Abstract
The title compound, C15H18N4O3, was formed by the reaction of methanol with 5-ethyl-1,3-dimethylalloxazinium perchlorate. Its structure mimics those of possible flavin intermediates in flavoenzymes. The heterocyclic rings are substituted with methyl, ethyl and methoxy groups. The central tricyclic skeleton is bent due to the presence of an sp 3 C atom. There are weak intermolecular C—H⋯O interactions in the structure, forming a three-dimensional network.
Related literature
in the context of this article, a C4a-adduct is a compound with a nucleophile covalently bound to atom C4a of the flavin fragment; isoalloxazines are natural flavin derivatives, alloxazines are their isomers. For the biological relevance of C4a-adducts in flavoenzymes, see: Palfey & Massey (1998 ▶); Massey (2000 ▶); Müller (1991 ▶). For the preparation of C4a-isoalloxazine adducts, see: Kemal & Bruice (1976 ▶); Kemal et al. (1977 ▶); Hoegy & Mariano (1997 ▶). For the crystal structures of isoalloxazine adducts, see: Bolognesi et al. (1978 ▶). For the crystal structures of reduced isoalloxazines, see: Werner & Rönnquist (1970 ▶); Norrestam & Von Glehn (1972 ▶). For puckering parameters, see: Cremer & Pople (1975 ▶). For the extinction correction, see: Larson (1970 ▶).
Experimental
Crystal data
C15H18N4O3
M r = 302.33
Monoclinic,
a = 10.3958 (2) Å
b = 12.7174 (2) Å
c = 10.9421 (2) Å
β = 100.4727 (16)°
V = 1422.53 (4) Å3
Z = 4
Cu Kα radiation
μ = 0.83 mm−1
T = 150 K
0.50 × 0.28 × 0.15 mm
Data collection
Oxford Diffraction Xcalibur diffractometer
Absorption correction: analytical (de Meulenaer & Tompa, 1965 ▶) T min = 0.76, T max = 0.88
18511 measured reflections
2996 independent reflections
2692 reflections with I > 2σ(I)
R int = 0.025
Refinement
R[F 2 > 2σ(F 2)] = 0.041
wR(F 2) = 0.121
S = 0.99
2996 reflections
200 parameters
H-atom parameters constrained
Δρmax = 0.23 e Å−3
Δρmin = −0.21 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2005 ▶); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 ▶); data reduction: CrysAlis RED; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2006 ▶); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: CRYSTALS and PARST97 (Nardelli, 1997).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020856/fb2153sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020856/fb2153Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C4—H42⋯O1i | 0.96 | 2.43 | 3.3230 (18) | 155 |
| C14—H141⋯O21ii | 0.94 | 2.56 | 3.3999 (18) | 149 |
| C19—H191⋯O6iii | 0.97 | 2.46 | 3.3021 (18) | 146 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
Financial support from the Czech Science Foundation (grant No. 203/07/1246) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. 6046137302) is gratefully acknowledged.
supplementary crystallographic information
Comment
Flavinium salts (both, isoalloxazinium and alloxazinium) represent suitable models (Müller, 1991; Kemal & Bruice, 1976; Kemal et al., 1977) of natural flavin derivatives which are important cofactors in many types of oxido-reductases and monooxygenases (Massey, 2000; Palfey & Massey, 1998). Similarly to natural flavins, flavinium salts react easily with various nucleophiles (water, methanol, primary amines etc.) with the formation of the covalent C4a-adducts (C4a-adduct means a compound with the covalently bound nucleophile to the C4a-atom of the flavin fragment; see Kemal & Bruice, 1976; Kemal et al., 1977; Hoegy & Mariano, 1997). The C4a-adducts of flavins are important intermediates of the reactions catalyzed by flavoenzymes.
In this paper, the first crystal structure of the C4a-adduct of alloxazinium salt (Figs. 1 and 2) is reported. The adduct is formed by the reaction of methanol with 5-ethyl-1,3-dimethylalloxazinium perchlorate (Fig. 2). By this reaction, the hybridization of C20 atom (C4a atom in IUPAC numbering of alloxazine moiety) is changed from sp2 to sp3 (Fig. 2). This change of hybridization causes a folding of the tricyclic alloxazine skeleton. The value of the interplanar angle between the plane determined by the C2, N3, C5, and N7 atoms and the plane determined by the C9, N10, C11, C12, C13, C14, C15, C16, and N17 atoms is 15.69 (5)°. This angle is larger in comparison with that found in the case of the similar adducts of C-nucleophiles with isoalloxazine derivatives; e.g. the angle between the analogous planes in 4a,5-dihydro-4a-isopropyl-3,10-dimethylisoalloxazine (Bolognesi et al., 1978) is only 6.85 (9)°. The observed 'butterfly' arrangement of the tricyclic alloxazine subunit in the title compound corresponds to the structure of dihydroflavins already published by Werner & Rönnquist (1970) and Norrestam & Von Glehn (1972).
Due to the sp3 hybridization, C20 atom is shifted out of the alloxazine plane by 0.313 (1)Å. On the other hand, the values of the bond angles around C20 are different from those expected for an sp3 carbon atom, probably due to the rigidity of the dihydroalloxazine system. The conformation of the ring 1 (C2, N3, C5, N7, C9, C20) is between 5H6 and E6. The conformation of the ring 2 (C9, N10, C11, C16, N17, C20) is between 5S6 and E6, rather closer to E6. The distances, angles and puckering parameters (Cremer & Pople, 1975) were calculated using PARST97 (Nardelli, 1999).
Three weak intermolecular C—H···O interactions were found forming a three-dimensional network.
Experimental
The crystals of the title compound were obtained from a solution of 1,3-dimethyl-5-ethylalloxazinium perchlorate (20 mg, 0.054 mmol) and dry triethylamine (7.5 µl, 0.054 mmol) in dry methanol (1.8 ml). Single crystals suitable for analysis were grown overnight directly from the reaction mixture. M. p. 384 - 386 K.
Refinement
The H atoms were found in the Δρ map and initially refined with the restraints on the bond lengths and angles to regularize their geometry (Cmethyl—H = 0.96 (2), Cmethylene—H = 0.97 (2), Caryl = 0.93 (2) Å. Uiso(H) = 1.5 UeqCmethyl or 1.2 UeqCmethylene/aryl. After the convergement the geometrical restraints were substituted by the geometrical constraints.
1H NMR (pyridine-d5; 600 MHz): 1.57 (t, 3H; CH2CH3), 2.82 (s, 3H; OCH3), 3.31 (s, 3H; 3 N–CH3), 3.56 (s, 3H; 1 N–CH3), 3.58–3.62 (m, 1H; 5 N–CH2CH3), 4.17–4.21 (m, 1H; 5 N–CH2CH3), 7.03–7.07 (m, 2H; 6,8–CH), 7.33 (t, 2J = 7.20 Hz, 1H; 7–CH), 7.63 (d, 2J = 7.14 Hz, 1H; 9–CH). 13C NMR (pyridine-d5; 150 MHz): 50.9 (OCH3), 82.2 (4a–C).
Figures
Fig. 1.
The title molecule with the displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radius.
Fig. 2.
Formation of the adduct by the reaction of 5-ethyl-1,3-dimethylalloxazinium perchlorate with methanol.
Crystal data
| C15H18N4O3 | F(000) = 640 |
| Mr = 302.33 | Dx = 1.412 Mg m−3 |
| Monoclinic, P21/n | Melting point = 384–386 K |
| Hall symbol: -P 2yn | Cu Kα radiation, λ = 1.54184 Å |
| a = 10.3958 (2) Å | Cell parameters from 11727 reflections |
| b = 12.7174 (2) Å | θ = 4–77° |
| c = 10.9421 (2) Å | µ = 0.83 mm−1 |
| β = 100.4727 (16)° | T = 150 K |
| V = 1422.53 (4) Å3 | Prism, colourless |
| Z = 4 | 0.50 × 0.28 × 0.15 mm |
Data collection
| Oxford Diffraction Xcalibur diffractometer | 2996 independent reflections |
| graphite | 2692 reflections with I > 2σ(I) |
| Detector resolution: 8.1917 pixels mm-1 | Rint = 0.025 |
| φ and ω scans | θmax = 77.5°, θmin = 5.4° |
| Absorption correction: analytical (de Meulenaer & Tompa, 1965) | h = −13→13 |
| Tmin = 0.76, Tmax = 0.88 | k = −15→15 |
| 18511 measured reflections | l = −12→13 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
| wR(F2) = 0.121 | Modified Sheldrick (2008) w = 1/[σ2(F2) + (0.08P)2 + 0.33P], where P = [max(Fo2,0) + 2Fc2]/3 |
| S = 0.99 | (Δ/σ)max = 0.0003 |
| 2996 reflections | Δρmax = 0.23 e Å−3 |
| 200 parameters | Δρmin = −0.21 e Å−3 |
| 0 restraints | Extinction correction: Larson (1970), Equation 22 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 29 (5) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.43813 (9) | 0.38054 (7) | 0.10771 (8) | 0.0341 | |
| C2 | 0.53277 (11) | 0.36250 (9) | 0.18746 (11) | 0.0269 | |
| N3 | 0.65728 (10) | 0.37227 (8) | 0.16350 (9) | 0.0295 | |
| C4 | 0.67024 (14) | 0.39751 (11) | 0.03524 (12) | 0.0394 | |
| C5 | 0.77221 (12) | 0.37049 (9) | 0.25223 (12) | 0.0308 | |
| O6 | 0.87775 (9) | 0.38486 (8) | 0.22244 (10) | 0.0413 | |
| N7 | 0.75942 (9) | 0.35479 (8) | 0.37412 (10) | 0.0293 | |
| C8 | 0.87888 (12) | 0.36402 (11) | 0.46793 (13) | 0.0388 | |
| C9 | 0.63877 (10) | 0.35461 (8) | 0.41330 (11) | 0.0249 | |
| N10 | 0.63770 (9) | 0.37433 (8) | 0.52755 (9) | 0.0272 | |
| C11 | 0.51698 (11) | 0.37383 (9) | 0.56668 (11) | 0.0260 | |
| C12 | 0.51588 (13) | 0.38898 (10) | 0.69269 (11) | 0.0317 | |
| C13 | 0.39963 (14) | 0.39033 (10) | 0.73696 (11) | 0.0340 | |
| C14 | 0.28241 (13) | 0.37940 (9) | 0.65335 (12) | 0.0333 | |
| C15 | 0.28184 (12) | 0.36561 (9) | 0.52737 (12) | 0.0301 | |
| C16 | 0.39920 (11) | 0.36095 (8) | 0.48170 (10) | 0.0248 | |
| N17 | 0.40282 (9) | 0.34548 (8) | 0.35602 (9) | 0.0257 | |
| C18 | 0.27877 (11) | 0.31653 (11) | 0.27437 (11) | 0.0328 | |
| C19 | 0.19478 (12) | 0.41186 (13) | 0.22860 (13) | 0.0412 | |
| C20 | 0.52333 (10) | 0.31848 (9) | 0.31740 (10) | 0.0249 | |
| O21 | 0.53556 (8) | 0.20753 (6) | 0.29281 (7) | 0.0295 | |
| C22 | 0.54526 (16) | 0.14088 (10) | 0.39936 (13) | 0.0417 | |
| H41 | 0.7567 | 0.3805 | 0.0256 | 0.0569* | |
| H42 | 0.6530 | 0.4708 | 0.0177 | 0.0574* | |
| H43 | 0.6097 | 0.3549 | −0.0197 | 0.0574* | |
| H81 | 0.8696 | 0.3196 | 0.5369 | 0.0560* | |
| H82 | 0.8932 | 0.4348 | 0.4948 | 0.0553* | |
| H83 | 0.9525 | 0.3400 | 0.4345 | 0.0558* | |
| H121 | 0.5991 | 0.3989 | 0.7479 | 0.0377* | |
| H131 | 0.3999 | 0.3991 | 0.8214 | 0.0392* | |
| H141 | 0.2022 | 0.3814 | 0.6805 | 0.0402* | |
| H151 | 0.2003 | 0.3581 | 0.4738 | 0.0353* | |
| H181 | 0.2289 | 0.2703 | 0.3207 | 0.0369* | |
| H182 | 0.2982 | 0.2774 | 0.2036 | 0.0371* | |
| H191 | 0.1071 | 0.3889 | 0.1944 | 0.0565* | |
| H192 | 0.1917 | 0.4597 | 0.2970 | 0.0566* | |
| H193 | 0.2316 | 0.4495 | 0.1641 | 0.0564* | |
| H221 | 0.5453 | 0.0697 | 0.3721 | 0.0593* | |
| H222 | 0.6286 | 0.1545 | 0.4591 | 0.0602* | |
| H223 | 0.4725 | 0.1509 | 0.4432 | 0.0599* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0330 (5) | 0.0392 (5) | 0.0302 (4) | 0.0028 (4) | 0.0063 (3) | 0.0028 (3) |
| C2 | 0.0302 (6) | 0.0222 (5) | 0.0303 (5) | 0.0018 (4) | 0.0110 (4) | −0.0008 (4) |
| N3 | 0.0308 (5) | 0.0291 (5) | 0.0322 (5) | 0.0028 (4) | 0.0156 (4) | 0.0040 (4) |
| C4 | 0.0483 (7) | 0.0396 (7) | 0.0363 (7) | 0.0079 (6) | 0.0236 (6) | 0.0081 (5) |
| C5 | 0.0302 (6) | 0.0237 (6) | 0.0425 (7) | 0.0025 (4) | 0.0174 (5) | 0.0041 (4) |
| O6 | 0.0300 (5) | 0.0432 (5) | 0.0566 (6) | 0.0001 (4) | 0.0231 (4) | 0.0068 (4) |
| N7 | 0.0218 (5) | 0.0302 (5) | 0.0379 (5) | 0.0017 (4) | 0.0107 (4) | 0.0035 (4) |
| C8 | 0.0229 (6) | 0.0440 (7) | 0.0491 (7) | 0.0016 (5) | 0.0056 (5) | 0.0067 (6) |
| C9 | 0.0226 (5) | 0.0207 (5) | 0.0328 (6) | 0.0009 (4) | 0.0085 (4) | 0.0025 (4) |
| N10 | 0.0256 (5) | 0.0260 (5) | 0.0306 (5) | 0.0007 (3) | 0.0068 (4) | 0.0020 (4) |
| C11 | 0.0271 (6) | 0.0218 (5) | 0.0305 (6) | −0.0003 (4) | 0.0093 (4) | 0.0007 (4) |
| C12 | 0.0393 (6) | 0.0270 (6) | 0.0295 (6) | 0.0004 (5) | 0.0082 (5) | −0.0004 (4) |
| C13 | 0.0481 (7) | 0.0271 (6) | 0.0307 (6) | 0.0007 (5) | 0.0179 (5) | 0.0006 (4) |
| C14 | 0.0388 (6) | 0.0261 (6) | 0.0407 (6) | −0.0025 (5) | 0.0227 (5) | −0.0008 (5) |
| C15 | 0.0285 (6) | 0.0265 (6) | 0.0381 (6) | −0.0040 (4) | 0.0137 (5) | −0.0029 (4) |
| C16 | 0.0272 (5) | 0.0202 (5) | 0.0292 (5) | −0.0020 (4) | 0.0111 (4) | −0.0005 (4) |
| N17 | 0.0220 (4) | 0.0279 (5) | 0.0286 (5) | −0.0020 (4) | 0.0082 (3) | −0.0034 (4) |
| C18 | 0.0247 (5) | 0.0412 (7) | 0.0334 (6) | −0.0084 (5) | 0.0074 (4) | −0.0088 (5) |
| C19 | 0.0238 (5) | 0.0612 (9) | 0.0373 (6) | 0.0020 (5) | 0.0020 (5) | −0.0044 (6) |
| C20 | 0.0244 (5) | 0.0228 (5) | 0.0293 (5) | −0.0003 (4) | 0.0097 (4) | −0.0006 (4) |
| O21 | 0.0350 (4) | 0.0223 (4) | 0.0342 (4) | 0.0002 (3) | 0.0141 (3) | −0.0013 (3) |
| C22 | 0.0614 (9) | 0.0254 (6) | 0.0435 (7) | 0.0023 (6) | 0.0231 (6) | 0.0045 (5) |
Geometric parameters (Å, °)
| O1—C2 | 1.2124 (15) | C12—H121 | 0.969 |
| C2—N3 | 1.3723 (15) | C13—C14 | 1.3914 (19) |
| C2—C20 | 1.5476 (15) | C13—H131 | 0.930 |
| N3—C4 | 1.4696 (15) | C14—C15 | 1.3886 (18) |
| N3—C5 | 1.3961 (17) | C14—H141 | 0.935 |
| C4—H41 | 0.949 | C15—C16 | 1.4012 (16) |
| C4—H42 | 0.962 | C15—H151 | 0.944 |
| C4—H43 | 0.955 | C16—N17 | 1.3965 (14) |
| C5—O6 | 1.2138 (15) | N17—C18 | 1.4758 (14) |
| C5—N7 | 1.3786 (16) | N17—C20 | 1.4347 (14) |
| N7—C8 | 1.4650 (16) | C18—C19 | 1.524 (2) |
| N7—C9 | 1.3973 (14) | C18—H181 | 0.983 |
| C8—H81 | 0.961 | C18—H182 | 0.972 |
| C8—H82 | 0.950 | C19—H191 | 0.966 |
| C8—H83 | 0.956 | C19—H192 | 0.969 |
| C9—N10 | 1.2771 (16) | C19—H193 | 0.985 |
| C9—C20 | 1.5149 (15) | C20—O21 | 1.4464 (13) |
| N10—C11 | 1.3977 (15) | O21—C22 | 1.4300 (15) |
| C11—C12 | 1.3944 (16) | C22—H221 | 0.953 |
| C11—C16 | 1.4060 (16) | C22—H222 | 1.002 |
| C12—C13 | 1.3813 (18) | C22—H223 | 0.975 |
| O1—C2—N3 | 121.04 (11) | C13—C14—C15 | 120.70 (11) |
| O1—C2—C20 | 123.43 (10) | C13—C14—H141 | 120.9 |
| N3—C2—C20 | 115.33 (10) | C15—C14—H141 | 118.4 |
| C2—N3—C4 | 117.11 (11) | C14—C15—C16 | 120.83 (12) |
| C2—N3—C5 | 125.69 (10) | C14—C15—H151 | 118.1 |
| C4—N3—C5 | 116.89 (10) | C16—C15—H151 | 121.1 |
| N3—C4—H41 | 108.0 | C11—C16—C15 | 117.99 (10) |
| N3—C4—H42 | 110.9 | C11—C16—N17 | 119.44 (10) |
| H41—C4—H42 | 110.2 | C15—C16—N17 | 122.56 (10) |
| N3—C4—H43 | 108.2 | C16—N17—C18 | 117.02 (9) |
| H41—C4—H43 | 109.2 | C16—N17—C20 | 120.34 (9) |
| H42—C4—H43 | 110.3 | C18—N17—C20 | 118.40 (9) |
| N3—C5—O6 | 120.78 (12) | N17—C18—C19 | 112.69 (10) |
| N3—C5—N7 | 117.02 (10) | N17—C18—H181 | 108.8 |
| O6—C5—N7 | 122.17 (12) | C19—C18—H181 | 108.7 |
| C5—N7—C8 | 116.60 (10) | N17—C18—H182 | 109.0 |
| C5—N7—C9 | 123.15 (10) | C19—C18—H182 | 109.6 |
| C8—N7—C9 | 118.62 (10) | H181—C18—H182 | 108.1 |
| N7—C8—H81 | 108.0 | C18—C19—H191 | 109.3 |
| N7—C8—H82 | 111.0 | C18—C19—H192 | 110.0 |
| H81—C8—H82 | 110.2 | H191—C19—H192 | 109.2 |
| N7—C8—H83 | 110.0 | C18—C19—H193 | 110.3 |
| H81—C8—H83 | 108.3 | H191—C19—H193 | 109.3 |
| H82—C8—H83 | 109.3 | H192—C19—H193 | 108.6 |
| N7—C9—N10 | 117.91 (10) | C2—C20—C9 | 110.62 (9) |
| N7—C9—C20 | 115.48 (10) | C2—C20—N17 | 112.87 (9) |
| N10—C9—C20 | 126.22 (10) | C9—C20—N17 | 110.34 (9) |
| C9—N10—C11 | 117.84 (10) | C2—C20—O21 | 99.18 (8) |
| N10—C11—C12 | 118.13 (11) | C9—C20—O21 | 109.84 (9) |
| N10—C11—C16 | 121.37 (10) | N17—C20—O21 | 113.53 (9) |
| C12—C11—C16 | 120.49 (11) | C20—O21—C22 | 114.97 (9) |
| C11—C12—C13 | 120.89 (12) | O21—C22—H221 | 108.1 |
| C11—C12—H121 | 117.9 | O21—C22—H222 | 110.8 |
| C13—C12—H121 | 121.2 | H221—C22—H222 | 108.6 |
| C12—C13—C14 | 119.06 (11) | O21—C22—H223 | 112.2 |
| C12—C13—H131 | 120.3 | H221—C22—H223 | 108.8 |
| C14—C13—H131 | 120.6 | H222—C22—H223 | 108.2 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C4—H42···O1i | 0.96 | 2.43 | 3.3230 (18) | 155 |
| C14—H141···O21ii | 0.94 | 2.56 | 3.3999 (18) | 149 |
| C19—H191···O6iii | 0.97 | 2.46 | 3.3021 (18) | 146 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2153).
References
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
- Bolognesi, M., Ghisla, S. & Incoccia, L. (1978). Acta Cryst. B34, 821–828.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Hoegy, S. E. & Mariano, P. S. (1997). Tetrahedron, 53, 5027–5046.
- Kemal, C. & Bruice, T. C. (1976). Proc. Natl Acad. Sci. USA, 73, 995–999. [DOI] [PMC free article] [PubMed]
- Kemal, C., Chan, T. W. & Bruice, T. C. (1977). J. Am. Chem. Soc.99, 7272–7286. [DOI] [PubMed]
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Massey, V. (2000). Biochem. Soc. Trans.28, 283–296. [PubMed]
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst.19, 1014–1018.
- Müller, F. (1991). In Chemistry and Biochemistry of Flavoenzymes Boca Raton, Florida: CRC Press.
- Nardelli, M. (1999). J. Appl. Cryst.32, 563–571.
- Norrestam, R. & Von Glehn, M. (1972). Acta Cryst. B28, 434–440.
- Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
- Palatinus, L. & Chapuis, G. (2006). Superflip EPFL Lausanne, Switzerland. http://superspace.epfl.ch/superflip.
- Palfey, B. & Massey, V. (1998). Comprehensive Biological Catalysis, Vol. 3, edited by M. Sinnott, pp. 83–154. London: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Werner, P.-E. & Rönnquist, O. (1970). Acta Chem. Scand.24, 997–1009.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020856/fb2153sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020856/fb2153Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


