Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1639. doi: 10.1107/S1600536809022909

N-Benzyl­idenenordehydro­abietylamine

Xiao-Ping Rao a,*, Yong Wu a, Zhan-Qian Song a, Shi-Bin Shang a
PMCID: PMC2969393  PMID: 21582903

Abstract

The title compound [systematic name: (1R,4aS,10aR,E)-N-benzyl­idene-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthren-1-amine], C26H33N, has been synthesized from nor-dehydro­abietylamine and benzaldehyde. The two cyclo­hexane rings form a trans ring junction with classic chair and half-chair conformations, respectively, the two methyl groups are on the same side of tricyclic hydro­phenanthrene structure. The dihedral angle between two benzene rings is 44.2 (4)°. The C=N bond is in an E configuration.

Related literature

For the biological activity of dehydro­abietiylamine derivatives, see: Rao et al. (2006); Rao, Song & He (2008); Rao, Song, He & Jia (2008); Wilkerson et al. (1993).graphic file with name e-65-o1639-scheme1.jpg

Experimental

Crystal data

  • C26H33N

  • M r = 359.53

  • Monoclinic, Inline graphic

  • a = 12.285 (3) Å

  • b = 5.8940 (12) Å

  • c = 14.994 (3) Å

  • β = 95.90 (3)°

  • V = 1079.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.975, T max = 0.981

  • 2435 measured reflections

  • 2324 independent reflections

  • 1761 reflections with I > 2σ(I)

  • R int = 0.044

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.199

  • S = 1.04

  • 2324 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022909/at2811sup1.cif

e-65-o1639-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022909/at2811Isup2.hkl

e-65-o1639-Isup2.hkl (114.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported financially by grants from the Forestry Commonwealth Industry Special Foundation of China (No. 200704008) and the National Natural Science Foundation of China (No. 30771690).

supplementary crystallographic information

Comment

Dehydroabietiylamine derivatives exhibit wide range of biological activities, such as antifungal and antitumor activity (Wilkerson et al., 1993 and Rao et al., 2006). Nor-dehydroabietylamine is a new derivative of dehydoabietylamine, which the amine group directly attached to the tricyclic hydrophenthranene structure (Rao et al., 2006). Although much attention has been paid to the bioactivity of dehydroabietylamine derivatives, the crystal structure of the title compound has not yet been reported. In this work, we describe the crystal structure of the title compound.

As shown in Fig. 1, the title compound contains four rings, the two cyclohexane rings form a trans ring junction with classic chair and half-chair conformation, respectively, the two methyl groups are in the axis position of the cyclohexane ring. The two benzene rings are almost planar, the dihedral angle between them is 44.2 °. The bond lengths and bond angles in the molecule are in normal ranges. The title structure is compared with previously found structure 4-chloro-2-((E)-(((1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl- 1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl) methylimino)methyl)phenol (Rao et al.,2006). They exhibited almost the same configurations except that the imine group directly attached to the hydrophenanthrene structure of the title structure.

Experimental

A mixture of nor-dehydroabietylamine (1 mmol), benzaldehyde (1 mmol) and ethanol (20 ml) was stirred at 353 K for 4 h, then the solvent was distilled off. Upon recrystallization from acetone, white crystals of the title compound were obtained. Single crystals were grown from acetone.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.937–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with H atoms represented by small spheres of arbitrary radius and displacement ellipsoids at the 30% probability level.

Crystal data

C26H33N F(000) = 392
Mr = 359.53 Dx = 1.106 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 25 reflections
a = 12.285 (3) Å θ = 10–13°
b = 5.8940 (12) Å µ = 0.06 mm1
c = 14.994 (3) Å T = 293 K
β = 95.90 (3)° Block, white
V = 1079.9 (4) Å3 0.40 × 0.30 × 0.30 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer 1761 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.044
graphite θmax = 26.0°, θmin = 1.4°
ω/2θ scans h = −15→15
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = 0→7
Tmin = 0.975, Tmax = 0.981 l = 0→18
2435 measured reflections 3 standard reflections every 200 reflections
2324 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.03P)2 + 2.5P] where P = (Fo2 + 2Fc2)/3
2324 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.30 e Å3
2 restraints Δρmin = −0.36 e Å3

Special details

Experimental. Although the absolute configuration could not be determined in this case, it has been determined in our previous article which indicated the chiral centers exhibited R,S and R configurations, respectively.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N 0.5943 (4) 0.1064 (10) 0.6722 (3) 0.0555 (15)
C1 0.9610 (7) −0.212 (2) 0.6297 (5) 0.083 (3)
H1A 1.0249 −0.2959 0.6287 0.100*
C2 0.8832 (7) −0.2846 (18) 0.6812 (5) 0.080 (2)
H2A 0.8933 −0.4180 0.7142 0.096*
C3 0.7893 (7) −0.1591 (15) 0.6841 (4) 0.067 (2)
H3A 0.7358 −0.2059 0.7197 0.080*
C4 0.7749 (5) 0.0366 (14) 0.6340 (4) 0.061 (2)
C5 0.8544 (7) 0.1063 (16) 0.5820 (5) 0.072 (2)
H5A 0.8454 0.2385 0.5482 0.087*
C6 0.9483 (7) −0.024 (2) 0.5807 (6) 0.091 (3)
H6A 1.0027 0.0210 0.5455 0.109*
C7 0.6712 (5) 0.1704 (15) 0.6342 (4) 0.065 (2)
H7A 0.6656 0.3083 0.6040 0.078*
C8 0.4875 (7) 0.2395 (12) 0.6683 (4) 0.0573 (19)
C9 0.4313 (5) 0.1432 (11) 0.7462 (3) 0.0460 (15)
H9A 0.4370 −0.0218 0.7401 0.055*
C10 0.3056 (5) 0.1900 (11) 0.7458 (4) 0.0436 (14)
C11 0.2496 (5) 0.1195 (14) 0.6530 (4) 0.0552 (17)
H11A 0.1732 0.1639 0.6486 0.066*
H11B 0.2524 −0.0443 0.6476 0.066*
C12 0.3039 (6) 0.2281 (15) 0.5748 (4) 0.068 (2)
H12A 0.2670 0.1766 0.5181 0.082*
H12B 0.2970 0.3919 0.5774 0.082*
C13 0.4198 (5) 0.1662 (15) 0.5803 (4) 0.0613 (19)
H13A 0.4517 0.2347 0.5302 0.074*
H13B 0.4254 0.0029 0.5743 0.074*
C14 0.4894 (5) 0.1957 (14) 0.8384 (4) 0.0567 (17)
H14A 0.5680 0.1840 0.8368 0.068*
H14B 0.4726 0.3494 0.8556 0.068*
C15 0.4526 (5) 0.0303 (16) 0.9058 (4) 0.061 (2)
H15A 0.4719 0.0913 0.9654 0.073*
H15B 0.4928 −0.1102 0.9015 0.073*
C16 0.3317 (4) −0.0234 (11) 0.8955 (3) 0.0389 (13)
C17 0.2618 (5) 0.0468 (10) 0.8206 (3) 0.0412 (14)
C18 0.2886 (5) −0.1458 (12) 0.9632 (4) 0.0501 (16)
H18A 0.3349 −0.1858 1.0137 0.060*
C19 0.1794 (5) −0.2108 (11) 0.9587 (4) 0.0452 (14)
C20 0.1139 (5) −0.1380 (13) 0.8849 (4) 0.0527 (17)
H20A 0.0400 −0.1755 0.8800 0.063*
C21 0.1526 (5) −0.0118 (13) 0.8179 (4) 0.0544 (17)
H21A 0.1043 0.0352 0.7697 0.065*
C22 0.5043 (8) 0.4935 (13) 0.6724 (5) 0.079 (3)
H22A 0.4345 0.5680 0.6689 0.118*
H22B 0.5428 0.5409 0.6231 0.118*
H22C 0.5462 0.5328 0.7279 0.118*
C23 0.2709 (7) 0.4386 (12) 0.7645 (5) 0.068 (2)
H23A 0.1926 0.4468 0.7627 0.103*
H23B 0.2952 0.5373 0.7196 0.103*
H23C 0.3034 0.4848 0.8226 0.103*
C24 0.1371 (6) −0.3531 (14) 1.0319 (4) 0.0597 (19)
H24A 0.0603 −0.3865 1.0122 0.072*
C25 0.1949 (7) −0.5788 (13) 1.0437 (6) 0.080 (3)
H25A 0.1657 −0.6626 1.0908 0.120*
H25B 0.2717 −0.5541 1.0592 0.120*
H25C 0.1839 −0.6633 0.9888 0.120*
C26 0.1383 (7) −0.2230 (16) 1.1198 (4) 0.082 (3)
H26A 0.1122 −0.3194 1.1646 0.123*
H26B 0.0919 −0.0922 1.1111 0.123*
H26C 0.2117 −0.1755 1.1392 0.123*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.066 (3) 0.048 (3) 0.056 (3) −0.002 (3) 0.022 (3) −0.004 (3)
C1 0.070 (5) 0.115 (9) 0.063 (5) 0.016 (6) 0.002 (4) −0.023 (6)
C2 0.100 (6) 0.076 (6) 0.063 (4) −0.008 (6) 0.004 (4) 0.004 (5)
C3 0.087 (5) 0.065 (5) 0.048 (4) −0.012 (5) 0.006 (4) −0.012 (4)
C4 0.067 (4) 0.070 (5) 0.044 (3) −0.018 (4) −0.001 (3) −0.007 (4)
C5 0.088 (5) 0.068 (6) 0.062 (4) −0.010 (5) 0.011 (4) 0.007 (4)
C6 0.075 (6) 0.127 (10) 0.069 (5) −0.022 (7) 0.003 (4) 0.000 (7)
C7 0.070 (4) 0.073 (5) 0.055 (4) −0.017 (4) 0.020 (3) 0.004 (4)
C8 0.095 (5) 0.036 (4) 0.041 (3) −0.001 (4) 0.008 (3) −0.003 (3)
C9 0.076 (4) 0.030 (3) 0.031 (3) −0.013 (3) 0.000 (3) −0.001 (3)
C10 0.061 (4) 0.033 (3) 0.036 (3) 0.011 (3) 0.002 (2) 0.004 (3)
C11 0.062 (4) 0.063 (5) 0.040 (3) 0.005 (4) 0.002 (3) 0.006 (3)
C12 0.096 (5) 0.066 (5) 0.040 (3) −0.002 (5) 0.000 (3) 0.013 (4)
C13 0.078 (4) 0.073 (5) 0.034 (3) −0.012 (5) 0.012 (3) 0.004 (4)
C14 0.067 (4) 0.056 (4) 0.044 (3) −0.014 (4) −0.005 (3) −0.001 (3)
C15 0.054 (4) 0.091 (6) 0.038 (3) −0.022 (4) 0.000 (3) 0.005 (4)
C16 0.044 (3) 0.038 (3) 0.035 (3) 0.000 (3) 0.005 (2) −0.003 (3)
C17 0.059 (4) 0.035 (3) 0.031 (3) 0.001 (3) 0.008 (2) −0.002 (3)
C18 0.060 (4) 0.051 (4) 0.037 (3) −0.003 (3) −0.006 (3) 0.005 (3)
C19 0.057 (3) 0.040 (4) 0.041 (3) −0.002 (3) 0.012 (3) −0.007 (3)
C20 0.046 (3) 0.063 (5) 0.048 (3) −0.004 (4) 0.003 (3) −0.008 (4)
C21 0.063 (4) 0.058 (5) 0.041 (3) 0.013 (4) −0.004 (3) −0.004 (3)
C22 0.134 (8) 0.036 (4) 0.069 (5) −0.022 (5) 0.022 (5) 0.004 (4)
C23 0.105 (6) 0.037 (4) 0.068 (4) 0.019 (4) 0.030 (4) 0.001 (4)
C24 0.062 (4) 0.067 (5) 0.052 (3) −0.015 (4) 0.015 (3) −0.006 (4)
C25 0.109 (6) 0.038 (4) 0.099 (6) −0.006 (5) 0.031 (5) 0.010 (4)
C26 0.135 (7) 0.069 (6) 0.045 (4) −0.015 (6) 0.024 (4) 0.005 (4)

Geometric parameters (Å, °)

N—C7 1.212 (7) C14—C15 1.508 (9)
N—C8 1.524 (9) C14—H14A 0.9700
C1—C6 1.331 (14) C14—H14B 0.9700
C1—C2 1.359 (11) C15—C16 1.510 (8)
C1—H1A 0.9300 C15—H15A 0.9700
C2—C3 1.375 (11) C15—H15B 0.9700
C2—H2A 0.9300 C16—C18 1.393 (8)
C3—C4 1.378 (11) C16—C17 1.405 (7)
C3—H3A 0.9300 C17—C21 1.381 (8)
C4—C5 1.374 (9) C18—C19 1.389 (8)
C4—C7 1.499 (7) C18—H18A 0.9300
C5—C6 1.387 (12) C19—C20 1.368 (8)
C5—H5A 0.9300 C19—C24 1.515 (9)
C6—H6A 0.9300 C20—C21 1.374 (9)
C7—H7A 0.9300 C20—H20A 0.9300
C8—C22 1.512 (10) C21—H21A 0.9300
C8—C9 1.525 (9) C22—H22A 0.9600
C8—C13 1.547 (9) C22—H22B 0.9600
C9—C14 1.522 (7) C22—H22C 0.9600
C9—C10 1.568 (8) C23—H23A 0.9600
C9—H9A 0.9800 C23—H23B 0.9600
C10—C17 1.544 (8) C23—H23C 0.9600
C10—C11 1.545 (8) C24—C25 1.509 (11)
C10—C23 1.559 (9) C24—C26 1.524 (10)
C11—C12 1.546 (9) C24—H24A 0.9800
C11—H11A 0.9700 C25—H25A 0.9600
C11—H11B 0.9700 C25—H25B 0.9600
C12—C13 1.464 (9) C25—H25C 0.9600
C12—H12A 0.9700 C26—H26A 0.9600
C12—H12B 0.9700 C26—H26B 0.9600
C13—H13A 0.9700 C26—H26C 0.9600
C13—H13B 0.9700
C7—N—C8 122.1 (7) C15—C14—H14A 109.8
C6—C1—C2 121.9 (10) C9—C14—H14A 109.8
C6—C1—H1A 119.1 C15—C14—H14B 109.8
C2—C1—H1A 119.1 C9—C14—H14B 109.8
C1—C2—C3 119.3 (10) H14A—C14—H14B 108.2
C1—C2—H2A 120.4 C14—C15—C16 115.3 (5)
C3—C2—H2A 120.4 C14—C15—H15A 108.5
C2—C3—C4 119.7 (8) C16—C15—H15A 108.5
C2—C3—H3A 120.2 C14—C15—H15B 108.5
C4—C3—H3A 120.2 C16—C15—H15B 108.5
C5—C4—C3 120.0 (7) H15A—C15—H15B 107.5
C5—C4—C7 119.9 (7) C18—C16—C17 119.2 (5)
C3—C4—C7 120.1 (7) C18—C16—C15 118.5 (5)
C4—C5—C6 119.0 (8) C17—C16—C15 122.3 (5)
C4—C5—H5A 120.5 C21—C17—C16 117.5 (5)
C6—C5—H5A 120.5 C21—C17—C10 121.7 (5)
C1—C6—C5 120.2 (9) C16—C17—C10 120.8 (5)
C1—C6—H6A 119.9 C19—C18—C16 123.0 (5)
C5—C6—H6A 119.9 C19—C18—H18A 118.5
N—C7—C4 122.8 (8) C16—C18—H18A 118.5
N—C7—H7A 118.6 C20—C19—C18 115.9 (6)
C4—C7—H7A 118.6 C20—C19—C24 122.8 (6)
C22—C8—N 113.3 (7) C18—C19—C24 121.3 (6)
C22—C8—C9 114.1 (6) C19—C20—C21 122.8 (6)
N—C8—C9 103.6 (5) C19—C20—H20A 118.6
C22—C8—C13 111.7 (7) C21—C20—H20A 118.6
N—C8—C13 105.9 (5) C20—C21—C17 121.5 (6)
C9—C8—C13 107.6 (6) C20—C21—H21A 119.3
C14—C9—C8 114.3 (5) C17—C21—H21A 119.3
C14—C9—C10 109.7 (5) C8—C22—H22A 109.5
C8—C9—C10 117.1 (5) C8—C22—H22B 109.5
C14—C9—H9A 104.8 H22A—C22—H22B 109.5
C8—C9—H9A 104.8 C8—C22—H22C 109.5
C10—C9—H9A 104.8 H22A—C22—H22C 109.5
C17—C10—C11 110.6 (5) H22B—C22—H22C 109.5
C17—C10—C23 105.2 (5) C10—C23—H23A 109.5
C11—C10—C23 108.1 (6) C10—C23—H23B 109.5
C17—C10—C9 108.5 (5) H23A—C23—H23B 109.5
C11—C10—C9 107.6 (5) C10—C23—H23C 109.5
C23—C10—C9 116.9 (6) H23A—C23—H23C 109.5
C10—C11—C12 112.6 (6) H23B—C23—H23C 109.5
C10—C11—H11A 109.1 C25—C24—C19 112.4 (6)
C12—C11—H11A 109.1 C25—C24—C26 112.2 (7)
C10—C11—H11B 109.1 C19—C24—C26 112.0 (6)
C12—C11—H11B 109.1 C25—C24—H24A 106.6
H11A—C11—H11B 107.8 C19—C24—H24A 106.6
C13—C12—C11 110.3 (6) C26—C24—H24A 106.6
C13—C12—H12A 109.6 C24—C25—H25A 109.5
C11—C12—H12A 109.6 C24—C25—H25B 109.5
C13—C12—H12B 109.6 H25A—C25—H25B 109.5
C11—C12—H12B 109.6 C24—C25—H25C 109.5
H12A—C12—H12B 108.1 H25A—C25—H25C 109.5
C12—C13—C8 114.4 (6) H25B—C25—H25C 109.5
C12—C13—H13A 108.7 C24—C26—H26A 109.5
C8—C13—H13A 108.7 C24—C26—H26B 109.5
C12—C13—H13B 108.7 H26A—C26—H26B 109.5
C8—C13—H13B 108.7 C24—C26—H26C 109.5
H13A—C13—H13B 107.6 H26A—C26—H26C 109.5
C15—C14—C9 109.4 (5) H26B—C26—H26C 109.5
C6—C1—C2—C3 −1.0 (13) C22—C8—C13—C12 −71.4 (9)
C1—C2—C3—C4 0.9 (12) N—C8—C13—C12 164.8 (7)
C2—C3—C4—C5 −0.5 (10) C9—C8—C13—C12 54.6 (9)
C2—C3—C4—C7 177.9 (7) C8—C9—C14—C15 −160.1 (6)
C3—C4—C5—C6 0.3 (11) C10—C9—C14—C15 66.1 (7)
C7—C4—C5—C6 −178.2 (7) C9—C14—C15—C16 −41.1 (8)
C2—C1—C6—C5 0.8 (14) C14—C15—C16—C18 −170.0 (6)
C4—C5—C6—C1 −0.4 (13) C14—C15—C16—C17 9.6 (9)
C8—N—C7—C4 −177.2 (6) C18—C16—C17—C21 −0.4 (9)
C5—C4—C7—N 173.2 (7) C15—C16—C17—C21 179.9 (6)
C3—C4—C7—N −5.3 (11) C18—C16—C17—C10 177.8 (6)
C7—N—C8—C22 −38.6 (9) C15—C16—C17—C10 −1.9 (9)
C7—N—C8—C9 −162.7 (6) C11—C10—C17—C21 −39.0 (8)
C7—N—C8—C13 84.1 (8) C23—C10—C17—C21 77.4 (8)
C22—C8—C9—C14 −56.7 (9) C9—C10—C17—C21 −156.8 (6)
N—C8—C9—C14 66.8 (7) C11—C10—C17—C16 142.8 (6)
C13—C8—C9—C14 178.7 (6) C23—C10—C17—C16 −100.8 (7)
C22—C8—C9—C10 73.6 (9) C9—C10—C17—C16 25.0 (7)
N—C8—C9—C10 −162.9 (5) C17—C16—C18—C19 2.7 (10)
C13—C8—C9—C10 −51.0 (7) C15—C16—C18—C19 −177.6 (7)
C14—C9—C10—C17 −56.7 (7) C16—C18—C19—C20 −3.0 (10)
C8—C9—C10—C17 170.8 (5) C16—C18—C19—C24 177.1 (7)
C14—C9—C10—C11 −176.4 (6) C18—C19—C20—C21 1.2 (10)
C8—C9—C10—C11 51.2 (7) C24—C19—C20—C21 −179.0 (7)
C14—C9—C10—C23 61.9 (7) C19—C20—C21—C17 1.0 (11)
C8—C9—C10—C23 −70.5 (7) C16—C17—C21—C20 −1.3 (10)
C17—C10—C11—C12 −170.3 (6) C10—C17—C21—C20 −179.5 (6)
C23—C10—C11—C12 75.1 (7) C20—C19—C24—C25 120.6 (7)
C9—C10—C11—C12 −51.9 (7) C18—C19—C24—C25 −59.6 (9)
C10—C11—C12—C13 58.1 (9) C20—C19—C24—C26 −112.0 (8)
C11—C12—C13—C8 −59.1 (9) C18—C19—C24—C26 67.9 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2811).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Rao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450–o3451.
  4. Rao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem.19, 512–516.
  5. Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull.56, 1575–1578. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Gottingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wilkerson, W. W., Galbraith, W. & Delucca, I. (1993). Bioorg. Med. Chem. Lett.3, 2087–2092.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022909/at2811sup1.cif

e-65-o1639-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022909/at2811Isup2.hkl

e-65-o1639-Isup2.hkl (114.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES