Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):o1712. doi: 10.1107/S1600536809024404

N-(2-Thienylmethyl­ene)-2-(2-{[2-(2-thienylmethyl­eneamino)phen­yl]sulfan­yl}ethyl­sulfan­yl)aniline

Ali Kakanejadifard a,*, Vahid Amani b
PMCID: PMC2969378  PMID: 21582963

Abstract

The asymmetric unit of the title compound, C24H20N2S4, contains one half-mol­ecule: a crystallographic centre of inversion is located at the mid-point of the two central C atoms. The thio­phene ring is oriented at a dihedral angle of 60.64 (3)° with respect to the benzene ring. In the crystal structure, π–π contacts between thio­phene rings [centroid–centroid distance = 3.581 (1) Å] may stabilize the structure. A weak C—H⋯π inter­action is also present.

Related literature

For related structures, see: Dharaa et al. (2005); Gok & Demirbas (1989); Kakanejadifard et al. (2007); Kakanejadifard & Amani (2008); Morshedi et al. (2009); Rajsekhar et al. (2002, 2004); Taylor et al. (2008). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o1712-scheme1.jpg

Experimental

Crystal data

  • C24H20N2S4

  • M r = 464.66

  • Monoclinic, Inline graphic

  • a = 11.179 (5) Å

  • b = 7.730 (4) Å

  • c = 12.608 (6) Å

  • β = 91.899 (12)°

  • V = 1088.9 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.895, T max = 0.930

  • 12880 measured reflections

  • 2899 independent reflections

  • 2569 reflections with I > 2/s(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.079

  • S = 1.00

  • 2899 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024404/hk2716sup1.cif

e-65-o1712-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024404/hk2716Isup2.hkl

e-65-o1712-Isup2.hkl (142.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10ACg1i 0.95 2.80 3.740 (3) 171

Symmetry code: (i) Inline graphic. Cg1 is centroid of the ring C2–C7 ring.

Acknowledgments

We are grateful to the Research Grant Council of Lorestan University for financial support.

supplementary crystallographic information

Comment

There are several examples of N2S2 Schiff bases type of adducts which exist as anti configuration. For 2-[2-(2-aminophenylthio)benzeneamine] adduct see: (Gok & Demirbas, 1989; Dharaa et al., 2005; Kakanejadifard et al., 2007; Kakanejadifard & Amani, 2008). For N2S2 Schiff bases adduct see: (Rajsekhar et al., 2002; Taylor et al., 2008; Morshedi et al., 2009). For N2O2S2 Schiff bases adduct see: (Rajsekhar et al., 2004). We report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains one-half molecule. A crystallographic centre of inversion is located at the midpoint between the two central C atoms. The bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (S2/C9-C12) are, of course, planar and they are oriented at a dihedral angle of 60.64 (3)°.

In the crystal structure, the π–π contact between the thiophene rings, Cg2—Cg2i, [symmetry code: (i) -x, -y, 1 - z, where Cg2 is centroid of the ring B (S2/C9-C12)] may stabilize the structure, with centroid-centroid distance of 3.581 (1) Å. There also exits a weak C—H···π interaction (Table 1).

Experimental

For the preparation of the title compound, a solution of thiophencarbaldehyde (20 mmol) was added dropwise to a solution of 2-[2-(2-aminophenylthio)benzeneamine] (2.76 g, 10 mmol) in absolute ethanol (25 ml) with stirring in 10 min at room temperature. The mixture was stirred and heated to reflux for 5 h. The product was filtered and crystallized from CH3CN (yield; 45%, m.p. 398-399 K).

Refinement

H atoms were positioned geometrically with C-H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) 1 - x, -y, 2 -z].

Fig. 2.

Fig. 2.

A partial packing diagram.

Crystal data

C24H20N2S4 F(000) = 484
Mr = 464.66 Dx = 1.417 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 887 reflections
a = 11.179 (5) Å θ = 3–30°
b = 7.730 (4) Å µ = 0.45 mm1
c = 12.608 (6) Å T = 100 K
β = 91.899 (12)° Prism, yellow
V = 1088.9 (9) Å3 0.30 × 0.20 × 0.15 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer 2899 independent reflections
Radiation source: fine-focus sealed tube 2569 reflections with I > 2/s(I)
graphite Rint = 0.029
φ and ω scans θmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −15→15
Tmin = 0.895, Tmax = 0.930 k = −10→10
12880 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.43P] where P = (Fo2 + 2Fc2)/3
2899 reflections (Δ/σ)max = 0.001
136 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.63766 (3) −0.06436 (4) 0.88963 (2) 0.01981 (9)
S2 0.96427 (3) 0.15452 (4) 0.67870 (2) 0.01990 (9)
N1 0.79244 (9) −0.14058 (14) 0.72259 (8) 0.0188 (2)
C1 0.51924 (11) −0.09011 (16) 0.98300 (10) 0.0199 (2)
H1A 0.4507 −0.1525 0.9492 0.024*
H1B 0.5485 −0.1574 1.0454 0.024*
C2 0.64682 (11) −0.27273 (16) 0.83345 (10) 0.0178 (2)
C3 0.58160 (11) −0.41715 (17) 0.86395 (10) 0.0212 (3)
H3A 0.5258 −0.4071 0.9188 0.025*
C4 0.59782 (12) −0.57566 (17) 0.81445 (11) 0.0232 (3)
H4A 0.5528 −0.6732 0.8357 0.028*
C5 0.67894 (12) −0.59283 (18) 0.73454 (11) 0.0238 (3)
H5A 0.6912 −0.7024 0.7025 0.029*
C6 0.74233 (12) −0.44926 (17) 0.70128 (10) 0.0216 (3)
H6A 0.7970 −0.4605 0.6456 0.026*
C7 0.72613 (10) −0.28888 (16) 0.74913 (9) 0.0180 (2)
C8 0.79459 (11) −0.09360 (17) 0.62510 (10) 0.0196 (2)
H8A 0.7488 −0.1565 0.5733 0.024*
C9 0.86458 (11) 0.05200 (17) 0.59218 (10) 0.0188 (2)
C10 0.86686 (12) 0.12347 (18) 0.49235 (10) 0.0213 (3)
H10A 0.8185 0.0843 0.4338 0.026*
C11 0.94924 (12) 0.26160 (18) 0.48653 (10) 0.0234 (3)
H11A 0.9619 0.3261 0.4237 0.028*
C12 1.00852 (12) 0.29220 (17) 0.58100 (10) 0.0223 (3)
H12B 1.0675 0.3797 0.5914 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01936 (16) 0.01889 (16) 0.02154 (16) −0.00077 (11) 0.00610 (11) −0.00011 (11)
S2 0.02172 (16) 0.02322 (17) 0.01469 (15) −0.00207 (11) −0.00047 (11) −0.00144 (11)
N1 0.0163 (5) 0.0226 (5) 0.0174 (5) −0.0002 (4) 0.0025 (4) −0.0003 (4)
C1 0.0180 (6) 0.0221 (6) 0.0199 (6) 0.0015 (5) 0.0049 (4) 0.0027 (5)
C2 0.0168 (5) 0.0188 (6) 0.0178 (5) 0.0017 (4) −0.0008 (4) 0.0010 (4)
C3 0.0190 (6) 0.0226 (6) 0.0221 (6) −0.0004 (5) 0.0013 (5) 0.0045 (5)
C4 0.0226 (6) 0.0196 (6) 0.0270 (6) −0.0027 (5) −0.0036 (5) 0.0044 (5)
C5 0.0239 (6) 0.0210 (6) 0.0261 (6) 0.0016 (5) −0.0053 (5) −0.0026 (5)
C6 0.0196 (6) 0.0251 (6) 0.0200 (6) 0.0021 (5) −0.0005 (5) −0.0024 (5)
C7 0.0160 (5) 0.0210 (6) 0.0170 (5) −0.0001 (4) −0.0013 (4) 0.0014 (4)
C8 0.0173 (5) 0.0240 (6) 0.0176 (6) 0.0002 (5) 0.0007 (4) −0.0011 (5)
C9 0.0173 (5) 0.0229 (6) 0.0163 (5) 0.0004 (4) 0.0001 (4) −0.0020 (5)
C10 0.0220 (6) 0.0259 (6) 0.0159 (6) 0.0006 (5) −0.0010 (4) 0.0000 (5)
C11 0.0277 (6) 0.0230 (6) 0.0198 (6) 0.0008 (5) 0.0034 (5) 0.0037 (5)
C12 0.0247 (6) 0.0193 (6) 0.0232 (6) −0.0022 (5) 0.0032 (5) 0.0002 (5)

Geometric parameters (Å, °)

S1—C2 1.7639 (15) C4—H4A 0.9500
S1—C1 1.8114 (14) C5—C6 1.389 (2)
S2—C12 1.7132 (15) C5—H5A 0.9500
S2—C9 1.7261 (14) C6—C7 1.3932 (19)
N1—C8 1.2827 (17) C6—H6A 0.9500
N1—C7 1.4114 (17) C8—C9 1.4396 (18)
C1—C1i 1.524 (3) C8—H8A 0.9500
C1—H1A 0.9900 C9—C10 1.3757 (18)
C1—H1B 0.9900 C10—C11 1.414 (2)
C2—C3 1.3944 (18) C10—H10A 0.9500
C2—C7 1.4122 (17) C11—C12 1.3644 (19)
C3—C4 1.3897 (19) C11—H11A 0.9500
C3—H3A 0.9500 C12—H12B 0.9500
C4—C5 1.384 (2)
C2—S1—C1 102.36 (6) C5—C6—C7 120.35 (12)
C12—S2—C9 91.53 (7) C5—C6—H6A 119.8
C8—N1—C7 118.94 (11) C7—C6—H6A 119.8
C1i—C1—S1 107.55 (11) C6—C7—N1 122.90 (11)
C1i—C1—H1A 110.2 C6—C7—C2 119.91 (12)
S1—C1—H1A 110.2 N1—C7—C2 117.03 (11)
C1i—C1—H1B 110.2 N1—C8—C9 121.68 (12)
S1—C1—H1B 110.2 N1—C8—H8A 119.2
H1A—C1—H1B 108.5 C9—C8—H8A 119.2
C3—C2—C7 118.94 (12) C10—C9—C8 127.19 (12)
C3—C2—S1 125.63 (10) C10—C9—S2 111.26 (10)
C7—C2—S1 115.42 (9) C8—C9—S2 121.50 (10)
C4—C3—C2 120.32 (12) C9—C10—C11 112.50 (12)
C4—C3—H3A 119.8 C9—C10—H10A 123.7
C2—C3—H3A 119.8 C11—C10—H10A 123.7
C5—C4—C3 120.66 (12) C12—C11—C10 112.59 (12)
C5—C4—H4A 119.7 C12—C11—H11A 123.7
C3—C4—H4A 119.7 C10—C11—H11A 123.7
C4—C5—C6 119.75 (13) C11—C12—S2 112.12 (10)
C4—C5—H5A 120.1 C11—C12—H12B 123.9
C6—C5—H5A 120.1 S2—C12—H12B 123.9
C2—S1—C1—C1i −166.07 (12) S1—C2—C7—C6 178.23 (9)
C1—S1—C2—C3 −4.13 (13) C3—C2—C7—N1 −178.52 (11)
C1—S1—C2—C7 174.52 (9) S1—C2—C7—N1 2.73 (14)
C7—C2—C3—C4 2.25 (19) C7—N1—C8—C9 −177.31 (11)
S1—C2—C3—C4 −179.14 (10) N1—C8—C9—C10 −174.31 (13)
C2—C3—C4—C5 0.2 (2) N1—C8—C9—S2 8.43 (18)
C3—C4—C5—C6 −1.9 (2) C12—S2—C9—C10 −0.04 (10)
C4—C5—C6—C7 1.1 (2) C12—S2—C9—C8 177.62 (11)
C5—C6—C7—N1 176.60 (12) C8—C9—C10—C11 −177.69 (12)
C5—C6—C7—C2 1.38 (19) S2—C9—C10—C11 −0.20 (15)
C8—N1—C7—C6 53.92 (17) C9—C10—C11—C12 0.42 (17)
C8—N1—C7—C2 −130.73 (13) C10—C11—C12—S2 −0.44 (15)
C3—C2—C7—C6 −3.02 (18) C9—S2—C12—C11 0.28 (11)

Symmetry codes: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10A···Cg1ii 0.95 2.80 3.740 (3) 171

Symmetry codes: (ii) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2716).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dharaa, P. K., Dasa, B., Lo, J. M. & Chattopadhyay, P. (2005). Appl. Radiat. Isot.62, 729–735.
  4. Gok, Y. & Demirbas, A. (1989). Synth. React. Inorg. Met.-Org. Chem.19, 681–698.
  5. Kakanejadifard, A. & Amani, V. (2008). Acta Cryst. E64, o1512. [DOI] [PMC free article] [PubMed]
  6. Kakanejadifard, A., Sharifi, S., Delfani, F., Ranjbar, B. & Naderimanesh, H. (2007). Iran. J. Chem. Chem. Eng.26, 63–67.
  7. Morshedi, M., Amirnasr, M., Slawin, A. M. Z., Woollins, J. D. & Dehno Khalaji, A. K. (2009). Polyhedron, 28, 167–171.
  8. Rajsekhar, G., Rao, C. P., Saarenketo, P. K., Kolehmainen, E. & Rissanen, K. (2002). Inorg. Chem. Commun.5, 649–652.
  9. Rajsekhar, G., Rao, C. P., Saarenketo, P., Nattinen, K. & Rissanen, K. (2004). New J. Chem.28, 75–84.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Taylor, M. K., Trotter, K. D., Reglinski, J., Berlouis, L. E. A., Kennedy, A. R., Spickett, C. M. & Sowden, R. J. (2008). Inorg. Chim. Acta, 361, 2851–2862.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024404/hk2716sup1.cif

e-65-o1712-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024404/hk2716Isup2.hkl

e-65-o1712-Isup2.hkl (142.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES