Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 10;65(Pt 7):o1533. doi: 10.1107/S1600536809021308

Ethyl 6-(6-meth­oxy-2-naphth­yl)-2-oxo-4-(2-thien­yl)cyclo­hex-3-ene-1-carboxyl­ate

Hongqi Li a,*, Anil N Mayekar b, B Narayana c, H S Yathirajan b, W T A Harrison d
PMCID: PMC2969391  PMID: 21582822

Abstract

The title compound, C24H22O4S, was prepared by reaction between (2E)-3-(6-meth­oxy-2-naphth­yl)-1-(2-thien­yl)prop-2-en-1-one and ethyl acetoacetate. In the crystal, the cyclo­hexenone ring shows a distorted half-chair conformation. The length of the double bond in the cyclohexenone ring [1.343 (4) Å] is normal.

Related literature

For related structures, see: Fischer et al. (2007a,b ; 2008a,b ). For the use of cyclo­hexenones in organic synthesis, see: Padmavathi et al. (1999, 2001). For pharmaceutical applications of cyclo­hexenone derivatives, see: Hoye & Tennakoon (2000); Hiromichi et al. (2002).graphic file with name e-65-o1533-scheme1.jpg

Experimental

Crystal data

  • C24H22O4S

  • M r = 406.48

  • Monoclinic, Inline graphic

  • a = 18.2501 (4) Å

  • b = 11.7176 (2) Å

  • c = 9.6846 (2) Å

  • β = 93.048 (1)°

  • V = 2068.10 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.45 × 0.29 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.922, T max = 0.972

  • 17446 measured reflections

  • 4035 independent reflections

  • 2880 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.202

  • S = 1.02

  • 4035 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021308/sj2629sup1.cif

e-65-o1533-sup1.cif (25KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021308/sj2629Isup2.hkl

e-65-o1533-Isup2.hkl (197.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

ANM thanks the University of Mysore for research facilities.

supplementary crystallographic information

Comment

Cyclohexenones are efficient synthons in building spiro compounds (Padmavathi et al., 2001) or intermediates in the synthesis of benzisoxazole or carbazole derivatives (Padmavathi et al., 1999). Cyclohexenone derivatives are well known lead compounds for the treatment of inflammation and autoimmune diseases (Hoye & Tennakoon, 2000; Hiromichi et al., 2002).

The crystal structures of a series of ethyl 6-substituted 2-oxocyclohex- 3-ene-1-carboxylates have been reported (Fischer et al., 2007; 2007a,b; 2008ab). In view of the importance of these derivatives and continuing our efforts in this field, the title compound, ethyl 6-(6- methoxynaphthalen-2-yl)-2-oxo-4-(2-thienyl)cyclohexa-3-ene-1- carboxylate, was synthesized and its crystal structure is reported in this paper.

Experimental

(2E)-3-(6-methoxy-2-naphthyl)-1-(2-thienyl)prop-2-en-1-one (1.51 g, 5 mmol) and ethyl acetoacetate (0.65 g, 5 mmol) were refluxed for 6 hr in 10–15 ml of ethanol in the presence of 0.8 ml 10% NaOH. The reaction mixture was cooled to room temperature and the resulting product was filtered and recrystallized from acetonitrile (m.p.: 415–418 K). Analysis % found (calculated): C, 71.19 (71.27); H, 4.94 (4.98); S, 7.89 (7.93).

Refinement

All H atoms were placed in idealized locations (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density. The large difference between min and max Uiso values for the H atoms is a result of unresolved disorder in the ethyl side chain.

Figures

Fig. 1.

Fig. 1.

A view of the crystal structure of the title compound.

Crystal data

C24H22O4S F(000) = 856
Mr = 406.48 Dx = 1.305 Mg m3
Monoclinic, P21/c Melting point = 415–418 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 18.2501 (4) Å Cell parameters from 8575 reflections
b = 11.7176 (2) Å θ = 2.3–28.1°
c = 9.6846 (2) Å µ = 0.18 mm1
β = 93.048 (1)° T = 296 K
V = 2068.10 (7) Å3 Block, colourless
Z = 4 0.45 × 0.29 × 0.16 mm

Data collection

Bruker SMART CCD area-detector diffractometer 4035 independent reflections
Radiation source: fine-focus sealed tube 2880 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −22→22
Tmin = 0.922, Tmax = 0.972 k = −11→14
17446 measured reflections l = −11→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.095P)2 + 0.9907P] where P = (Fo2 + 2Fc2)/3
4035 reflections (Δ/σ)max = 0.001
282 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.1379 (2) 0.5193 (3) 0.4085 (3) 0.0917 (10)
H1A 0.1524 0.4568 0.4625 0.110*
C2 0.0777 (2) 0.5795 (4) 0.4405 (4) 0.0955 (12)
H2A 0.0516 0.5577 0.5160 0.115*
C3 0.05423 (16) 0.6739 (3) 0.3619 (4) 0.0845 (9)
C4 0.09205 (15) 0.7057 (3) 0.2525 (3) 0.0733 (8)
H4A 0.0762 0.7682 0.1997 0.088*
C5 0.15546 (13) 0.6457 (2) 0.2168 (3) 0.0593 (6)
C6 0.17879 (16) 0.5499 (2) 0.2952 (3) 0.0661 (7)
C7 0.24126 (19) 0.4896 (3) 0.2584 (3) 0.0810 (9)
H7A 0.2567 0.4267 0.3108 0.097*
C8 0.28020 (16) 0.5208 (3) 0.1474 (3) 0.0787 (9)
C9 0.25672 (16) 0.6164 (3) 0.0705 (3) 0.0768 (8)
H9A 0.2829 0.6392 −0.0045 0.092*
C10 0.19634 (15) 0.6766 (3) 0.1033 (3) 0.0694 (7)
H10A 0.1818 0.7393 0.0497 0.083*
C11A 0.3387 (4) 0.4303 (7) 0.1361 (8) 0.0567 (17) 0.489 (11)
H11A 0.3274 0.3649 0.1944 0.068* 0.489 (11)
C11B 0.3537 (3) 0.4735 (6) 0.0866 (7) 0.0498 (15) 0.511 (11)
H11B 0.3642 0.5140 0.0013 0.060* 0.511 (11)
C12 0.41517 (14) 0.4837 (2) 0.1877 (3) 0.0587 (6)
H12A 0.4212 0.5568 0.1426 0.070*
H12B 0.4149 0.4974 0.2864 0.070*
C13 0.47940 (14) 0.4085 (2) 0.1587 (3) 0.0563 (6)
C14 0.47374 (16) 0.3283 (2) 0.0596 (3) 0.0654 (7)
H14A 0.5156 0.2875 0.0396 0.078*
C15 0.40620 (18) 0.3025 (3) −0.0168 (3) 0.0779 (8)
C16A 0.3403 (3) 0.3921 (6) −0.0137 (8) 0.0659 (19) 0.511 (11)
H16A 0.3472 0.4565 −0.0763 0.079* 0.511 (11)
C16B 0.3388 (3) 0.3456 (5) 0.0561 (7) 0.0501 (17) 0.489 (11)
H16B 0.3323 0.3031 0.1418 0.060* 0.489 (11)
C17 0.27068 (18) 0.3302 (3) −0.0483 (4) 0.0771 (8)
C18 0.1848 (5) 0.3678 (7) −0.2222 (6) 0.190 (3)
H18A 0.1700 0.2910 −0.1987 0.228*
H18B 0.1906 0.3710 −0.3211 0.228*
C19 0.1297 (5) 0.4479 (7) −0.1848 (8) 0.212 (3)
H19A 0.0839 0.4294 −0.2329 0.317*
H19B 0.1442 0.5236 −0.2095 0.317*
H19C 0.1240 0.4443 −0.0869 0.317*
C20 0.54589 (14) 0.4261 (2) 0.2453 (3) 0.0628 (7)
C21 0.56318 (14) 0.5200 (2) 0.3318 (3) 0.0689 (7)
H21A 0.5331 0.5831 0.3424 0.083*
C22 0.63359 (19) 0.5044 (3) 0.4008 (4) 0.0956 (10)
H22A 0.6556 0.5588 0.4595 0.115*
C23 0.66455 (19) 0.4056 (3) 0.3736 (5) 0.1036 (12)
H23A 0.7098 0.3828 0.4128 0.124*
C24 −0.0321 (3) 0.8260 (6) 0.3341 (8) 0.169 (3)
H24A −0.0767 0.8524 0.3713 0.254*
H24B −0.0408 0.8082 0.2379 0.254*
H24C 0.0047 0.8844 0.3443 0.254*
S1 0.61390 (5) 0.32512 (7) 0.26068 (12) 0.0945 (4)
O1 0.2523 (2) 0.3953 (3) −0.1501 (3) 0.1250 (10)
O2 0.23644 (17) 0.2511 (2) −0.0137 (3) 0.1130 (9)
O3 −0.00726 (14) 0.7259 (3) 0.4069 (3) 0.1238 (11)
O4 0.40154 (14) 0.2313 (2) −0.1083 (2) 0.0996 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.127 (3) 0.076 (2) 0.070 (2) −0.028 (2) −0.0062 (19) 0.0070 (16)
C2 0.106 (3) 0.110 (3) 0.071 (2) −0.048 (2) 0.0134 (18) −0.006 (2)
C3 0.0610 (16) 0.109 (3) 0.084 (2) −0.0190 (16) 0.0062 (14) −0.015 (2)
C4 0.0597 (15) 0.080 (2) 0.0794 (18) 0.0007 (13) −0.0029 (13) −0.0023 (15)
C5 0.0576 (13) 0.0555 (15) 0.0637 (14) −0.0041 (11) −0.0067 (11) −0.0018 (12)
C6 0.0832 (17) 0.0517 (15) 0.0614 (15) −0.0115 (13) −0.0138 (13) −0.0029 (12)
C7 0.104 (2) 0.0579 (17) 0.077 (2) 0.0198 (16) −0.0339 (17) −0.0135 (15)
C8 0.0733 (17) 0.079 (2) 0.080 (2) 0.0214 (15) −0.0240 (15) −0.0337 (17)
C9 0.0673 (16) 0.085 (2) 0.0781 (18) 0.0060 (15) 0.0041 (14) −0.0083 (16)
C10 0.0680 (16) 0.0662 (18) 0.0738 (17) 0.0069 (13) 0.0020 (13) 0.0082 (14)
C11A 0.067 (3) 0.047 (4) 0.056 (4) −0.003 (3) 0.002 (3) 0.006 (3)
C11B 0.062 (3) 0.037 (3) 0.050 (3) 0.001 (2) 0.003 (2) 0.005 (2)
C12 0.0691 (14) 0.0452 (13) 0.0620 (14) 0.0002 (11) 0.0051 (11) −0.0005 (11)
C13 0.0683 (14) 0.0429 (13) 0.0588 (14) 0.0007 (10) 0.0134 (11) 0.0065 (11)
C14 0.0757 (16) 0.0535 (15) 0.0682 (16) 0.0077 (12) 0.0151 (13) −0.0001 (13)
C15 0.089 (2) 0.0624 (17) 0.0824 (19) 0.0045 (15) 0.0099 (15) −0.0215 (16)
C16A 0.085 (4) 0.052 (4) 0.061 (4) −0.002 (3) 0.003 (3) 0.002 (3)
C16B 0.068 (3) 0.037 (3) 0.045 (3) −0.002 (2) 0.001 (2) 0.001 (3)
C17 0.0830 (19) 0.0625 (19) 0.086 (2) −0.0068 (15) 0.0024 (16) −0.0232 (17)
C18 0.266 (8) 0.195 (6) 0.103 (4) 0.108 (6) −0.067 (5) −0.030 (4)
C19 0.222 (8) 0.195 (7) 0.209 (7) 0.017 (7) −0.066 (6) −0.024 (6)
C20 0.0628 (14) 0.0547 (15) 0.0719 (16) 0.0001 (11) 0.0139 (12) 0.0094 (13)
C21 0.0631 (14) 0.0668 (17) 0.0753 (17) 0.0019 (12) −0.0092 (12) −0.0095 (14)
C22 0.084 (2) 0.090 (2) 0.110 (3) −0.0001 (19) −0.0164 (19) −0.011 (2)
C23 0.0742 (19) 0.091 (3) 0.144 (3) −0.0013 (18) −0.015 (2) 0.014 (2)
C24 0.101 (3) 0.190 (6) 0.220 (6) 0.053 (4) 0.038 (4) −0.022 (5)
S1 0.0799 (5) 0.0638 (5) 0.1391 (9) 0.0073 (4) −0.0014 (5) 0.0047 (5)
O1 0.171 (3) 0.105 (2) 0.100 (2) 0.004 (2) 0.022 (2) 0.0166 (17)
O2 0.140 (2) 0.0862 (18) 0.1104 (19) −0.0330 (17) −0.0168 (17) 0.0061 (15)
O3 0.0724 (15) 0.181 (3) 0.120 (2) −0.0047 (18) 0.0278 (15) −0.032 (2)
O4 0.1168 (18) 0.0868 (16) 0.0945 (16) 0.0164 (13) −0.0023 (13) −0.0425 (14)

Geometric parameters (Å, °)

C1—C2 1.354 (5) C14—C15 1.436 (4)
C1—C6 1.406 (4) C14—H14A 0.9300
C1—H1A 0.9300 C15—O4 1.217 (3)
C2—C3 1.396 (5) C15—C16B 1.536 (6)
C2—H2A 0.9300 C15—C16A 1.599 (7)
C3—C4 1.347 (4) C16A—C17 1.486 (7)
C3—O3 1.369 (4) C16A—H16A 0.9800
C4—C5 1.413 (4) C16B—C17 1.571 (6)
C4—H4A 0.9300 C16B—H16B 0.9800
C5—C10 1.408 (4) C17—O2 1.176 (4)
C5—C6 1.409 (4) C17—O1 1.277 (4)
C6—C7 1.403 (4) C18—O1 1.420 (7)
C7—C8 1.370 (5) C18—C19 1.437 (9)
C7—H7A 0.9300 C18—H18A 0.9700
C8—C9 1.400 (5) C18—H18B 0.9700
C8—C11A 1.513 (7) C19—H19A 0.9600
C8—C11B 1.593 (6) C19—H19B 0.9600
C9—C10 1.360 (4) C19—H19C 0.9600
C9—H9A 0.9300 C20—C21 1.409 (4)
C10—H10A 0.9300 C20—S1 1.715 (3)
C11A—C16A 1.520 (8) C21—C22 1.428 (4)
C11A—C12 1.586 (7) C21—H21A 0.9300
C11A—H11A 0.9800 C22—C23 1.321 (5)
C11B—C12 1.455 (6) C22—H22A 0.9300
C11B—C16B 1.549 (7) C23—S1 1.683 (4)
C11B—H11B 0.9800 C23—H23A 0.9300
C12—C13 1.505 (3) C24—O3 1.429 (7)
C12—H12A 0.9700 C24—H24A 0.9600
C12—H12B 0.9700 C24—H24B 0.9600
C13—C14 1.343 (4) C24—H24C 0.9600
C13—C20 1.453 (4)
C2—C1—C6 121.1 (3) C13—C14—H14A 118.4
C2—C1—H1A 119.5 C15—C14—H14A 118.4
C6—C1—H1A 119.5 O4—C15—C14 123.0 (3)
C1—C2—C3 121.1 (3) O4—C15—C16B 122.3 (3)
C1—C2—H2A 119.4 C14—C15—C16B 112.3 (3)
C3—C2—H2A 119.4 O4—C15—C16A 116.1 (3)
C4—C3—O3 126.1 (4) C14—C15—C16A 118.6 (3)
C4—C3—C2 119.5 (3) C16B—C15—C16A 32.2 (2)
O3—C3—C2 114.4 (3) C17—C16A—C11A 107.4 (5)
C3—C4—C5 121.0 (3) C17—C16A—C15 108.1 (4)
C3—C4—H4A 119.5 C11A—C16A—C15 105.3 (5)
C5—C4—H4A 119.5 C17—C16A—H16A 111.9
C10—C5—C6 117.9 (2) C11A—C16A—H16A 111.9
C10—C5—C4 122.6 (3) C15—C16A—H16A 111.9
C6—C5—C4 119.5 (3) C15—C16B—C11B 105.6 (4)
C7—C6—C1 122.8 (3) C15—C16B—C17 107.0 (4)
C7—C6—C5 119.4 (3) C11B—C16B—C17 111.0 (4)
C1—C6—C5 117.8 (3) C15—C16B—H16B 111.0
C8—C7—C6 121.8 (3) C11B—C16B—H16B 111.0
C8—C7—H7A 119.1 C17—C16B—H16B 111.0
C6—C7—H7A 119.1 O2—C17—O1 124.7 (3)
C7—C8—C9 118.3 (3) O2—C17—C16A 141.4 (5)
C7—C8—C11A 105.5 (5) O1—C17—C16A 93.9 (5)
C9—C8—C11A 136.0 (5) O2—C17—C16B 108.7 (4)
C7—C8—C11B 132.8 (4) O1—C17—C16B 126.5 (4)
C9—C8—C11B 108.8 (4) C16A—C17—C16B 32.9 (3)
C11A—C8—C11B 28.1 (2) O1—C18—C19 109.2 (5)
C10—C9—C8 121.3 (3) O1—C18—H18A 109.8
C10—C9—H9A 119.3 C19—C18—H18A 109.8
C8—C9—H9A 119.3 O1—C18—H18B 109.8
C9—C10—C5 121.2 (3) C19—C18—H18B 109.8
C9—C10—H10A 119.4 H18A—C18—H18B 108.3
C5—C10—H10A 119.4 C18—C19—H19A 109.5
C8—C11A—C16A 108.9 (5) C18—C19—H19B 109.5
C8—C11A—C12 108.2 (5) H19A—C19—H19B 109.5
C16A—C11A—C12 110.9 (5) C18—C19—H19C 109.5
C8—C11A—H11A 109.6 H19A—C19—H19C 109.5
C16A—C11A—H11A 109.6 H19B—C19—H19C 109.5
C12—C11A—H11A 109.6 C21—C20—C13 127.4 (2)
C12—C11B—C16B 109.2 (4) C21—C20—S1 110.4 (2)
C12—C11B—C8 110.9 (4) C13—C20—S1 122.1 (2)
C16B—C11B—C8 105.4 (5) C20—C21—C22 110.3 (3)
C12—C11B—H11B 110.4 C20—C21—H21A 124.9
C16B—C11B—H11B 110.4 C22—C21—H21A 124.9
C8—C11B—H11B 110.4 C23—C22—C21 113.7 (3)
C11B—C12—C13 114.0 (3) C23—C22—H22A 123.2
C11B—C12—C11A 28.5 (2) C21—C22—H22A 123.2
C13—C12—C11A 113.0 (3) C22—C23—S1 113.3 (3)
C11B—C12—H12A 82.6 C22—C23—H23A 123.4
C13—C12—H12A 109.0 S1—C23—H23A 123.4
C11A—C12—H12A 109.0 O3—C24—H24A 109.5
C11B—C12—H12B 129.3 O3—C24—H24B 109.5
C13—C12—H12B 109.0 H24A—C24—H24B 109.5
C11A—C12—H12B 109.0 O3—C24—H24C 109.5
H12A—C12—H12B 107.8 H24A—C24—H24C 109.5
C14—C13—C20 122.8 (2) H24B—C24—H24C 109.5
C14—C13—C12 120.8 (2) C23—S1—C20 92.28 (17)
C20—C13—C12 116.4 (2) C17—O1—C18 115.4 (4)
C13—C14—C15 123.2 (3) C3—O3—C24 116.9 (3)
C6—C1—C2—C3 0.1 (5) C13—C14—C15—C16B −18.7 (5)
C1—C2—C3—C4 −0.1 (5) C13—C14—C15—C16A 16.4 (6)
C1—C2—C3—O3 −180.0 (3) C8—C11A—C16A—C17 −68.1 (6)
O3—C3—C4—C5 179.3 (3) C12—C11A—C16A—C17 172.9 (6)
C2—C3—C4—C5 −0.5 (5) C8—C11A—C16A—C15 176.9 (6)
C3—C4—C5—C10 −180.0 (3) C12—C11A—C16A—C15 57.9 (6)
C3—C4—C5—C6 1.1 (4) O4—C15—C16A—C17 39.2 (7)
C2—C1—C6—C7 −179.8 (3) C14—C15—C16A—C17 −157.4 (4)
C2—C1—C6—C5 0.5 (4) C16B—C15—C16A—C17 −70.5 (7)
C10—C5—C6—C7 0.3 (4) O4—C15—C16A—C11A 153.7 (4)
C4—C5—C6—C7 179.2 (2) C14—C15—C16A—C11A −42.9 (6)
C10—C5—C6—C1 179.9 (3) C16B—C15—C16A—C11A 44.1 (5)
C4—C5—C6—C1 −1.1 (4) O4—C15—C16B—C11B −144.5 (4)
C1—C6—C7—C8 179.9 (3) C14—C15—C16B—C11B 52.6 (5)
C5—C6—C7—C8 −0.4 (4) C16A—C15—C16B—C11B −55.9 (5)
C6—C7—C8—C9 0.7 (4) O4—C15—C16B—C17 −26.2 (7)
C6—C7—C8—C11A −175.6 (3) C14—C15—C16B—C17 170.9 (3)
C6—C7—C8—C11B 176.6 (3) C16A—C15—C16B—C17 62.4 (6)
C7—C8—C9—C10 −0.7 (4) C12—C11B—C16B—C15 −66.7 (5)
C11A—C8—C9—C10 174.1 (4) C8—C11B—C16B—C15 174.1 (5)
C11B—C8—C9—C10 −177.6 (3) C12—C11B—C16B—C17 177.7 (5)
C8—C9—C10—C5 0.6 (5) C8—C11B—C16B—C17 58.5 (5)
C6—C5—C10—C9 −0.4 (4) C11A—C16A—C17—O2 −58.3 (7)
C4—C5—C10—C9 −179.3 (3) C15—C16A—C17—O2 54.8 (8)
C7—C8—C11A—C16A 132.9 (5) C11A—C16A—C17—O1 123.3 (5)
C9—C8—C11A—C16A −42.3 (8) C15—C16A—C17—O1 −123.5 (5)
C11B—C8—C11A—C16A −59.2 (7) C11A—C16A—C17—C16B −48.7 (5)
C7—C8—C11A—C12 −106.5 (5) C15—C16A—C17—C16B 64.4 (6)
C9—C8—C11A—C12 78.3 (6) C15—C16B—C17—O2 104.7 (5)
C11B—C8—C11A—C12 61.4 (7) C11B—C16B—C17—O2 −140.6 (4)
C7—C8—C11B—C12 −60.7 (7) C15—C16B—C17—O1 −78.9 (5)
C9—C8—C11B—C12 115.5 (5) C11B—C16B—C17—O1 35.9 (6)
C11A—C8—C11B—C12 −76.8 (8) C15—C16B—C17—C16A −69.0 (6)
C7—C8—C11B—C16B 57.3 (5) C11B—C16B—C17—C16A 45.8 (5)
C9—C8—C11B—C16B −126.5 (4) C14—C13—C20—C21 166.3 (3)
C11A—C8—C11B—C16B 41.2 (6) C12—C13—C20—C21 −15.2 (4)
C16B—C11B—C12—C13 45.4 (6) C14—C13—C20—S1 −17.2 (3)
C8—C11B—C12—C13 161.1 (4) C12—C13—C20—S1 161.28 (18)
C16B—C11B—C12—C11A −49.0 (6) C13—C20—C21—C22 179.4 (3)
C8—C11B—C12—C11A 66.7 (8) S1—C20—C21—C22 2.6 (3)
C8—C11A—C12—C11B −71.9 (8) C20—C21—C22—C23 −2.8 (5)
C16A—C11A—C12—C11B 47.5 (6) C21—C22—C23—S1 1.7 (5)
C8—C11A—C12—C13 −170.2 (4) C22—C23—S1—C20 −0.1 (3)
C16A—C11A—C12—C13 −50.8 (6) C21—C20—S1—C23 −1.5 (2)
C11B—C12—C13—C14 −9.4 (5) C13—C20—S1—C23 −178.5 (2)
C11A—C12—C13—C14 21.7 (5) O2—C17—O1—C18 0.9 (6)
C11B—C12—C13—C20 172.1 (4) C16A—C17—O1—C18 179.6 (4)
C11A—C12—C13—C20 −156.9 (4) C16B—C17—O1—C18 −175.0 (4)
C20—C13—C14—C15 173.4 (3) C19—C18—O1—C17 104.5 (7)
C12—C13—C14—C15 −5.0 (4) C4—C3—O3—C24 −2.5 (6)
C13—C14—C15—O4 178.6 (3) C2—C3—O3—C24 177.4 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2629).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fischer, A., Swamy, M. T., Narayana, B. & Yathirajan, H. S. (2008a). Acta Cryst. E64, o2152. [DOI] [PMC free article] [PubMed]
  3. Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o254–o255. [DOI] [PMC free article] [PubMed]
  4. Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o3616. [DOI] [PMC free article] [PubMed]
  5. Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2008b). Acta Cryst. E64, o560. [DOI] [PMC free article] [PubMed]
  6. Hiromichi, F., Naoyuki, K., Yoshinari, S., Yasushi, N. & Yasuyuki, K. (2002). Tetrahedron Lett.43, 4825–4828.
  7. Hoye, T. R. & Tennakoon, M. A. (2000). Org. Lett.2, 1481–1483. [DOI] [PubMed]
  8. Padmavathi, V., Sharmila, K., Padmaja, A. & Bhaskar Reddy, D. (1999). Heterocycl. Commun.5, 451–456.
  9. Padmavathi, V., Sharmila, K., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Ind. J. Chem. Sect. B, 40, 11–14.
  10. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021308/sj2629sup1.cif

e-65-o1533-sup1.cif (25KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021308/sj2629Isup2.hkl

e-65-o1533-Isup2.hkl (197.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES