Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1650. doi: 10.1107/S1600536809022983

N′-(5-Bromo-2-methoxy­benzyl­idene)-4-hydroxy­benzohydrazide methanol solvate

Xue-Song Lin a,*, Ya-Li Sang a
PMCID: PMC2969367  PMID: 21582914

Abstract

In the title hydrazone compound, C15H13BrN2O3·CH3OH, the methanol solvate is linked to the benzohydrazide molecule through O—H⋯N and O—H⋯O hydrogen bonds. The benzohydrazide mol­ecule adopts an E configuration about the C=N double bond. The mol­ecule is twisted, with a dihedral angle between the two substituted benzene rings of 35.7 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, forming layers parallel to the ac plane.

Related literature

For the biological properties of the hydrazone compounds, see: Khattab (2005); Küçükgüzel et al. (2003); Çukurovalı et al. (2006). For the structures of hydrazone derivatives, see: Fun et al. (2008); Wei et al. (2009); Khaledi et al. (2008); Yang et al. (2008). For reference structural data, see: Allen et al. (1987).graphic file with name e-65-o1650-scheme1.jpg

Experimental

Crystal data

  • C15H13BrN2O3·CH4O

  • M r = 381.23

  • Orthorhombic, Inline graphic

  • a = 11.1886 (7) Å

  • b = 14.4464 (9) Å

  • c = 20.5927 (13) Å

  • V = 3328.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.598, T max = 0.636

  • 19306 measured reflections

  • 3638 independent reflections

  • 2234 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.179

  • S = 1.06

  • 3638 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.83 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022983/at2817sup1.cif

e-65-o1650-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022983/at2817Isup2.hkl

e-65-o1650-Isup2.hkl (178.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.89 (4) 2.16 (5) 3.009 (4) 158 (5)
O4—H4⋯N1 0.82 2.64 3.239 (5) 131
O4—H4⋯O2 0.82 1.96 2.729 (4) 157
O3—H3⋯O4ii 0.82 1.78 2.602 (5) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are gratefully acknowledge Chifeng University for research funding.

supplementary crystallographic information

Comment

Hydrazone and Schiff base compounds derived from the reaction of aldehydes with hydrazides have been widely investigated both for their crystal structures and biological properties (Khattab et al., 2005; Küçükgüzel et al., 2003; Çukurovalı et al., 2006). In the last few years, a large number of hydrazone derivatives have been reported (Fun et al., 2008; Wei et al., 2009; Khaledi et al., 2008; Yang et al., 2008). However, the hydrazone compounds derived the 5-bromo-2-methoxybenzaldehyde have never been reported. In this paper, the crystal structure of the title new hydrazone compound, (I), derived from the reaction of 5-bromo-2-methoxybenzaldehyde and 4-hydroxybenzohydrazide, is reported.

The molecular structure of (I) is shown as Fig. 1. The compound consists of a hydrazone molecule and a methanol molecule of crystallization. The methanol molecule is linked to the hydrazone molecule through intramolecular O–H···N and O–H···O hydrogen bonds, Table 1. The hydrazone molecule adopts an E configuration about the C═N double bond. The molecule is twisted, with the dihedral angle between the C1—C6 and C10—C15 benzene rings of 35.7 (2)°. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure of the compound, molecules are linked through intermolecular N–H···O and O–H···O hydrogen bonds, Table 1, forming layers parallel to the ac plane, as shown in Fig. 2.

Experimental

5-Bromo-2-methoxybenzaldehyde (1.0 mmol, 215.0 mg) and 4-hydroxybenzohydrazide (1.0 mmol, 152.2 mg) were mixed and refluxed in methanol (50 ml). The mixture was stirred for 1 h to give a clear colourless solution. Colourless crystals of (I) were formed by slow evaporation of the solution in air for a few days.

Refinement

H2 attached to N2 was located in a difference map and refined with N–H distance restraint of 0.90 (1) Å. The other H atoms were positioned geometrically [d(C–H) = 0.93–0.96 Å, d(O–H) = 0.82 Å], and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of (I). Hydrogen atoms not involved in hydrogen bonding have been omitted. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H13BrN2O3·CH4O F(000) = 1552
Mr = 381.23 Dx = 1.522 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3350 reflections
a = 11.1886 (7) Å θ = 2.5–24.5°
b = 14.4464 (9) Å µ = 2.49 mm1
c = 20.5927 (13) Å T = 298 K
V = 3328.5 (4) Å3 Block, colourless
Z = 8 0.23 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3638 independent reflections
Radiation source: fine-focus sealed tube 2234 reflections with I > 2σ(I)
graphite Rint = 0.054
ω scans θmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.598, Tmax = 0.636 k = −18→15
19306 measured reflections l = −23→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0849P)2 + 4.4269P] where P = (Fo2 + 2Fc2)/3
3638 reflections (Δ/σ)max < 0.001
214 parameters Δρmax = 0.95 e Å3
1 restraint Δρmin = −0.82 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.82955 (5) 0.03436 (5) 0.73273 (2) 0.0699 (3)
N1 0.7667 (3) 0.1520 (3) 0.48426 (15) 0.0388 (8)
N2 0.7226 (3) 0.1789 (3) 0.42463 (16) 0.0396 (8)
O1 1.1184 (3) 0.1179 (3) 0.49400 (17) 0.0591 (9)
O2 0.5326 (3) 0.1584 (2) 0.45803 (13) 0.0472 (8)
O3 0.4288 (3) 0.2326 (3) 0.16133 (13) 0.0499 (9)
H3 0.4694 0.2697 0.1408 0.075*
O4 0.5525 (4) 0.1537 (3) 0.59007 (15) 0.0589 (10)
H4 0.5657 0.1611 0.5512 0.088*
C1 0.9352 (4) 0.1136 (3) 0.54842 (19) 0.0365 (9)
C2 1.0590 (4) 0.0944 (3) 0.5493 (2) 0.0422 (10)
C3 1.1097 (4) 0.0555 (3) 0.6035 (2) 0.0488 (12)
H3A 1.1908 0.0415 0.6034 0.059*
C4 1.0431 (5) 0.0369 (4) 0.6572 (2) 0.0521 (12)
H4A 1.0784 0.0104 0.6936 0.062*
C5 0.9219 (4) 0.0579 (3) 0.6571 (2) 0.0412 (10)
C6 0.8690 (4) 0.0949 (3) 0.6038 (2) 0.0381 (10)
H6 0.7876 0.1078 0.6044 0.046*
C7 1.2442 (5) 0.1054 (5) 0.4918 (3) 0.0724 (17)
H7A 1.2804 0.1366 0.5279 0.109*
H7B 1.2748 0.1307 0.4520 0.109*
H7C 1.2625 0.0406 0.4939 0.109*
C8 0.8794 (4) 0.1474 (3) 0.48878 (19) 0.0387 (10)
H8 0.9269 0.1655 0.4540 0.046*
C9 0.6031 (4) 0.1770 (3) 0.41462 (18) 0.0348 (9)
C10 0.5622 (3) 0.1963 (3) 0.34754 (18) 0.0324 (9)
C11 0.6285 (4) 0.2436 (3) 0.30120 (19) 0.0366 (9)
H11 0.7031 0.2670 0.3123 0.044*
C12 0.5861 (4) 0.2567 (3) 0.23906 (18) 0.0400 (10)
H12 0.6320 0.2882 0.2086 0.048*
C13 0.4747 (4) 0.2226 (3) 0.22221 (19) 0.0373 (10)
C14 0.4067 (4) 0.1763 (3) 0.26778 (19) 0.0408 (10)
H14 0.3320 0.1531 0.2566 0.049*
C15 0.4499 (4) 0.1648 (3) 0.3298 (2) 0.0397 (10)
H15 0.4026 0.1351 0.3606 0.048*
H2 0.777 (4) 0.182 (4) 0.393 (2) 0.080*
C16 0.5253 (6) 0.0617 (4) 0.6017 (3) 0.0657 (15)
H16A 0.5874 0.0231 0.5844 0.099*
H16B 0.4508 0.0466 0.5811 0.099*
H16C 0.5187 0.0516 0.6476 0.099*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0692 (4) 0.1010 (5) 0.0395 (3) −0.0096 (3) 0.0019 (2) 0.0223 (3)
N1 0.039 (2) 0.051 (2) 0.0270 (17) −0.0015 (17) −0.0030 (14) 0.0055 (15)
N2 0.037 (2) 0.057 (2) 0.0242 (17) 0.0008 (18) 0.0011 (14) 0.0086 (16)
O1 0.0380 (18) 0.086 (3) 0.053 (2) 0.0017 (18) 0.0135 (15) 0.0008 (18)
O2 0.0429 (17) 0.071 (2) 0.0277 (15) −0.0026 (16) 0.0035 (13) 0.0088 (14)
O3 0.0448 (18) 0.077 (2) 0.0283 (15) −0.0177 (17) −0.0081 (13) 0.0087 (15)
O4 0.080 (3) 0.067 (2) 0.0300 (16) 0.007 (2) 0.0109 (16) −0.0003 (15)
C1 0.032 (2) 0.045 (3) 0.032 (2) −0.0008 (19) −0.0022 (17) −0.0001 (18)
C2 0.036 (2) 0.048 (3) 0.042 (2) 0.002 (2) 0.0020 (19) −0.006 (2)
C3 0.033 (2) 0.057 (3) 0.056 (3) 0.005 (2) −0.006 (2) −0.003 (2)
C4 0.049 (3) 0.059 (3) 0.048 (3) 0.005 (2) −0.014 (2) 0.008 (2)
C5 0.044 (3) 0.043 (3) 0.037 (2) −0.006 (2) −0.0039 (19) 0.0031 (19)
C6 0.031 (2) 0.048 (3) 0.035 (2) −0.0042 (19) −0.0032 (17) 0.0042 (19)
C7 0.040 (3) 0.086 (4) 0.091 (4) 0.002 (3) 0.022 (3) −0.005 (4)
C8 0.037 (2) 0.049 (3) 0.030 (2) −0.002 (2) 0.0032 (17) 0.0052 (18)
C9 0.037 (2) 0.041 (2) 0.0264 (19) 0.0014 (19) 0.0022 (16) 0.0027 (17)
C10 0.032 (2) 0.039 (2) 0.0266 (19) 0.0022 (18) 0.0013 (16) 0.0025 (16)
C11 0.032 (2) 0.049 (3) 0.029 (2) −0.0019 (19) −0.0015 (16) 0.0012 (19)
C12 0.036 (2) 0.058 (3) 0.026 (2) −0.008 (2) 0.0002 (17) 0.0042 (18)
C13 0.037 (2) 0.048 (3) 0.0275 (19) −0.0042 (19) −0.0018 (17) 0.0002 (18)
C14 0.031 (2) 0.054 (3) 0.037 (2) −0.007 (2) −0.0029 (18) 0.007 (2)
C15 0.035 (2) 0.051 (3) 0.033 (2) −0.003 (2) 0.0062 (17) 0.0095 (19)
C16 0.071 (4) 0.059 (4) 0.067 (4) 0.004 (3) 0.010 (3) 0.006 (3)

Geometric parameters (Å, °)

Br1—C5 1.899 (4) C5—C6 1.357 (6)
N1—C8 1.266 (6) C6—H6 0.9300
N1—N2 1.379 (4) C7—H7A 0.9600
N2—C9 1.354 (6) C7—H7B 0.9600
N2—H2 0.89 (4) C7—H7C 0.9600
O1—C2 1.362 (5) C8—H8 0.9300
O1—C7 1.420 (6) C9—C10 1.481 (5)
O2—C9 1.222 (5) C10—C15 1.385 (6)
O3—C13 1.363 (5) C10—C11 1.388 (6)
O3—H3 0.8200 C11—C12 1.378 (5)
O4—C16 1.385 (6) C11—H11 0.9300
O4—H4 0.8200 C12—C13 1.384 (6)
C1—C6 1.386 (6) C12—H12 0.9300
C1—C2 1.413 (6) C13—C14 1.381 (6)
C1—C8 1.462 (6) C14—C15 1.377 (6)
C2—C3 1.371 (6) C14—H14 0.9300
C3—C4 1.361 (7) C15—H15 0.9300
C3—H3A 0.9300 C16—H16A 0.9600
C4—C5 1.389 (7) C16—H16B 0.9600
C4—H4A 0.9300 C16—H16C 0.9600
C8—N1—N2 115.9 (3) N1—C8—C1 120.3 (4)
C9—N2—N1 118.9 (3) N1—C8—H8 119.8
C9—N2—H2 124 (4) C1—C8—H8 119.8
N1—N2—H2 115 (4) O2—C9—N2 122.0 (4)
C2—O1—C7 118.6 (4) O2—C9—C10 121.7 (4)
C13—O3—H3 109.5 N2—C9—C10 116.3 (3)
C16—O4—H4 109.5 C15—C10—C11 117.7 (4)
C6—C1—C2 118.3 (4) C15—C10—C9 117.6 (3)
C6—C1—C8 121.9 (4) C11—C10—C9 124.7 (4)
C2—C1—C8 119.7 (4) C12—C11—C10 121.5 (4)
O1—C2—C3 125.5 (4) C12—C11—H11 119.3
O1—C2—C1 114.7 (4) C10—C11—H11 119.3
C3—C2—C1 119.8 (4) C11—C12—C13 119.6 (4)
C4—C3—C2 121.0 (4) C11—C12—H12 120.2
C4—C3—H3A 119.5 C13—C12—H12 120.2
C2—C3—H3A 119.5 O3—C13—C14 117.9 (4)
C3—C4—C5 119.4 (4) O3—C13—C12 122.2 (4)
C3—C4—H4A 120.3 C14—C13—C12 119.9 (4)
C5—C4—H4A 120.3 C15—C14—C13 119.7 (4)
C6—C5—C4 120.8 (4) C15—C14—H14 120.1
C6—C5—Br1 119.8 (3) C13—C14—H14 120.1
C4—C5—Br1 119.4 (3) C14—C15—C10 121.5 (4)
C5—C6—C1 120.6 (4) C14—C15—H15 119.2
C5—C6—H6 119.7 C10—C15—H15 119.2
C1—C6—H6 119.7 O4—C16—H16A 109.5
O1—C7—H7A 109.5 O4—C16—H16B 109.5
O1—C7—H7B 109.5 H16A—C16—H16B 109.5
H7A—C7—H7B 109.5 O4—C16—H16C 109.5
O1—C7—H7C 109.5 H16A—C16—H16C 109.5
H7A—C7—H7C 109.5 H16B—C16—H16C 109.5
H7B—C7—H7C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3i 0.89 (4) 2.16 (5) 3.009 (4) 158 (5)
O4—H4···N1 0.82 2.64 3.239 (5) 131
O4—H4···O2 0.82 1.96 2.729 (4) 157
O3—H3···O4ii 0.82 1.78 2.602 (5) 175

Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2817).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Çukurovalı, A., Yılmaz, I., Gür, S. & Kazaz, C. (2006). Eur. J. Med. Chem.41, 201–207. [DOI] [PubMed]
  4. Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [DOI] [PMC free article] [PubMed]
  5. Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481. [DOI] [PMC free article] [PubMed]
  6. Khattab, S. N. (2005). Molecules, 10, 1218–1228. [DOI] [PMC free article] [PubMed]
  7. Küçükgüzel, S. G., Mazi, A., Şahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem.38, 1005–1013. [DOI] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688. [DOI] [PMC free article] [PubMed]
  11. Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022983/at2817sup1.cif

e-65-o1650-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022983/at2817Isup2.hkl

e-65-o1650-Isup2.hkl (178.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES