Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):m722. doi: 10.1107/S1600536809020273

Bis(triphenyl­stann­yl) thio­phene-2,5-dicarboxyl­ate

Lichun Zhao a,*, Jian Liang a, Guihua Yue a, Xin Deng a, Ying He a
PMCID: PMC2969381  PMID: 21582666

Abstract

Mol­ecules of the title compound, [Sn2(C6H5)6(C6H2O4S)], lie on inversion centres with the central thio­phene ring disordered equally over two orientations. The carboxyl­ate groups are approximately coplanar with the thio­phene ring [dihedral angle = 4.0 (1)°] and the Sn—O bond distance of 2.058 (4) Å is comparable to that in related organotin carboxyl­ates.

Related literature

For background literature concerning organotin chemisty, see: Prabusankar & Murugavel (2004); Holmes (1989). For related structures, see: Pellei et al. (2008).graphic file with name e-65-0m722-scheme1.jpg

Experimental

Crystal data

  • [Sn2(C6H5)6(C6H2O4S)]

  • M r = 870.12

  • Monoclinic, Inline graphic

  • a = 10.1302 (10) Å

  • b = 18.699 (2) Å

  • c = 10.3584 (11) Å

  • β = 108.213 (2)°

  • V = 1863.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 298 K

  • 0.21 × 0.11 × 0.06 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.752, T max = 0.919

  • 9058 measured reflections

  • 3281 independent reflections

  • 2342 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.110

  • S = 1.02

  • 3281 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020273/bi2371sup1.cif

e-65-0m722-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020273/bi2371Isup2.hkl

e-65-0m722-Isup2.hkl (161KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Foundation of the Affiliated Ruikang Hospital of Guangxi Traditional Chinese Medical College (grant No. LG0901).

supplementary crystallographic information

Comment

The structural diversity of organotin carboxylates is well recognized and a wide variety of coordination geometries have been reported (Holmes, 1989). It is generally believed that a combination of steric and electronic factors determine the specific structure adapted by a particular organotin carboxylate (Prabusankar & Murugavel, 2004). This is supported through the observation of monomeric, dimeric, tetrameric, oligomeric ladder, cyclic, and drum structures. Furthermore, it has been reported that the size of the carboxylic acids used and the stoichiometry of the reactants play an important role in the formation of solid-state frameworks.

Experimental

The reaction was carried out under a nitrogen atmosphere. Thiophene-2,5-dicarboxylic acid (10 mmol) and sodium ethoxide (20 mmol) were added to a stirred solution of benzene (50 ml) in a three-necked flask and stirred for 0.5 h. Triphenyltin chloride (20 mmol) was then added and the reaction mixture was stirred for 6 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane to yield colourless blocks of the title compound. Elemental analysis: calculated C 57.97, H 3.71 %; found: C 57.68, H 3.55 %.

Refinement

H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure showing 30% probability displacement ellipsoids, with H atoms are omitted. Unlabelled atoms are related to labelled atoms by the symmetry code: 2-x, -y, 1-z. The symmetry-generated component of the disordered thiophene ring is not shown.

Crystal data

[Sn2(C6H5)6(C6H2O4S)] F(000) = 864
Mr = 870.12 Dx = 1.550 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3030 reflections
a = 10.1302 (10) Å θ = 2.4–25.2°
b = 18.699 (2) Å µ = 1.44 mm1
c = 10.3584 (11) Å T = 298 K
β = 108.213 (2)° Needle, colorless
V = 1863.8 (3) Å3 0.21 × 0.11 × 0.06 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer 3281 independent reflections
Radiation source: fine-focus sealed tube 2342 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→6
Tmin = 0.752, Tmax = 0.919 k = −22→20
9058 measured reflections l = −11→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0214P)2 + 10.153P] where P = (Fo2 + 2Fc2)/3
3281 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.77 e Å3
0 restraints Δρmin = −0.63 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sn1 0.66000 (5) 0.07183 (3) 0.78299 (5) 0.04647 (17)
S1 0.9299 (4) 0.0123 (2) 0.4533 (4) 0.0479 (9) 0.50
O1 0.7511 (5) 0.0595 (3) 0.6325 (5) 0.0547 (13)
O2 0.9220 (7) 0.0178 (4) 0.7991 (8) 0.110 (3)
C1 0.8710 (9) 0.0308 (4) 0.6808 (10) 0.061 (2)
C2 0.9687 (17) −0.0005 (9) 0.6205 (18) 0.053 (4) 0.50
C3 1.0869 (15) −0.0332 (8) 0.6787 (16) 0.056 (4) 0.50
H3 1.1227 −0.0425 0.7713 0.067* 0.50
C4 1.1513 (16) −0.0519 (8) 0.5836 (15) 0.057 (4) 0.50
H4 1.2341 −0.0775 0.6067 0.068* 0.50
C5 1.0826 (16) −0.0293 (8) 0.4493 (19) 0.048 (4) 0.50
C6 0.4678 (8) 0.1119 (5) 0.6546 (9) 0.074 (3)
C7 0.4344 (10) 0.1137 (5) 0.5168 (10) 0.089 (3)
H7 0.4985 0.0981 0.4752 0.107*
C8 0.3042 (12) 0.1388 (6) 0.4372 (12) 0.107 (4)
H8 0.2812 0.1401 0.3430 0.129*
C9 0.2123 (12) 0.1611 (6) 0.4998 (14) 0.113 (4)
H9 0.1275 0.1798 0.4471 0.136*
C10 0.2392 (11) 0.1573 (7) 0.6336 (14) 0.123 (5)
H10 0.1723 0.1709 0.6731 0.147*
C11 0.3691 (9) 0.1327 (6) 0.7143 (12) 0.107 (4)
H11 0.3894 0.1304 0.8082 0.128*
C12 0.7680 (8) 0.1508 (4) 0.9236 (7) 0.0532 (19)
C13 0.7151 (11) 0.2181 (5) 0.9169 (11) 0.100 (3)
H13 0.6362 0.2302 0.8457 0.120*
C14 0.7770 (12) 0.2686 (6) 1.0144 (12) 0.109 (4)
H14 0.7375 0.3138 1.0089 0.131*
C15 0.8898 (11) 0.2541 (6) 1.1140 (11) 0.091 (3)
H15 0.9309 0.2884 1.1793 0.109*
C16 0.9439 (12) 0.1896 (7) 1.1196 (12) 0.121 (4)
H16 1.0244 0.1788 1.1899 0.145*
C17 0.8848 (11) 0.1373 (5) 1.0241 (10) 0.102 (4)
H17 0.9267 0.0927 1.0301 0.123*
C18 0.6293 (11) −0.0309 (5) 0.8534 (9) 0.072 (3)
C19 0.4946 (13) −0.0581 (6) 0.8128 (10) 0.101 (3)
H19 0.4219 −0.0301 0.7600 0.121*
C20 0.4668 (15) −0.1284 (7) 0.8514 (12) 0.115 (4)
H20 0.3770 −0.1465 0.8293 0.138*
C21 0.5790 (17) −0.1672 (7) 0.9219 (13) 0.127 (5)
H21 0.5634 −0.2144 0.9418 0.152*
C22 0.7120 (16) −0.1434 (7) 0.9663 (12) 0.130 (5)
H22 0.7840 −0.1725 1.0172 0.156*
C23 0.7362 (14) −0.0732 (6) 0.9321 (10) 0.110 (4)
H23 0.8258 −0.0547 0.9629 0.132*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.0405 (3) 0.0537 (3) 0.0483 (3) 0.0019 (3) 0.0182 (2) −0.0062 (3)
S1 0.040 (2) 0.052 (2) 0.054 (3) 0.0089 (19) 0.0192 (19) 0.0058 (19)
O1 0.050 (3) 0.062 (3) 0.060 (3) 0.008 (3) 0.028 (3) 0.005 (3)
O2 0.092 (5) 0.082 (5) 0.118 (6) 0.012 (4) −0.023 (5) 0.006 (4)
C1 0.048 (5) 0.061 (5) 0.080 (6) −0.002 (4) 0.026 (5) −0.017 (5)
C2 0.042 (10) 0.055 (10) 0.062 (11) 0.012 (8) 0.018 (9) 0.000 (8)
C3 0.049 (9) 0.065 (10) 0.057 (10) 0.017 (8) 0.020 (8) 0.002 (8)
C4 0.046 (9) 0.064 (10) 0.059 (10) 0.015 (8) 0.015 (8) −0.002 (8)
C5 0.040 (9) 0.047 (10) 0.064 (12) 0.010 (8) 0.025 (9) −0.005 (9)
C6 0.053 (5) 0.082 (6) 0.079 (6) 0.014 (5) 0.010 (5) −0.042 (5)
C7 0.069 (6) 0.092 (7) 0.090 (7) 0.017 (5) 0.003 (6) −0.041 (6)
C8 0.087 (8) 0.110 (9) 0.099 (8) 0.020 (7) −0.008 (7) −0.038 (7)
C9 0.080 (8) 0.111 (9) 0.121 (10) 0.026 (7) −0.010 (8) −0.038 (8)
C10 0.074 (7) 0.142 (11) 0.134 (11) 0.040 (7) 0.006 (8) −0.056 (9)
C11 0.060 (6) 0.134 (9) 0.111 (8) 0.032 (6) 0.007 (6) −0.055 (7)
C12 0.050 (4) 0.061 (5) 0.055 (5) −0.002 (4) 0.025 (4) −0.011 (4)
C13 0.090 (7) 0.081 (7) 0.104 (8) 0.019 (6) −0.004 (6) −0.039 (6)
C14 0.098 (8) 0.086 (7) 0.119 (9) 0.012 (7) −0.001 (8) −0.043 (7)
C15 0.082 (7) 0.092 (8) 0.092 (8) −0.016 (6) 0.019 (6) −0.046 (6)
C16 0.099 (9) 0.110 (9) 0.111 (9) 0.002 (8) −0.031 (7) −0.031 (8)
C17 0.089 (7) 0.081 (7) 0.096 (8) 0.015 (6) −0.030 (6) −0.024 (6)
C18 0.090 (7) 0.079 (6) 0.053 (5) −0.033 (6) 0.033 (5) −0.012 (5)
C19 0.121 (9) 0.104 (8) 0.080 (7) −0.043 (7) 0.035 (7) −0.015 (6)
C20 0.130 (11) 0.116 (10) 0.096 (9) −0.064 (9) 0.033 (8) −0.014 (7)
C21 0.149 (13) 0.119 (11) 0.102 (10) −0.045 (10) 0.023 (10) 0.019 (8)
C22 0.151 (13) 0.113 (10) 0.103 (9) −0.036 (9) 0.006 (9) 0.020 (8)
C23 0.146 (11) 0.092 (8) 0.072 (7) −0.044 (8) 0.006 (7) 0.019 (6)

Geometric parameters (Å, °)

Sn1—O1 2.058 (4) C10—H10 0.930
Sn1—C18 2.112 (9) C11—H11 0.930
Sn1—C6 2.121 (9) C12—C17 1.333 (11)
Sn1—C12 2.122 (7) C12—C13 1.359 (11)
S1—C2 1.669 (18) C13—C14 1.382 (12)
S1—C5 1.744 (15) C13—H13 0.930
O1—C1 1.279 (9) C14—C15 1.307 (13)
O2—C1 1.197 (10) C14—H14 0.930
C1—C2 1.449 (17) C15—C16 1.320 (14)
C2—C3 1.31 (2) C15—H15 0.930
C3—C4 1.385 (19) C16—C17 1.386 (13)
C3—H3 0.930 C16—H16 0.930
C4—C5 1.41 (2) C17—H17 0.930
C4—H4 0.930 C18—C23 1.382 (14)
C5—C1i 1.560 (19) C18—C19 1.392 (13)
C6—C7 1.361 (12) C19—C20 1.428 (14)
C6—C11 1.386 (12) C19—H19 0.930
C7—C8 1.400 (13) C20—C21 1.354 (16)
C7—H7 0.930 C20—H20 0.930
C8—C9 1.356 (15) C21—C22 1.355 (16)
C8—H8 0.930 C21—H21 0.930
C9—C10 1.328 (15) C22—C23 1.402 (14)
C9—H9 0.930 C22—H22 0.930
C10—C11 1.399 (13) C23—H23 0.930
O1—Sn1—C18 108.0 (3) C6—C11—H11 120.0
O1—Sn1—C6 96.1 (3) C10—C11—H11 120.0
C18—Sn1—C6 109.4 (4) C17—C12—C13 117.1 (8)
O1—Sn1—C12 109.9 (2) C17—C12—Sn1 123.0 (6)
C18—Sn1—C12 119.7 (3) C13—C12—Sn1 119.9 (6)
C6—Sn1—C12 111.1 (3) C12—C13—C14 120.9 (9)
C2—S1—C5 92.1 (7) C12—C13—H13 119.6
C1—O1—Sn1 110.3 (5) C14—C13—H13 119.6
O2—C1—O1 122.7 (8) C15—C14—C13 121.4 (10)
O2—C1—C2 103.0 (11) C15—C14—H14 119.3
O1—C1—C2 134.0 (11) C13—C14—H14 119.3
C3—C2—C1 129.7 (16) C14—C15—C16 118.2 (10)
C3—C2—S1 115.5 (12) C14—C15—H15 120.9
C1—C2—S1 114.7 (12) C16—C15—H15 120.9
C2—C3—C4 110.8 (15) C15—C16—C17 122.2 (10)
C2—C3—H3 124.6 C15—C16—H16 118.9
C4—C3—H3 124.6 C17—C16—H16 118.9
C3—C4—C5 115.4 (15) C12—C17—C16 120.2 (10)
C3—C4—H4 122.3 C12—C17—H17 119.9
C5—C4—H4 122.3 C16—C17—H17 119.9
C4—C5—S1 106.1 (13) C23—C18—C19 118.9 (9)
C1i—C5—S1 122.5 (12) C23—C18—Sn1 123.4 (7)
C7—C6—C11 118.9 (9) C19—C18—Sn1 117.6 (8)
C7—C6—Sn1 123.0 (6) C18—C19—C20 120.8 (12)
C11—C6—Sn1 117.9 (7) C18—C19—H19 119.6
C6—C7—C8 120.4 (10) C20—C19—H19 119.6
C6—C7—H7 119.8 C21—C20—C19 116.0 (12)
C8—C7—H7 119.8 C21—C20—H20 122.0
C9—C8—C7 118.9 (11) C19—C20—H20 122.0
C9—C8—H8 120.6 C20—C21—C22 125.8 (13)
C7—C8—H8 120.6 C20—C21—H21 117.1
C10—C9—C8 122.3 (11) C22—C21—H21 117.1
C10—C9—H9 118.8 C21—C22—C23 117.1 (13)
C8—C9—H9 118.8 C21—C22—H22 121.5
C9—C10—C11 119.3 (12) C23—C22—H22 121.5
C9—C10—H10 120.4 C18—C23—C22 121.2 (12)
C11—C10—H10 120.4 C18—C23—H23 119.4
C6—C11—C10 120.1 (11) C22—C23—H23 119.4

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2371).

References

  1. Holmes, R. R. (1989). Acc. Chem. Res.22, 190–197.
  2. Pellei, M., Alidori, S., Benetollo, F., Lobbia, G. G., Mancini, M., Lobbia, G. G. & Santini, C. (2008). J. Organomet. Chem.693, 996–1004.
  3. Prabusankar, G. & Murugavel, R. (2004). Organometallics, 23, 5644–5647.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020273/bi2371sup1.cif

e-65-0m722-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020273/bi2371Isup2.hkl

e-65-0m722-Isup2.hkl (161KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES