'1 0.9700
N1—C8 1.504 (6) C9'—H9'2 0.9700
N2—C11 1.251 (9) C10'—H10D 0.9600
N2—C9' 1.469 (7) C10'—H10E 0.9600
N2—C9 1.476 (7) C10'—H10F 0.9600
N3—O7 1.208 (6) C11—C12 1.438 (10)
N3—O5 1.234 (6) C11—H5 0.9300
N3—O6 1.277 (5) C12—C13 1.399 (9)
N4—O10 1.225 (7) C12—C17 1.405 (7)
N4—O8 1.233 (7) C13—C14 1.350 (9)
N4—O9 1.242 (7) C13—H6 0.9300
N5—O13 1.211 (6) C14—C15 1.364 (9)
N5—O12 1.237 (6) C14—H7 0.9300
N5—O11 1.244 (6) C15—C16 1.379 (7)
O1—C2 1.390 (6) C15—H15 0.9300
O1—C19 1.440 (6) C16—C17 1.385 (8)
O2—C1 1.326 (6) C18—H18A 0.9600
O3—C17 1.346 (6) C18—H18B 0.9600
O4—C16 1.396 (6) C18—H18C 0.9600
O4—C18 1.437 (6) O14—C21 1.217 (7)
C19—H1A 0.9600 C20—C21 1.495 (9)
C19—H1B 0.9600 C20—H20A 0.9600
C19—H1C 0.9600 C20—H20B 0.9600
C2—C3 1.368 (7) C20—H20C 0.9600
C2—C1 1.397 (7) C21—C22 1.471 (8)
C3—C4 1.408 (8) C22—H22A 0.9600
C3—H1 0.9300 C22—H22B 0.9600
C4—C5 1.337 (9) C22—H22C 0.9600
O2—Tb1—O3 63.73 (12) C17—O3—Cu1 124.6 (3)
O2—Tb1—O8 73.33 (17) C17—O3—Tb1 128.9 (3)
O3—Tb1—O8 98.85 (18) Cu1—O3—Tb1 106.35 (15)
O2—Tb1—O6 117.86 (13) C16—O4—C18 115.7 (4)
O3—Tb1—O6 119.11 (13) C16—O4—Tb1 118.3 (3)
O8—Tb1—O6 141.76 (18) C18—O4—Tb1 125.4 (3)
O2—Tb1—O9 101.25 (15) N3—O5—Tb1 95.7 (3)
O3—Tb1—O9 74.70 (15) N3—O6—Tb1 96.2 (3)
O8—Tb1—O9 50.48 (17) N4—O8—Tb1 98.2 (4)
O6—Tb1—O9 140.80 (15) N4—O9—Tb1 97.0 (4)
O2—Tb1—O5 75.17 (13) N5—O11—Tb1 97.9 (3)
O3—Tb1—O5 75.56 (13) N5—O12—Tb1 97.2 (3)
O8—Tb1—O5 146.97 (18) O1—C19—H1A 109.5
O6—Tb1—O5 51.47 (13) O1—C19—H1B 109.5
O9—Tb1—O5 148.17 (16) H1A—C19—H1B 109.5
O2—Tb1—O11 121.96 (13) O1—C19—H1C 109.5
O3—Tb1—O11 164.89 (15) H1A—C19—H1C 109.5
O8—Tb1—O11 71.6 (2) H1B—C19—H1C 109.5
O6—Tb1—O11 72.08 (15) C3—C2—O1 124.6 (5)
O9—Tb1—O11 90.24 (17) C3—C2—C1 121.6 (5)
O5—Tb1—O11 118.88 (16) O1—C2—C1 113.8 (4)
O2—Tb1—O12 166.19 (14) C2—C3—C4 118.1 (6)
O3—Tb1—O12 121.65 (13) C2—C3—H1 120.9
O8—Tb1—O12 92.96 (18) C4—C3—H1 120.9
O6—Tb1—O12 71.95 (14) C5—C4—C3 120.6 (6)
O9—Tb1—O12 70.09 (16) C5—C4—H2 119.7
O5—Tb1—O12 117.97 (15) C3—C4—H2 119.7
O11—Tb1—O12 49.42 (13) C4—C5—C6 123.0 (6)
O2—Tb1—O1 61.47 (11) C4—C5—H3 118.5
O3—Tb1—O1 123.72 (12) C6—C5—H3 118.5
O8—Tb1—O1 77.27 (16) C5—C6—C1 117.2 (6)
O6—Tb1—O1 77.77 (12) C5—C6—C7 119.8 (6)
O9—Tb1—O1 127.60 (15) C1—C6—C7 123.0 (6)
O5—Tb1—O1 79.22 (13) O2—C1—C2 116.3 (5)
O11—Tb1—O1 66.65 (12) O2—C1—C6 124.5 (5)
O12—Tb1—O1 114.63 (12) C2—C1—C6 119.2 (5)
O2—Tb1—O4 122.57 (12) N1—C7—C6 126.7 (6)
O3—Tb1—O4 61.61 (12) N1—C7—H4 116.6
O8—Tb1—O4 130.88 (16) C6—C7—H4 116.6
O6—Tb1—O4 76.55 (13) C10—C8—C9 102.5 (14)
O9—Tb1—O4 80.41 (15) C10—C8—N1 118.4 (11)
O5—Tb1—O4 75.68 (13) C9—C8—N1 114.4 (10)
O11—Tb1—O4 115.40 (13) C10—C8—H8 106.9
O12—Tb1—O4 67.72 (12) C9—C8—H8 106.9
O1—Tb1—O4 151.75 (11) N1—C8—H8 106.9
O2—Tb1—N3 97.24 (13) C8—C9—N2 101.0 (10)
O3—Tb1—N3 96.33 (14) C8—C9—H9A 111.6
O8—Tb1—N3 156.01 (17) N2—C9—H9A 111.6
O6—Tb1—N3 26.24 (12) C8—C9—H9B 111.6
O9—Tb1—N3 152.87 (16) N2—C9—H9B 111.6
O5—Tb1—N3 25.33 (13) H9A—C9—H9B 109.4
O11—Tb1—N3 96.66 (16) C10'—C8'—C9' 87.5 (18)
O12—Tb1—N3 94.76 (15) C10'—C8'—N1 120 (2)
O1—Tb1—N3 78.85 (13) C9'—C8'—N1 102.3 (19)
O4—Tb1—N3 72.91 (12) C10'—C8'—H8' 114.4
O2—Tb1—N4 87.52 (15) C9'—C8'—H8' 114.4
O3—Tb1—N4 87.12 (16) N1—C8'—H8' 114.4
O8—Tb1—N4 25.11 (16) C8'—C9'—N2 114.7 (19)
O6—Tb1—N4 148.99 (15) C8'—C9'—H9'1 108.6
O9—Tb1—N4 25.39 (16) N2—C9'—H9'1 108.6
O5—Tb1—N4 159.54 (15) C8'—C9'—H9'2 108.6
O11—Tb1—N4 79.46 (18) N2—C9'—H9'2 108.6
O12—Tb1—N4 80.33 (16) H9'1—C9'—H9'2 107.6
O1—Tb1—N4 102.25 (17) C8'—C10'—H10D 109.5
O4—Tb1—N4 105.80 (17) C8'—C10'—H10E 109.5
N3—Tb1—N4 175.01 (15) H10D—C10'—H10E 109.5
O3—Cu1—O2 81.88 (15) C8'—C10'—H10F 109.5
O3—Cu1—N1 173.3 (2) H10D—C10'—H10F 109.5
O2—Cu1—N1 96.5 (2) H10E—C10'—H10F 109.5
O3—Cu1—N2 96.0 (2) N2—C11—C12 127.3 (6)
O2—Cu1—N2 172.7 (2) N2—C11—H5 116.4
N1—Cu1—N2 84.8 (3) C12—C11—H5 116.4
O3—Cu1—Tb1 41.50 (10) C13—C12—C17 117.5 (7)
O2—Cu1—Tb1 41.33 (11) C13—C12—C11 118.9 (6)
N1—Cu1—Tb1 137.72 (17) C17—C12—C11 123.6 (6)
N2—Cu1—Tb1 137.4 (2) C14—C13—C12 121.8 (7)
C7—N1—C8' 118.8 (11) C14—C13—H6 119.1
C7—N1—C8 126.7 (7) C12—C13—H6 119.1
C8'—N1—C8 35.8 (9) C13—C14—C15 120.9 (7)
C7—N1—Cu1 124.4 (5) C13—C14—H7 119.5
C8'—N1—Cu1 110.4 (10) C15—C14—H7 119.5
C8—N1—Cu1 108.2 (6) C14—C15—C16 119.2 (7)
C11—N2—C9' 126.8 (13) C14—C15—H15 120.4
C11—N2—C9 120.9 (8) C16—C15—H15 120.4
C9'—N2—C9 12 (2) C15—C16—C17 121.1 (6)
C11—N2—Cu1 124.1 (5) C15—C16—O4 124.8 (6)
C9'—N2—Cu1 108.9 (12) C17—C16—O4 114.1 (5)
C9—N2—Cu1 114.8 (7) O3—C17—C16 116.5 (5)
O7—N3—O5 123.8 (5) O3—C17—C12 124.0 (6)
O7—N3—O6 120.0 (5) C16—C17—C12 119.4 (5)
O5—N3—O6 116.2 (4) O4—C18—H18A 109.5
O7—N3—Tb1 174.9 (4) O4—C18—H18B 109.5
O5—N3—Tb1 59.0 (3) H18A—C18—H18B 109.5
O6—N3—Tb1 57.5 (3) O4—C18—H18C 109.5
O10—N4—O8 123.5 (7) H18A—C18—H18C 109.5
O10—N4—O9 122.3 (7) H18B—C18—H18C 109.5
O8—N4—O9 114.2 (6) C21—C20—H20A 109.5
O10—N4—Tb1 179.4 (5) C21—C20—H20B 109.5
O8—N4—Tb1 56.7 (3) H20A—C20—H20B 109.5
O9—N4—Tb1 57.6 (3) C21—C20—H20C 109.5
O13—N5—O12 122.6 (5) H20A—C20—H20C 109.5
O13—N5—O11 122.0 (5) H20B—C20—H20C 109.5
O12—N5—O11 115.3 (5) O14—C21—C22 120.9 (6)
O13—N5—Tb1 178.7 (5) O14—C21—C20 121.1 (7)
O12—N5—Tb1 58.2 (3) C22—C21—C20 117.9 (6)
O11—N5—Tb1 57.3 (3) C21—C22—H22A 109.5
C2—O1—C19 116.9 (4) C21—C22—H22B 109.5
C2—O1—Tb1 117.3 (3) H22A—C22—H22B 109.5
C19—O1—Tb1 125.7 (3) C21—C22—H22C 109.5
C1—O2—Cu1 124.4 (3) H22A—C22—H22C 109.5
C1—O2—Tb1 128.4 (3) H22B—C22—H22C 109.5
Cu1—O2—Tb1 106.42 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2566).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Kara, H., Elerman, Y. & Prout, K. (2000). Z. Naturforsch. Teil B, 55, 1131–1136.
  3. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  4. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sun, W.-B., Gao, T., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2007). Acta Cryst. E63, m2192.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022077/cv2566sup1.cif

e-65-0m780-sup1.cif (27.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022077/cv2566Isup2.hkl

e-65-0m780-Isup2.hkl (278.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES