Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):o1716. doi: 10.1107/S1600536809024301

Methyl 2-hydr­oxy-3-nitro­benzoate

Yan-Zhu Liu a,*, Yong-Xiu Li a, Ling Zhang a, Xia Li a
PMCID: PMC2969387  PMID: 21582967

Abstract

The title compound, C8H7NO5, assumes an approximately planar mol­ecular structure with an intra­molecular O—H⋯O hydrogen bond between the hydr­oxy and carboxyl­ate groups. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the properties of 2-hydroxy­benzoyl compounds, see: Konopacka et al. (2005); Sonar et al. (2007); Willian & Layne (2001); Huang et al. (1996). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o1716-scheme1.jpg

Experimental

Crystal data

  • C8H7NO5

  • M r = 197.15

  • Monoclinic, Inline graphic

  • a = 7.6120 (10) Å

  • b = 11.716 (2) Å

  • c = 9.656 (2) Å

  • β = 101.830 (10)°

  • V = 842.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 291 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 4045 measured reflections

  • 1473 independent reflections

  • 965 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.110

  • S = 1.02

  • 1655 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024301/xu2532sup1.cif

e-65-o1716-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024301/xu2532Isup2.hkl

e-65-o1716-Isup2.hkl (81.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.96 1.70 2.554 (2) 146
C4—H4A⋯O2i 0.93 2.57 3.321 (3) 138
C6—H6A⋯O4ii 0.93 2.49 3.336 (3) 151
C8—H8B⋯O1ii 0.96 2.59 3.305 (3) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work is supported by the Program for Innovative Research Team of Nanchang University, the Open Foundation of CAS Key Laboratory of Organic Solids and the Natural Science Foundation of Education Department of Jiangxi Province, China.

supplementary crystallographic information

Comment

Methyl salicylate and its analogues are useful intermediates in organic synthesis and show potential applications for functional materials and drugs (Konopacka et al., 2005; Sonar et al., 2007; Willian & Layne, 2001; Huang et al., 1996). In this paper, the structure of the title compound is reported.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). There is an intramolecular hydrogen bond between the hydroxy group and the carboxyl group, and the whole molecule is planar except for the methyl H atoms. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonding (Table 1).

Experimental

The methyl salicylate (3 ml) and Fe(NO3)3.9(H2O) (3 g) were dissolved in ethyl acetate (50 ml), and the solution was refluxed for 1 h. The resulting mixture was cooled and filtered. The yellow single crystals were obtained from the filtrate by slowly evaporating ethyl acetate.

Refinement

H atoms were located geometrically and treated as riding atoms with C—H = 0.93 (aromatic), 0.96 Å (methyl) and O—H = 0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C,O) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at the 30% probability level. The dashed line indicates hydrogen bonding.

Crystal data

C8H7NO5 F(000) = 408
Mr = 197.15 Dx = 1.554 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1211 reflections
a = 7.612 (1) Å θ = 2.7–22.6°
b = 11.716 (2) Å µ = 0.13 mm1
c = 9.656 (2) Å T = 291 K
β = 101.83 (1)° Block, yellow
V = 842.9 (3) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 965 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.046
graphite θmax = 26.0°, θmin = 2.7°
φ and ω scans h = −8→9
4045 measured reflections k = −13→13
1473 independent reflections l = −11→6

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.02P)2 + 0.55P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
1655 reflections Δρmax = 0.48 e Å3
129 parameters Δρmin = −0.40 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.010 (3)

Special details

Experimental. 1H-NMR (CDCl3, 500 MHz): δ4.03 (s, 3 H), 7.20(s, 1 H), 8.15-8.19 (d, 2 H), 12.02 (s, 1 H).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C3 0.6545 (3) 0.9162 (2) −0.0890 (2) 0.0465 (6)
C4 0.6080 (3) 0.8030 (2) −0.1125 (3) 0.0541 (7)
H4A 0.5248 0.7822 −0.1931 0.065*
C5 0.6836 (4) 0.7212 (2) −0.0176 (3) 0.0581 (8)
H5A 0.6523 0.6448 −0.0337 0.070*
C6 0.8059 (3) 0.7525 (2) 0.1011 (3) 0.0504 (7)
H6A 0.8577 0.6966 0.1649 0.060*
C1 0.8541 (3) 0.8654 (2) 0.1281 (2) 0.0433 (6)
C2 0.7769 (3) 0.9507 (2) 0.0320 (2) 0.0449 (6)
C7 0.9867 (3) 0.8997 (2) 0.2543 (3) 0.0499 (7)
C8 1.1859 (4) 0.8424 (2) 0.4632 (3) 0.0654 (9)
H8C 1.2856 0.8819 0.4384 0.098*
H8B 1.2277 0.7740 0.5140 0.098*
H8A 1.1297 0.8907 0.5217 0.098*
N1 0.5694 (4) 0.9981 (2) −0.1954 (3) 0.0726 (8)
O2 0.6026 (3) 1.09798 (19) −0.1803 (2) 0.0830 (7)
O3 0.4677 (4) 0.96270 (19) −0.2983 (2) 0.1045 (9)
O1 0.8187 (3) 1.06068 (13) 0.05425 (19) 0.0651 (6)
H1A 0.9073 1.0676 0.1402 0.098*
O4 1.0286 (3) 0.99828 (15) 0.2831 (2) 0.0692 (6)
O5 1.0566 (2) 0.81316 (14) 0.33514 (18) 0.0564 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C3 0.0456 (15) 0.0474 (15) 0.0452 (15) 0.0024 (12) 0.0064 (12) 0.0044 (12)
C4 0.0541 (17) 0.0566 (18) 0.0479 (16) −0.0064 (14) 0.0016 (13) −0.0055 (13)
C5 0.0686 (19) 0.0408 (15) 0.0602 (17) −0.0089 (14) 0.0021 (15) −0.0062 (13)
C6 0.0570 (17) 0.0389 (14) 0.0523 (16) 0.0003 (12) 0.0043 (13) 0.0024 (12)
C1 0.0445 (14) 0.0380 (14) 0.0454 (14) 0.0009 (11) 0.0047 (11) −0.0006 (11)
C2 0.0461 (15) 0.0383 (14) 0.0490 (15) −0.0006 (12) 0.0064 (12) −0.0027 (12)
C7 0.0510 (16) 0.0417 (15) 0.0537 (16) 0.0010 (13) 0.0032 (12) 0.0006 (13)
C8 0.0645 (19) 0.0666 (18) 0.0539 (17) −0.0020 (15) −0.0143 (14) 0.0017 (14)
N1 0.088 (2) 0.0614 (17) 0.0573 (16) 0.0015 (15) −0.0116 (14) 0.0065 (14)
O2 0.1039 (18) 0.0617 (14) 0.0704 (14) 0.0079 (13) −0.0123 (12) 0.0118 (11)
O3 0.130 (2) 0.0832 (17) 0.0741 (16) −0.0058 (15) −0.0405 (15) 0.0098 (13)
O1 0.0776 (14) 0.0355 (10) 0.0703 (13) −0.0033 (9) −0.0130 (10) 0.0026 (9)
O4 0.0805 (14) 0.0404 (11) 0.0720 (13) −0.0043 (10) −0.0188 (11) −0.0055 (9)
O5 0.0603 (12) 0.0469 (11) 0.0532 (11) −0.0018 (9) −0.0089 (9) 0.0030 (9)

Geometric parameters (Å, °)

C3—C4 1.380 (3) C2—O1 1.334 (3)
C3—C2 1.396 (3) C7—O4 1.215 (3)
C3—N1 1.457 (3) C7—O5 1.323 (3)
C4—C5 1.369 (3) C8—O5 1.455 (3)
C4—H4A 0.9300 C8—H8C 0.9600
C5—C6 1.371 (3) C8—H8B 0.9600
C5—H5A 0.9300 C8—H8A 0.9600
C6—C1 1.383 (3) N1—O2 1.200 (3)
C6—H6A 0.9300 N1—O3 1.201 (3)
C1—C2 1.408 (3) O1—H1A 0.9600
C1—C7 1.470 (3)
C4—C3—C2 121.4 (2) O1—C2—C1 121.7 (2)
C4—C3—N1 117.0 (2) C3—C2—C1 117.6 (2)
C2—C3—N1 121.6 (2) O4—C7—O5 122.6 (2)
C5—C4—C3 120.3 (2) O4—C7—C1 123.6 (2)
C5—C4—H4A 119.8 O5—C7—C1 113.8 (2)
C3—C4—H4A 119.8 O5—C8—H8C 109.5
C4—C5—C6 119.5 (2) O5—C8—H8B 109.5
C4—C5—H5A 120.3 H8C—C8—H8B 109.5
C6—C5—H5A 120.3 O5—C8—H8A 109.5
C5—C6—C1 121.5 (2) H8C—C8—H8A 109.5
C5—C6—H6A 119.2 H8B—C8—H8A 109.5
C1—C6—H6A 119.2 O2—N1—O3 121.4 (2)
C6—C1—C2 119.7 (2) O2—N1—C3 120.2 (2)
C6—C1—C7 121.9 (2) O3—N1—C3 118.3 (3)
C2—C1—C7 118.4 (2) C2—O1—H1A 108.9
O1—C2—C3 120.7 (2) C7—O5—C8 116.16 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O4 0.96 1.70 2.554 (2) 146
C4—H4A···O2i 0.93 2.57 3.321 (3) 138
C6—H6A···O4ii 0.93 2.49 3.336 (3) 151
C8—H8B···O1ii 0.96 2.59 3.305 (3) 131

Symmetry codes: (i) −x+1, y−1/2, −z−1/2; (ii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2532).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Huang, K.-S., Britton, D. & Etter, M. C. (1996). Acta Cryst. C52, 2868–2871.
  6. Konopacka, A., Filarowski, A. & Pawelka, Z. (2005). J. Solution Chem.34, 929–945.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sonar, V. N., Venkatraj, M., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. E63, o3227. [DOI] [PubMed]
  9. Willian, L. M. & Layne, A. M. (2001). Tetrahedron, 57, 2957–2964.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024301/xu2532sup1.cif

e-65-o1716-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024301/xu2532Isup2.hkl

e-65-o1716-Isup2.hkl (81.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES