Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 17;65(Pt 7):m776. doi: 10.1107/S1600536809021758

trans-Bis(acetonitrile-κN)bis­{1,2-bis­[bis­(3-hydroxy­prop­yl)phosphino]ethane-κ2 P,P′}iron(II) dichloride

J W Gohdes a, Lev N Zakharov b, David R Tyler b,*
PMCID: PMC2969375  PMID: 21582706

Abstract

In the title compound, [Fe(CH3CN)2(C14H32O4P2)2]Cl2, the FeII atom lies on a crystallographic inversion center and has a distorted trans-FeN2P4 octa­hedral coordination environment arising from two P,P′-bidentate 1,2-bis­[bis­(3-hydroxy­prop­yl)phosphino]ethane ligands in the equatorial plane and two acetonitrile mol­ecules in the axial positions. One of the pendant –(CH2)3OH groups of the ligand is disordered over two sets of sites in a 0.597 (5):0.403 (5) ratio. In the crystal, O—H⋯Cl and O—H⋯O hydrogen bonding helps to establish the packing.

Related literature

For related compounds containing bidentate phosphine ligands, see: Gilbertson et al. (2007); Miller et al. (2002); Martins et al. (1998); Barron et al. (1987); George et al. (1997); Edwards et al. (2006). For reference structural data, see: Allen et al. (1987).graphic file with name e-65-0m776-scheme1.jpg

Experimental

Crystal data

  • [Fe(C2H3N)2(C14H32O4P2)2]Cl2

  • M r = 861.53

  • Orthorhombic, Inline graphic

  • a = 18.3024 (12) Å

  • b = 11.5220 (8) Å

  • c = 19.8413 (13) Å

  • V = 4184.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 173 K

  • 0.22 × 0.18 × 0.17 mm

Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.863, T max = 0.892

  • 24288 measured reflections

  • 4571 independent reflections

  • 4122 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.092

  • S = 1.04

  • 4571 reflections

  • 269 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −1.01 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021758/hb2994sup1.cif

e-65-0m776-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021758/hb2994Isup2.hkl

e-65-0m776-Isup2.hkl (224KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Fe1—N1 1.9077 (14)
Fe1—P1 2.2884 (4)
Fe1—P2 2.3049 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯Cl1 0.928 (17) 2.126 (18) 3.0493 (16) 173 (3)
O2—H2O⋯Cl1i 0.976 (18) 2.23 (2) 3.1777 (19) 164 (3)
O3—H3O⋯O1i 0.924 (17) 1.841 (18) 2.741 (2) 164 (2)
O4—H4O⋯Cl1ii 0.98 (2) 1.95 (2) 2.931 (6) 177 (3)
O4A—H4OA⋯Cl1ii 0.98 (2) 2.84 (11) 3.490 (10) 125 (9)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the NSF (CHE-0809393) for funding.

supplementary crystallographic information

Comment

The bidentate phosphine 1,2-bis[di(3-hydroxypropyl)phosphino]ethane (DHPrPE) was developed as a water soluble ligand for use in making iron complexes capable of binding dinitrogen and hydrogen (Miller et al., 2002). It was found that the hydroxypropyl groups were non-innocent in reactions with iron(II), and a stable complex was isolated in which the chelating phosphine ligands are tridentate and coordinate through one of the hydroxypropyl groups in addition to both phosphines. This results in a coordinatively saturated complex where the alcohols ligands are cis to one another. The current work shows that addition of acetonitrile to this species results in the rearrangement to the trans geometry.

The stucture of the cation [Fe(DHPrPE)2(CH3CN)2]2+ in the title compound, (I), is shown in Fig. 1. The four phosphine donors from the DHPrPE ligands form a square planar arrangement around the iron atom and the two coordinated acetonitrile ligands occupy the trans axial sites to form a distorted octahedral geometry around the iron. Such trans bis acetonitrile complexes of iron(II) with bidentate phosphines are not uncommon. The first reported structure was of the DMPE analog (Barron et al. 1987). An examination of similar compounds (George et al. 1997, Martins et al. 1998, Gilbertson et al. 2007 and Edwards et al. 2006) shows there are minor variations within the primary coordination sphere of all of these complexes. The Fe—N bond distances vary from 1.895 to 1.917 Å; the Fe—P bond distances vary from 2.255 to 2.3032 Å and the P—Fe—P bite angles are between 84.0° and 85.5°. The Fe—P distances in the title compound, 2.2883 (5) and 2.3044 (5) Å, are at the high end of the expected range while the bite angle of 84.2° is at the low end of the range, indicating significant steric crowding around the iron center.

Experimental

The title compound was prepared by dissolving 60 mg of iron(II)chloride tetrahydrate (0.30 mmole) and 200 mg of 1,2-bis[di(3-hydroxypropyl)phosphino]ethane (0.61 mmole) in 3.0 ml of methanol to give a dark purple solution. After addition of 2.0 ml of acetonitrile, the solution slowly turned orange indicating formation of the title complex. Addition of diethylether and filtration yielded 215 mg (90%) of the title compound as an orange, crystalline powder and gave a single resonance in the 31P{1H} NMR spectrum at 61.4 p.p.m.. Yellow blocks of (I) were grown by vapor diffusion of diethylether into a 3:1 methanol/acetonitrile solution of the complex.

Refinement

One of the hydroxypropyl side chains is disordered over two postions in ratio 60/40. The disordered fragment was refined with the same displacement parameters for atoms in each disordered positions. The H atoms on the acetonitrile methyl groups and the alcohol groups except for the disordered one were located on residual density map and refined with isotropic thermal parameters and with restrictions; the average O—H distance of 0.967 Å (Allen et al. 1987) was used as a target for corresponding O—H bonds. All H atoms in –CH2 groups were positioned geometrically and refined as riding with C—H = 0.99 Å and Uiso(H)=1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The stucture of the [Fe(DHPrPE)2(CH3CN)2]2+ cation in (I) with 50% probability displacement elipsoids. Only the H atoms in the –OH and –CH3 groups and only one position of the disordered hydroxypropyl group are shown for clarity. Symmetry code (i): –x, –y, –z.

Crystal data

[Fe(C2H3N)2(C14H32O4P2)2]Cl2 F(000) = 1840
Mr = 861.53 Dx = 1.368 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5018 reflections
a = 18.3024 (12) Å θ = 2.3–27.0°
b = 11.5220 (8) Å µ = 0.69 mm1
c = 19.8413 (13) Å T = 173 K
V = 4184.1 (5) Å3 Block, yellow
Z = 4 0.22 × 0.18 × 0.17 mm

Data collection

Bruker APEX CCD diffractometer 4571 independent reflections
Radiation source: fine-focus sealed tube 4122 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −22→23
Tmin = 0.863, Tmax = 0.892 k = −14→13
24288 measured reflections l = −25→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0451P)2 + 3.5311P] where P = (Fo2 + 2Fc2)/3
4571 reflections (Δ/σ)max = 0.001
269 parameters Δρmax = 0.88 e Å3
7 restraints Δρmin = −1.01 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.0000 0.0000 0.0000 0.01629 (10)
Cl1 0.09382 (5) 0.65273 (5) 0.16061 (4) 0.0673 (2)
P1 0.08435 (2) 0.04855 (4) 0.08033 (2) 0.01886 (11)
P2 0.08545 (2) −0.13647 (4) −0.03165 (2) 0.01984 (11)
O1 0.17032 (9) 0.42889 (12) 0.11886 (8) 0.0372 (3)
O2 0.01646 (10) −0.18587 (14) 0.26912 (9) 0.0484 (4)
O3 0.15466 (8) −0.58403 (12) −0.01831 (8) 0.0334 (3)
N1 0.04458 (8) 0.11038 (12) −0.05870 (7) 0.0203 (3)
C1 0.07048 (10) 0.17507 (16) −0.09498 (9) 0.0252 (4)
C2 0.10388 (16) 0.2552 (2) −0.14267 (12) 0.0427 (6)
C3 0.17298 (10) 0.00506 (16) 0.04511 (10) 0.0253 (4)
H3A 0.1855 0.0542 0.0059 0.030*
H3B 0.2119 0.0134 0.0794 0.030*
C4 0.16574 (9) −0.12177 (16) 0.02359 (9) 0.0245 (4)
H4A 0.1599 −0.1718 0.0638 0.029*
H4B 0.2103 −0.1465 −0.0008 0.029*
C5 0.09772 (10) 0.19994 (15) 0.10533 (9) 0.0229 (4)
H5A 0.0970 0.2487 0.0643 0.028*
H5B 0.0559 0.2239 0.1337 0.028*
C6 0.16840 (11) 0.22501 (16) 0.14399 (11) 0.0344 (5)
H6A 0.1734 0.1686 0.1813 0.041*
H6B 0.2106 0.2145 0.1134 0.041*
C7 0.16982 (12) 0.34726 (17) 0.17253 (11) 0.0351 (5)
H7A 0.1263 0.3600 0.2012 0.042*
H7B 0.2139 0.3577 0.2008 0.042*
C8 0.08669 (10) −0.03375 (16) 0.15970 (9) 0.0249 (4)
H8A 0.0756 −0.1158 0.1490 0.030*
H8B 0.1374 −0.0313 0.1771 0.030*
C9 0.03621 (13) 0.00366 (17) 0.21634 (10) 0.0342 (5)
H9A −0.0150 0.0000 0.2004 0.041*
H9B 0.0470 0.0852 0.2285 0.041*
C10 0.04449 (13) −0.07267 (18) 0.27889 (10) 0.0369 (5)
H10A 0.0969 −0.0780 0.2909 0.044*
H10B 0.0186 −0.0358 0.3171 0.044*
C11 0.06233 (10) −0.29074 (15) −0.02366 (10) 0.0269 (4)
H11A 0.0364 −0.3019 0.0196 0.032*
H11B 0.0277 −0.3109 −0.0602 0.032*
C12 0.12616 (10) −0.37655 (16) −0.02629 (11) 0.0282 (4)
H12A 0.1533 −0.3665 −0.0690 0.034*
H12B 0.1601 −0.3611 0.0115 0.034*
C13 0.09764 (11) −0.49987 (16) −0.02144 (11) 0.0293 (4)
H13A 0.0667 −0.5070 0.0193 0.035*
H13B 0.0665 −0.5162 −0.0611 0.035*
C14 0.12156 (11) −0.12509 (18) −0.11788 (9) 0.0310 (4) 0.50
H14A 0.0997 −0.1892 −0.1443 0.037* 0.50
H14B 0.1025 −0.0519 −0.1372 0.037* 0.50
C15 0.2010 (2) −0.1272 (5) −0.1306 (2) 0.0463 (10) 0.597 (5)
H15A 0.2242 −0.0626 −0.1057 0.056* 0.597 (5)
H15B 0.2214 −0.2007 −0.1129 0.056* 0.597 (5)
C16 0.2200 (4) −0.1169 (9) −0.2031 (4) 0.067 (3) 0.597 (5)
H16A 0.1934 −0.0508 −0.2234 0.081* 0.597 (5)
H16B 0.2731 −0.1026 −0.2081 0.081* 0.597 (5)
O4 0.2003 (3) −0.2228 (4) −0.2368 (2) 0.0724 (14) 0.597 (5)
H4O 0.165 (3) −0.196 (3) −0.271 (2) 0.109* 0.597 (5)
C14A 0.12156 (11) −0.12509 (18) −0.11788 (9) 0.0310 (4) 0.50
H14C 0.1303 −0.2044 −0.1353 0.037* 0.50
H14D 0.0838 −0.0887 −0.1467 0.037* 0.50
C15A 0.1934 (3) −0.0543 (8) −0.1247 (3) 0.0463 (10) 0.403 (5)
H15C 0.2321 −0.0913 −0.0972 0.056* 0.403 (5)
H15D 0.1856 0.0252 −0.1072 0.056* 0.403 (5)
C16A 0.2184 (6) −0.0479 (10) −0.1982 (6) 0.067 (3) 0.403 (5)
H16C 0.1794 −0.0135 −0.2264 0.081* 0.403 (5)
H16D 0.2624 0.0019 −0.2019 0.081* 0.403 (5)
O4A 0.2344 (6) −0.1593 (11) −0.2206 (4) 0.090 (4) 0.403 (5)
H4OA 0.229 (7) −0.155 (4) −0.2695 (12) 0.135* 0.403 (5)
H1O 0.1497 (16) 0.4974 (19) 0.1345 (15) 0.065 (9)*
H2O 0.0490 (18) −0.230 (3) 0.2395 (16) 0.103 (13)*
H3O 0.1677 (14) −0.588 (2) 0.0266 (9) 0.047 (7)*
H2A 0.130 (2) 0.217 (4) −0.171 (2) 0.098 (13)*
H2B 0.066 (2) 0.298 (3) −0.1631 (18) 0.086 (12)*
H2C 0.1313 (18) 0.309 (3) −0.1215 (16) 0.068 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.01608 (17) 0.01771 (17) 0.01507 (17) 0.00023 (12) 0.00013 (12) 0.00109 (12)
Cl1 0.1218 (7) 0.0311 (3) 0.0492 (4) 0.0262 (3) 0.0298 (4) 0.0079 (3)
P1 0.0194 (2) 0.0194 (2) 0.0178 (2) 0.00012 (15) −0.00260 (16) 0.00053 (16)
P2 0.0183 (2) 0.0216 (2) 0.0196 (2) 0.00237 (16) −0.00001 (16) −0.00075 (17)
O1 0.0469 (9) 0.0247 (7) 0.0400 (8) 0.0011 (6) 0.0088 (7) 0.0019 (6)
O2 0.0623 (11) 0.0361 (8) 0.0467 (10) 0.0004 (8) 0.0149 (8) 0.0059 (7)
O3 0.0328 (7) 0.0279 (7) 0.0393 (8) 0.0114 (6) −0.0014 (6) −0.0036 (6)
N1 0.0204 (7) 0.0217 (7) 0.0188 (7) 0.0009 (6) −0.0002 (6) −0.0011 (6)
C1 0.0281 (9) 0.0263 (9) 0.0212 (8) −0.0027 (7) 0.0001 (7) −0.0006 (7)
C2 0.0589 (15) 0.0407 (13) 0.0285 (11) −0.0206 (12) 0.0064 (11) 0.0062 (10)
C3 0.0185 (8) 0.0289 (9) 0.0284 (9) −0.0001 (7) −0.0023 (7) −0.0027 (7)
C4 0.0197 (8) 0.0294 (9) 0.0242 (9) 0.0051 (7) −0.0026 (7) −0.0024 (7)
C5 0.0248 (8) 0.0202 (8) 0.0237 (9) −0.0014 (7) −0.0060 (7) 0.0000 (7)
C6 0.0351 (10) 0.0230 (9) 0.0450 (12) −0.0017 (8) −0.0191 (9) 0.0013 (9)
C7 0.0402 (11) 0.0278 (10) 0.0374 (11) −0.0054 (8) −0.0154 (9) 0.0006 (8)
C8 0.0321 (9) 0.0226 (8) 0.0201 (8) 0.0008 (7) −0.0056 (7) 0.0034 (7)
C9 0.0529 (13) 0.0278 (10) 0.0219 (9) 0.0086 (9) 0.0019 (9) 0.0006 (8)
C10 0.0547 (13) 0.0342 (11) 0.0218 (9) 0.0022 (9) −0.0004 (9) 0.0030 (8)
C11 0.0226 (8) 0.0215 (8) 0.0365 (10) 0.0027 (7) −0.0015 (7) −0.0006 (8)
C12 0.0226 (9) 0.0253 (9) 0.0367 (10) 0.0047 (7) 0.0002 (8) −0.0026 (8)
C13 0.0260 (9) 0.0242 (9) 0.0378 (11) 0.0064 (7) −0.0033 (8) −0.0034 (8)
C14 0.0340 (10) 0.0380 (11) 0.0212 (9) 0.0044 (8) 0.0048 (8) −0.0031 (8)
C15 0.0307 (15) 0.077 (3) 0.0314 (15) 0.009 (2) 0.0063 (12) 0.012 (2)
C16 0.045 (2) 0.107 (7) 0.050 (3) 0.016 (5) 0.0194 (18) 0.032 (6)
O4 0.090 (4) 0.082 (3) 0.045 (2) 0.043 (3) 0.024 (2) 0.000 (2)
C14A 0.0340 (10) 0.0380 (11) 0.0212 (9) 0.0044 (8) 0.0048 (8) −0.0031 (8)
C15A 0.0307 (15) 0.077 (3) 0.0314 (15) 0.009 (2) 0.0063 (12) 0.012 (2)
C16A 0.045 (2) 0.107 (7) 0.050 (3) 0.016 (5) 0.0194 (18) 0.032 (6)
O4A 0.083 (7) 0.143 (10) 0.043 (4) 0.043 (5) 0.005 (4) −0.008 (5)

Geometric parameters (Å, °)

Fe1—N1i 1.9077 (14) C8—C9 1.517 (3)
Fe1—N1 1.9077 (14) C8—H8A 0.9900
Fe1—P1 2.2884 (4) C8—H8B 0.9900
Fe1—P1i 2.2884 (4) C9—C10 1.529 (3)
Fe1—P2i 2.3049 (4) C9—H9A 0.9900
Fe1—P2 2.3049 (4) C9—H9B 0.9900
P1—C5 1.8300 (18) C10—H10A 0.9900
P1—C3 1.8358 (18) C10—H10B 0.9900
P1—C8 1.8387 (18) C11—C12 1.531 (2)
P2—C11 1.8341 (19) C11—H11A 0.9900
P2—C14 1.8388 (19) C11—H11B 0.9900
P2—C4 1.8409 (18) C12—C13 1.517 (3)
O1—C7 1.421 (2) C12—H12A 0.9900
O1—H1O 0.928 (17) C12—H12B 0.9900
O2—C10 1.415 (3) C13—H13A 0.9900
O2—H2O 0.976 (18) C13—H13B 0.9900
O3—C13 1.426 (2) C14—C15 1.477 (4)
O3—H3O 0.924 (17) C14—H14A 0.9900
N1—C1 1.140 (2) C14—H14B 0.9900
C1—C2 1.457 (3) C15—C16 1.483 (8)
C2—H2A 0.87 (4) C15—H15A 0.9900
C2—H2B 0.94 (4) C15—H15B 0.9900
C2—H2C 0.90 (3) C16—O4 1.438 (10)
C3—C4 1.528 (3) C16—H16A 0.9900
C3—H3A 0.9900 C16—H16B 0.9900
C3—H3B 0.9900 C16—H4OA 1.40 (2)
C4—H4A 0.9900 O4—H4O 0.98 (2)
C4—H4B 0.9900 O4—H4OA 1.15 (9)
C5—C6 1.531 (2) C15A—C16A 1.531 (13)
C5—H5A 0.9900 C15A—H15C 0.9900
C5—H5B 0.9900 C15A—H15D 0.9900
C6—C7 1.518 (3) C16A—O4A 1.390 (15)
C6—H6A 0.9900 C16A—H16C 0.9900
C6—H6B 0.9900 C16A—H16D 0.9900
C7—H7A 0.9900 O4A—H4O 1.67 (3)
C7—H7B 0.9900 O4A—H4OA 0.98 (2)
N1i—Fe1—N1 180.0 C9—C8—H8B 107.7
N1i—Fe1—P1 91.51 (4) P1—C8—H8B 107.7
N1—Fe1—P1 88.49 (4) H8A—C8—H8B 107.1
N1i—Fe1—P1i 88.49 (4) C8—C9—C10 112.18 (17)
N1—Fe1—P1i 91.51 (4) C8—C9—H9A 109.2
P1—Fe1—P1i 180.00 (3) C10—C9—H9A 109.2
N1i—Fe1—P2i 89.90 (4) C8—C9—H9B 109.2
N1—Fe1—P2i 90.10 (4) C10—C9—H9B 109.2
P1—Fe1—P2i 95.813 (16) H9A—C9—H9B 107.9
P1i—Fe1—P2i 84.187 (16) O2—C10—C9 112.52 (17)
N1i—Fe1—P2 90.10 (4) O2—C10—H10A 109.1
N1—Fe1—P2 89.90 (4) C9—C10—H10A 109.1
P1—Fe1—P2 84.187 (16) O2—C10—H10B 109.1
P1i—Fe1—P2 95.813 (16) C9—C10—H10B 109.1
P2i—Fe1—P2 180.00 (3) H10A—C10—H10B 107.8
C5—P1—C3 104.19 (8) C12—C11—P2 116.53 (13)
C5—P1—C8 104.85 (8) C12—C11—H11A 108.2
C3—P1—C8 99.48 (9) P2—C11—H11A 108.2
C5—P1—Fe1 120.80 (6) C12—C11—H11B 108.2
C3—P1—Fe1 105.32 (6) P2—C11—H11B 108.2
C8—P1—Fe1 119.09 (6) H11A—C11—H11B 107.3
C11—P2—C14 103.44 (9) C13—C12—C11 109.88 (15)
C11—P2—C4 102.82 (9) C13—C12—H12A 109.7
C14—P2—C4 105.10 (9) C11—C12—H12A 109.7
C11—P2—Fe1 118.75 (6) C13—C12—H12B 109.7
C14—P2—Fe1 116.66 (7) C11—C12—H12B 109.7
C4—P2—Fe1 108.46 (6) H12A—C12—H12B 108.2
C7—O1—H1O 108.1 (19) O3—C13—C12 112.82 (16)
C10—O2—H2O 110 (2) O3—C13—H13A 109.0
C13—O3—H3O 105.3 (17) C12—C13—H13A 109.0
C1—N1—Fe1 178.43 (15) O3—C13—H13B 109.0
N1—C1—C2 178.4 (2) C12—C13—H13B 109.0
C1—C2—H2A 110 (3) H13A—C13—H13B 107.8
C1—C2—H2B 108 (2) C15—C14—P2 120.8 (2)
H2A—C2—H2B 113 (3) C15—C14—H14A 107.1
C1—C2—H2C 112 (2) P2—C14—H14A 107.1
H2A—C2—H2C 111 (3) C15—C14—H14B 107.1
H2B—C2—H2C 104 (3) P2—C14—H14B 107.1
C4—C3—P1 106.90 (12) H14A—C14—H14B 106.8
C4—C3—H3A 110.3 C16—C15—C14 113.3 (4)
P1—C3—H3A 110.3 C16—C15—H15A 108.9
C4—C3—H3B 110.3 C14—C15—H15A 108.9
P1—C3—H3B 110.3 C16—C15—H15B 108.9
H3A—C3—H3B 108.6 C14—C15—H15B 108.9
C3—C4—P2 108.88 (12) H15A—C15—H15B 107.7
C3—C4—H4A 109.9 O4—C16—C15 108.9 (6)
P2—C4—H4A 109.9 O4—C16—H16A 109.9
C3—C4—H4B 109.9 C15—C16—H16A 109.9
P2—C4—H4B 109.9 O4—C16—H16B 109.9
H4A—C4—H4B 108.3 C15—C16—H16B 109.9
C6—C5—P1 115.37 (12) H16A—C16—H16B 108.3
C6—C5—H5A 108.4 O4—C16—H4OA 48 (4)
P1—C5—H5A 108.4 C15—C16—H4OA 157 (3)
C6—C5—H5B 108.4 H16A—C16—H4OA 85.2
P1—C5—H5B 108.4 H16B—C16—H4OA 80.6
H5A—C5—H5B 107.5 C16—O4—H4O 102.7 (19)
C7—C6—C5 112.10 (16) C16—O4—H4OA 64.3 (16)
C7—C6—H6A 109.2 H4O—O4—H4OA 73 (5)
C5—C6—H6A 109.2 C16A—C15A—H15C 109.4
C7—C6—H6B 109.2 C16A—C15A—H15D 109.4
C5—C6—H6B 109.2 H15C—C15A—H15D 108.0
H6A—C6—H6B 107.9 O4A—C16A—C15A 108.8 (8)
O1—C7—C6 109.56 (17) O4A—C16A—H16C 109.9
O1—C7—H7A 109.8 C15A—C16A—H16C 109.9
C6—C7—H7A 109.8 O4A—C16A—H16D 109.9
O1—C7—H7B 109.8 C15A—C16A—H16D 109.9
C6—C7—H7B 109.8 H16C—C16A—H16D 108.3
H7A—C7—H7B 108.2 C16A—O4A—H4O 105.5 (16)
C9—C8—P1 118.28 (13) C16A—O4A—H4OA 104 (2)
C9—C8—H8A 107.7 H4O—O4A—H4OA 49 (8)
P1—C8—H8A 107.7
N1i—Fe1—P1—C5 −126.74 (8) Fe1—P1—C3—C4 −52.35 (13)
N1—Fe1—P1—C5 53.26 (8) P1—C3—C4—P2 52.78 (15)
P2i—Fe1—P1—C5 −36.69 (7) C11—P2—C4—C3 −157.24 (13)
P2—Fe1—P1—C5 143.31 (7) C14—P2—C4—C3 94.80 (14)
N1i—Fe1—P1—C3 115.91 (8) Fe1—P2—C4—C3 −30.65 (14)
N1—Fe1—P1—C3 −64.09 (8) C3—P1—C5—C6 −45.93 (17)
P2i—Fe1—P1—C3 −154.03 (6) C8—P1—C5—C6 58.13 (16)
P2—Fe1—P1—C3 25.97 (6) Fe1—P1—C5—C6 −163.84 (12)
N1i—Fe1—P1—C8 5.56 (8) P1—C5—C6—C7 −170.84 (15)
N1—Fe1—P1—C8 −174.44 (8) C5—C6—C7—O1 −64.9 (2)
P2i—Fe1—P1—C8 95.61 (7) C5—P1—C8—C9 53.06 (17)
P2—Fe1—P1—C8 −84.39 (7) C3—P1—C8—C9 160.61 (15)
N1i—Fe1—P2—C11 24.40 (9) Fe1—P1—C8—C9 −85.84 (16)
N1—Fe1—P2—C11 −155.60 (9) P1—C8—C9—C10 −179.89 (14)
P1—Fe1—P2—C11 115.91 (8) C8—C9—C10—O2 −70.4 (2)
P1i—Fe1—P2—C11 −64.09 (8) C14—P2—C11—C12 65.29 (17)
N1i—Fe1—P2—C14 149.30 (9) C4—P2—C11—C12 −43.92 (17)
N1—Fe1—P2—C14 −30.70 (9) Fe1—P2—C11—C12 −163.61 (12)
P1—Fe1—P2—C14 −119.19 (8) P2—C11—C12—C13 −178.05 (14)
P1i—Fe1—P2—C14 60.81 (8) C11—C12—C13—O3 −175.41 (17)
N1i—Fe1—P2—C4 −92.34 (8) C11—P2—C14—C15 −97.4 (3)
N1—Fe1—P2—C4 87.66 (8) C4—P2—C14—C15 10.1 (3)
P1—Fe1—P2—C4 −0.84 (7) Fe1—P2—C14—C15 130.3 (3)
P1i—Fe1—P2—C4 179.16 (7) P2—C14—C15—C16 −179.9 (5)
C5—P1—C3—C4 179.56 (12) C14—C15—C16—O4 −71.1 (7)
C8—P1—C3—C4 71.49 (14)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···Cl1 0.93 (2) 2.13 (2) 3.0493 (16) 173 (3)
O2—H2O···Cl1ii 0.98 (2) 2.23 (2) 3.1777 (19) 164 (3)
O3—H3O···O1ii 0.92 (2) 1.84 (2) 2.741 (2) 164 (2)
O4—H4O···Cl1iii 0.98 (2) 1.95 (2) 2.931 (6) 177 (3)
O4A—H4OA···Cl1iii 0.98 (2) 2.84 (11) 3.490 (10) 125 (9)

Symmetry codes: (ii) x, y−1, z; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2994).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Barron, A. R., Wilkinson, G., Motevalli, M. & Hursthouse, M. B. (1987). Polyhedron, 6, 1089–1095.
  3. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Edwards, P. E., Harrison, A., Newman, P. D. & Zhang, W. (2006). Inorg. Chim. Acta, 359, 3549–3556.
  5. George, A. V., Field, L. D., Malouf, E. Y., McQueen, A. E. D., Pike, S. R., Purches, G. R., Hambley, T. W., Buys, I. E., White, A. H., Hockless, D. C. R. & Skelton, B. W. (1997). J. Organomet. Chem.538, 101–110.
  6. Gilbertson, J. D., Szymczak, N. K., Crossland, J. L., Miller, W. K., Lyon, D. K., Foxman, B. M., Davis, J. & Tyler, D. R. (2007). Inorg. Chem.46, 1205–1214. [DOI] [PubMed]
  7. Martins, L. M. D. R. S., Duarte, M. T., Galvao, A. M., Resende, C., Pombiero, A. J. L., Henderson, R. A. & Evans, D. J. (1998). J. Chem. Soc. Dalton Trans. pp. 3311–3318.
  8. Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, K. D. & Tyler, D. R. (2002). Inorg. Chem.41, 5453–5465. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021758/hb2994sup1.cif

e-65-0m776-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021758/hb2994Isup2.hkl

e-65-0m776-Isup2.hkl (224KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES