Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 10;65(Pt 7):o1536–o1537. doi: 10.1107/S1600536809020856

5-Ethyl-4a-meth­oxy-1,3-dimethyl-4a,5-dihydro­benzo[g]pteridine-2,4(1H,3H)dione

Petra Ménová a, Václav Eigner b, Radek Cibulka a,*, Jan Čejka b, Hana Dvořáková c
PMCID: PMC2969355  PMID: 21582825

Abstract

The title compound, C15H18N4O3, was formed by the reaction of methanol with 5-ethyl-1,3-dimethyl­alloxazinium perchlorate. Its structure mimics those of possible flavin inter­mediates in flavoenzymes. The heterocyclic rings are substituted with methyl, ethyl and meth­oxy groups. The central tricyclic skeleton is bent due to the presence of an sp 3 C atom. There are weak inter­molecular C—H⋯O inter­actions in the structure, forming a three-dimensional network.

Related literature

in the context of this article, a C4a-adduct is a compound with a nucleophile covalently bound to atom C4a of the flavin fragment; isoalloxazines are natural flavin derivatives, alloxazines are their isomers. For the biological relevance of C4a-adducts in flavoenzymes, see: Palfey & Massey (1998); Massey (2000); Müller (1991). For the preparation of C4a-isoalloxazine adducts, see: Kemal & Bruice (1976); Kemal et al. (1977); Hoegy & Mariano (1997). For the crystal structures of isoalloxazine adducts, see: Bolognesi et al. (1978). For the crystal structures of reduced isoalloxazines, see: Werner & Rönnquist (1970); Norrestam & Von Glehn (1972). For puckering parameters, see: Cremer & Pople (1975). For the extinction correction, see: Larson (1970).graphic file with name e-65-o1536-scheme1.jpg

Experimental

Crystal data

  • C15H18N4O3

  • M r = 302.33

  • Monoclinic, Inline graphic

  • a = 10.3958 (2) Å

  • b = 12.7174 (2) Å

  • c = 10.9421 (2) Å

  • β = 100.4727 (16)°

  • V = 1422.53 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 150 K

  • 0.50 × 0.28 × 0.15 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965) T min = 0.76, T max = 0.88

  • 18511 measured reflections

  • 2996 independent reflections

  • 2692 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.121

  • S = 0.99

  • 2996 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2006); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CRYSTALS and PARST97 (Nardelli, 1997).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020856/fb2153sup1.cif

e-65-o1536-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020856/fb2153Isup2.hkl

e-65-o1536-Isup2.hkl (149.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H42⋯O1i 0.96 2.43 3.3230 (18) 155
C14—H141⋯O21ii 0.94 2.56 3.3999 (18) 149
C19—H191⋯O6iii 0.97 2.46 3.3021 (18) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Financial support from the Czech Science Foundation (grant No. 203/07/1246) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. 6046137302) is gratefully acknowledged.

supplementary crystallographic information

Comment

Flavinium salts (both, isoalloxazinium and alloxazinium) represent suitable models (Müller, 1991; Kemal & Bruice, 1976; Kemal et al., 1977) of natural flavin derivatives which are important cofactors in many types of oxido-reductases and monooxygenases (Massey, 2000; Palfey & Massey, 1998). Similarly to natural flavins, flavinium salts react easily with various nucleophiles (water, methanol, primary amines etc.) with the formation of the covalent C4a-adducts (C4a-adduct means a compound with the covalently bound nucleophile to the C4a-atom of the flavin fragment; see Kemal & Bruice, 1976; Kemal et al., 1977; Hoegy & Mariano, 1997). The C4a-adducts of flavins are important intermediates of the reactions catalyzed by flavoenzymes.

In this paper, the first crystal structure of the C4a-adduct of alloxazinium salt (Figs. 1 and 2) is reported. The adduct is formed by the reaction of methanol with 5-ethyl-1,3-dimethylalloxazinium perchlorate (Fig. 2). By this reaction, the hybridization of C20 atom (C4a atom in IUPAC numbering of alloxazine moiety) is changed from sp2 to sp3 (Fig. 2). This change of hybridization causes a folding of the tricyclic alloxazine skeleton. The value of the interplanar angle between the plane determined by the C2, N3, C5, and N7 atoms and the plane determined by the C9, N10, C11, C12, C13, C14, C15, C16, and N17 atoms is 15.69 (5)°. This angle is larger in comparison with that found in the case of the similar adducts of C-nucleophiles with isoalloxazine derivatives; e.g. the angle between the analogous planes in 4a,5-dihydro-4a-isopropyl-3,10-dimethylisoalloxazine (Bolognesi et al., 1978) is only 6.85 (9)°. The observed 'butterfly' arrangement of the tricyclic alloxazine subunit in the title compound corresponds to the structure of dihydroflavins already published by Werner & Rönnquist (1970) and Norrestam & Von Glehn (1972).

Due to the sp3 hybridization, C20 atom is shifted out of the alloxazine plane by 0.313 (1)Å. On the other hand, the values of the bond angles around C20 are different from those expected for an sp3 carbon atom, probably due to the rigidity of the dihydroalloxazine system. The conformation of the ring 1 (C2, N3, C5, N7, C9, C20) is between 5H6 and E6. The conformation of the ring 2 (C9, N10, C11, C16, N17, C20) is between 5S6 and E6, rather closer to E6. The distances, angles and puckering parameters (Cremer & Pople, 1975) were calculated using PARST97 (Nardelli, 1999).

Three weak intermolecular C—H···O interactions were found forming a three-dimensional network.

Experimental

The crystals of the title compound were obtained from a solution of 1,3-dimethyl-5-ethylalloxazinium perchlorate (20 mg, 0.054 mmol) and dry triethylamine (7.5 µl, 0.054 mmol) in dry methanol (1.8 ml). Single crystals suitable for analysis were grown overnight directly from the reaction mixture. M. p. 384 - 386 K.

Refinement

The H atoms were found in the Δρ map and initially refined with the restraints on the bond lengths and angles to regularize their geometry (Cmethyl—H = 0.96 (2), Cmethylene—H = 0.97 (2), Caryl = 0.93 (2) Å. Uiso(H) = 1.5 UeqCmethyl or 1.2 UeqCmethylene/aryl. After the convergement the geometrical restraints were substituted by the geometrical constraints.

1H NMR (pyridine-d5; 600 MHz): 1.57 (t, 3H; CH2CH3), 2.82 (s, 3H; OCH3), 3.31 (s, 3H; 3 N–CH3), 3.56 (s, 3H; 1 N–CH3), 3.58–3.62 (m, 1H; 5 N–CH2CH3), 4.17–4.21 (m, 1H; 5 N–CH2CH3), 7.03–7.07 (m, 2H; 6,8–CH), 7.33 (t, 2J = 7.20 Hz, 1H; 7–CH), 7.63 (d, 2J = 7.14 Hz, 1H; 9–CH). 13C NMR (pyridine-d5; 150 MHz): 50.9 (OCH3), 82.2 (4a–C).

Figures

Fig. 1.

Fig. 1.

The title molecule with the displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Formation of the adduct by the reaction of 5-ethyl-1,3-dimethylalloxazinium perchlorate with methanol.

Crystal data

C15H18N4O3 F(000) = 640
Mr = 302.33 Dx = 1.412 Mg m3
Monoclinic, P21/n Melting point = 384–386 K
Hall symbol: -P 2yn Cu Kα radiation, λ = 1.54184 Å
a = 10.3958 (2) Å Cell parameters from 11727 reflections
b = 12.7174 (2) Å θ = 4–77°
c = 10.9421 (2) Å µ = 0.83 mm1
β = 100.4727 (16)° T = 150 K
V = 1422.53 (4) Å3 Prism, colourless
Z = 4 0.50 × 0.28 × 0.15 mm

Data collection

Oxford Diffraction Xcalibur diffractometer 2996 independent reflections
graphite 2692 reflections with I > 2σ(I)
Detector resolution: 8.1917 pixels mm-1 Rint = 0.025
φ and ω scans θmax = 77.5°, θmin = 5.4°
Absorption correction: analytical (de Meulenaer & Tompa, 1965) h = −13→13
Tmin = 0.76, Tmax = 0.88 k = −15→15
18511 measured reflections l = −12→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.121 Modified Sheldrick (2008) w = 1/[σ2(F2) + (0.08P)2 + 0.33P], where P = [max(Fo2,0) + 2Fc2]/3
S = 0.99 (Δ/σ)max = 0.0003
2996 reflections Δρmax = 0.23 e Å3
200 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: Larson (1970), Equation 22
Primary atom site location: structure-invariant direct methods Extinction coefficient: 29 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.43813 (9) 0.38054 (7) 0.10771 (8) 0.0341
C2 0.53277 (11) 0.36250 (9) 0.18746 (11) 0.0269
N3 0.65728 (10) 0.37227 (8) 0.16350 (9) 0.0295
C4 0.67024 (14) 0.39751 (11) 0.03524 (12) 0.0394
C5 0.77221 (12) 0.37049 (9) 0.25223 (12) 0.0308
O6 0.87775 (9) 0.38486 (8) 0.22244 (10) 0.0413
N7 0.75942 (9) 0.35479 (8) 0.37412 (10) 0.0293
C8 0.87888 (12) 0.36402 (11) 0.46793 (13) 0.0388
C9 0.63877 (10) 0.35461 (8) 0.41330 (11) 0.0249
N10 0.63770 (9) 0.37433 (8) 0.52755 (9) 0.0272
C11 0.51698 (11) 0.37383 (9) 0.56668 (11) 0.0260
C12 0.51588 (13) 0.38898 (10) 0.69269 (11) 0.0317
C13 0.39963 (14) 0.39033 (10) 0.73696 (11) 0.0340
C14 0.28241 (13) 0.37940 (9) 0.65335 (12) 0.0333
C15 0.28184 (12) 0.36561 (9) 0.52737 (12) 0.0301
C16 0.39920 (11) 0.36095 (8) 0.48170 (10) 0.0248
N17 0.40282 (9) 0.34548 (8) 0.35602 (9) 0.0257
C18 0.27877 (11) 0.31653 (11) 0.27437 (11) 0.0328
C19 0.19478 (12) 0.41186 (13) 0.22860 (13) 0.0412
C20 0.52333 (10) 0.31848 (9) 0.31740 (10) 0.0249
O21 0.53556 (8) 0.20753 (6) 0.29281 (7) 0.0295
C22 0.54526 (16) 0.14088 (10) 0.39936 (13) 0.0417
H41 0.7567 0.3805 0.0256 0.0569*
H42 0.6530 0.4708 0.0177 0.0574*
H43 0.6097 0.3549 −0.0197 0.0574*
H81 0.8696 0.3196 0.5369 0.0560*
H82 0.8932 0.4348 0.4948 0.0553*
H83 0.9525 0.3400 0.4345 0.0558*
H121 0.5991 0.3989 0.7479 0.0377*
H131 0.3999 0.3991 0.8214 0.0392*
H141 0.2022 0.3814 0.6805 0.0402*
H151 0.2003 0.3581 0.4738 0.0353*
H181 0.2289 0.2703 0.3207 0.0369*
H182 0.2982 0.2774 0.2036 0.0371*
H191 0.1071 0.3889 0.1944 0.0565*
H192 0.1917 0.4597 0.2970 0.0566*
H193 0.2316 0.4495 0.1641 0.0564*
H221 0.5453 0.0697 0.3721 0.0593*
H222 0.6286 0.1545 0.4591 0.0602*
H223 0.4725 0.1509 0.4432 0.0599*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0330 (5) 0.0392 (5) 0.0302 (4) 0.0028 (4) 0.0063 (3) 0.0028 (3)
C2 0.0302 (6) 0.0222 (5) 0.0303 (5) 0.0018 (4) 0.0110 (4) −0.0008 (4)
N3 0.0308 (5) 0.0291 (5) 0.0322 (5) 0.0028 (4) 0.0156 (4) 0.0040 (4)
C4 0.0483 (7) 0.0396 (7) 0.0363 (7) 0.0079 (6) 0.0236 (6) 0.0081 (5)
C5 0.0302 (6) 0.0237 (6) 0.0425 (7) 0.0025 (4) 0.0174 (5) 0.0041 (4)
O6 0.0300 (5) 0.0432 (5) 0.0566 (6) 0.0001 (4) 0.0231 (4) 0.0068 (4)
N7 0.0218 (5) 0.0302 (5) 0.0379 (5) 0.0017 (4) 0.0107 (4) 0.0035 (4)
C8 0.0229 (6) 0.0440 (7) 0.0491 (7) 0.0016 (5) 0.0056 (5) 0.0067 (6)
C9 0.0226 (5) 0.0207 (5) 0.0328 (6) 0.0009 (4) 0.0085 (4) 0.0025 (4)
N10 0.0256 (5) 0.0260 (5) 0.0306 (5) 0.0007 (3) 0.0068 (4) 0.0020 (4)
C11 0.0271 (6) 0.0218 (5) 0.0305 (6) −0.0003 (4) 0.0093 (4) 0.0007 (4)
C12 0.0393 (6) 0.0270 (6) 0.0295 (6) 0.0004 (5) 0.0082 (5) −0.0004 (4)
C13 0.0481 (7) 0.0271 (6) 0.0307 (6) 0.0007 (5) 0.0179 (5) 0.0006 (4)
C14 0.0388 (6) 0.0261 (6) 0.0407 (6) −0.0025 (5) 0.0227 (5) −0.0008 (5)
C15 0.0285 (6) 0.0265 (6) 0.0381 (6) −0.0040 (4) 0.0137 (5) −0.0029 (4)
C16 0.0272 (5) 0.0202 (5) 0.0292 (5) −0.0020 (4) 0.0111 (4) −0.0005 (4)
N17 0.0220 (4) 0.0279 (5) 0.0286 (5) −0.0020 (4) 0.0082 (3) −0.0034 (4)
C18 0.0247 (5) 0.0412 (7) 0.0334 (6) −0.0084 (5) 0.0074 (4) −0.0088 (5)
C19 0.0238 (5) 0.0612 (9) 0.0373 (6) 0.0020 (5) 0.0020 (5) −0.0044 (6)
C20 0.0244 (5) 0.0228 (5) 0.0293 (5) −0.0003 (4) 0.0097 (4) −0.0006 (4)
O21 0.0350 (4) 0.0223 (4) 0.0342 (4) 0.0002 (3) 0.0141 (3) −0.0013 (3)
C22 0.0614 (9) 0.0254 (6) 0.0435 (7) 0.0023 (6) 0.0231 (6) 0.0045 (5)

Geometric parameters (Å, °)

O1—C2 1.2124 (15) C12—H121 0.969
C2—N3 1.3723 (15) C13—C14 1.3914 (19)
C2—C20 1.5476 (15) C13—H131 0.930
N3—C4 1.4696 (15) C14—C15 1.3886 (18)
N3—C5 1.3961 (17) C14—H141 0.935
C4—H41 0.949 C15—C16 1.4012 (16)
C4—H42 0.962 C15—H151 0.944
C4—H43 0.955 C16—N17 1.3965 (14)
C5—O6 1.2138 (15) N17—C18 1.4758 (14)
C5—N7 1.3786 (16) N17—C20 1.4347 (14)
N7—C8 1.4650 (16) C18—C19 1.524 (2)
N7—C9 1.3973 (14) C18—H181 0.983
C8—H81 0.961 C18—H182 0.972
C8—H82 0.950 C19—H191 0.966
C8—H83 0.956 C19—H192 0.969
C9—N10 1.2771 (16) C19—H193 0.985
C9—C20 1.5149 (15) C20—O21 1.4464 (13)
N10—C11 1.3977 (15) O21—C22 1.4300 (15)
C11—C12 1.3944 (16) C22—H221 0.953
C11—C16 1.4060 (16) C22—H222 1.002
C12—C13 1.3813 (18) C22—H223 0.975
O1—C2—N3 121.04 (11) C13—C14—C15 120.70 (11)
O1—C2—C20 123.43 (10) C13—C14—H141 120.9
N3—C2—C20 115.33 (10) C15—C14—H141 118.4
C2—N3—C4 117.11 (11) C14—C15—C16 120.83 (12)
C2—N3—C5 125.69 (10) C14—C15—H151 118.1
C4—N3—C5 116.89 (10) C16—C15—H151 121.1
N3—C4—H41 108.0 C11—C16—C15 117.99 (10)
N3—C4—H42 110.9 C11—C16—N17 119.44 (10)
H41—C4—H42 110.2 C15—C16—N17 122.56 (10)
N3—C4—H43 108.2 C16—N17—C18 117.02 (9)
H41—C4—H43 109.2 C16—N17—C20 120.34 (9)
H42—C4—H43 110.3 C18—N17—C20 118.40 (9)
N3—C5—O6 120.78 (12) N17—C18—C19 112.69 (10)
N3—C5—N7 117.02 (10) N17—C18—H181 108.8
O6—C5—N7 122.17 (12) C19—C18—H181 108.7
C5—N7—C8 116.60 (10) N17—C18—H182 109.0
C5—N7—C9 123.15 (10) C19—C18—H182 109.6
C8—N7—C9 118.62 (10) H181—C18—H182 108.1
N7—C8—H81 108.0 C18—C19—H191 109.3
N7—C8—H82 111.0 C18—C19—H192 110.0
H81—C8—H82 110.2 H191—C19—H192 109.2
N7—C8—H83 110.0 C18—C19—H193 110.3
H81—C8—H83 108.3 H191—C19—H193 109.3
H82—C8—H83 109.3 H192—C19—H193 108.6
N7—C9—N10 117.91 (10) C2—C20—C9 110.62 (9)
N7—C9—C20 115.48 (10) C2—C20—N17 112.87 (9)
N10—C9—C20 126.22 (10) C9—C20—N17 110.34 (9)
C9—N10—C11 117.84 (10) C2—C20—O21 99.18 (8)
N10—C11—C12 118.13 (11) C9—C20—O21 109.84 (9)
N10—C11—C16 121.37 (10) N17—C20—O21 113.53 (9)
C12—C11—C16 120.49 (11) C20—O21—C22 114.97 (9)
C11—C12—C13 120.89 (12) O21—C22—H221 108.1
C11—C12—H121 117.9 O21—C22—H222 110.8
C13—C12—H121 121.2 H221—C22—H222 108.6
C12—C13—C14 119.06 (11) O21—C22—H223 112.2
C12—C13—H131 120.3 H221—C22—H223 108.8
C14—C13—H131 120.6 H222—C22—H223 108.2

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H42···O1i 0.96 2.43 3.3230 (18) 155
C14—H141···O21ii 0.94 2.56 3.3999 (18) 149
C19—H191···O6iii 0.97 2.46 3.3021 (18) 146

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2153).

References

  1. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  2. Bolognesi, M., Ghisla, S. & Incoccia, L. (1978). Acta Cryst. B34, 821–828.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hoegy, S. E. & Mariano, P. S. (1997). Tetrahedron, 53, 5027–5046.
  6. Kemal, C. & Bruice, T. C. (1976). Proc. Natl Acad. Sci. USA, 73, 995–999. [DOI] [PMC free article] [PubMed]
  7. Kemal, C., Chan, T. W. & Bruice, T. C. (1977). J. Am. Chem. Soc.99, 7272–7286. [DOI] [PubMed]
  8. Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  9. Massey, V. (2000). Biochem. Soc. Trans.28, 283–296. [PubMed]
  10. Meulenaer, J. de & Tompa, H. (1965). Acta Cryst.19, 1014–1018.
  11. Müller, F. (1991). In Chemistry and Biochemistry of Flavoenzymes Boca Raton, Florida: CRC Press.
  12. Nardelli, M. (1999). J. Appl. Cryst.32, 563–571.
  13. Norrestam, R. & Von Glehn, M. (1972). Acta Cryst. B28, 434–440.
  14. Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  15. Palatinus, L. & Chapuis, G. (2006). Superflip EPFL Lausanne, Switzerland. http://superspace.epfl.ch/superflip.
  16. Palfey, B. & Massey, V. (1998). Comprehensive Biological Catalysis, Vol. 3, edited by M. Sinnott, pp. 83–154. London: Academic Press.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Werner, P.-E. & Rönnquist, O. (1970). Acta Chem. Scand.24, 997–1009.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020856/fb2153sup1.cif

e-65-o1536-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020856/fb2153Isup2.hkl

e-65-o1536-Isup2.hkl (149.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES