Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 17;65(Pt 7):m779. doi: 10.1107/S1600536809022028

Bis(6-meth­oxy-2-{[tris­(hydroxy­meth­yl)methyl-κO]imino­meth­yl}phenolato-κ2 N,O 1)nickel(II) dihydrate

Tian Zhou a,*, Ru-Jin Zhou a, Zhe An a
PMCID: PMC2969396  PMID: 21582708

Abstract

In the title compound, [Ni(C12H16NO5)2]·2H2O, the NiII atom is coordinated by four O atoms and two N atoms from the two 6-meth­oxy-2-{[tris­(hydroxy­meth­yl)meth­yl]imino­meth­yl}phenolate ligands in a distorted octa­hedral coordination geometry. O—H⋯O hydrogen bonds link the complexes and uncoordinated water mol­ecules into two-dimensional networks parallel to (001).

Related literature

For the applications of Schiff-base complexes, see: Kritagawa & Kondo (1998); Zhang et al. (1998); Yaghi et al. (1996). graphic file with name e-65-0m779-scheme1.jpg

Experimental

Crystal data

  • [Ni(C12H16NO5)2]·2H2O

  • M r = 603.26

  • Monoclinic, Inline graphic

  • a = 12.0142 (10) Å

  • b = 10.9876 (10) Å

  • c = 20.324 (2) Å

  • β = 97.501 (1)°

  • V = 2660.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.44 × 0.29 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.721, T max = 0.857

  • 13321 measured reflections

  • 4933 independent reflections

  • 4436 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.117

  • S = 1.00

  • 4933 reflections

  • 376 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022028/bi2378sup1.cif

e-65-0m779-sup1.cif (24KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022028/bi2378Isup2.hkl

e-65-0m779-Isup2.hkl (241.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.85 2.670 (3) 179
O2—H2A⋯O11ii 0.82 1.91 2.666 (3) 152
O2—H2A⋯O12ii 0.82 2.37 3.010 (3) 135
O5—H5⋯O6iii 0.82 1.87 2.691 (3) 174
O6—H6⋯O3iv 0.82 1.89 2.671 (2) 159
O10—H10A⋯O5iv 0.82 (3) 1.93 (3) 2.751 (3) 175 (5)
O8—H1AA⋯O7i 0.82 (2) 1.972 (11) 2.775 (4) 166 (4)
O4—H4AA⋯O8v 0.82 (3) 1.88 (4) 2.686 (3) 170 (4)
O8—H1BB⋯O2vi 0.82 (3) 2.16 (3) 2.962 (3) 167 (4)
O7—H2BB⋯O9ii 0.82 (2) 2.055 (10) 2.862 (4) 168 (4)
O7—H2AA⋯O1 0.81 (3) 1.84 (3) 2.641 (3) 169 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Science Foundation of Maoming University (grant No. 208033).

supplementary crystallographic information

Comment

Polymeric metal complexes containing Schiff-base ligands are of interest because of their useful chemical or physical properties (Zhang et al., 1998; Kritagawa & Kondo, 1998; Yaghi et al., 1996). Herein, we report a new crystal structure containing the Schiff-base ligand 6-methoxy-2-{[tris(hydroxymethyl)methyl]iminomethyl}phenol (denoted HL).

As shown in Figure 1, the asymmetric unit of the complex comprises two L- ligands, one NiII atom and two lattice water molecules. The NiII atom is hexa-coordinated by four O atoms and two N atoms from the two L- ligands, giving a distorted octahedral coordination geometry. The Ni—O and Ni—N bond distances are within normal ranges. The [NiL2] complexes form an extensive network of O—H···O interactions involving the lattice water molecules, giving 2-D networks parallel to the (001) planes (Fig. 2).

Experimental

The complex was synthesized by refluxing HL (0.050 g, 0.2 mmol) and NiCl2.6H2O (0.048 g, 0.2 mmol) in the mixed solution (CH3OH:H2O = 4:1) until all solid was dissolved. The solution was then cooled to room temperature and filtered. Green crystals for X-ray diffraction analysis were obtained by slow evaporation of the filtrate. Elemental analysis calculated: C 47.74, H 5.97, N 4.64 %; found: C 47.69, H 5.51, N 4.58 %.

Refinement

All H atoms bound to C were placed geometrically with C—H = 0.93 (aromatic H), 0.96 (methyl H) or 0.97 Å (methylene H) and refined as riding with Uiso(H) = 1.2Ueq(C) (aromatic and methylene H) or 1.5Ueq(C) (methyl H). The H atoms of the water molecule were located from difference density maps and refined with distance restraints of d(H···H) = 1.38 (2) Å, d(O—H) = 0.82 (1) Å. The H atoms of the hydroxyl groups were placed geometrically with O—H = 0.82 Å.

Figures

Fig. 1.

Fig. 1.

Molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Fig. 2.

Fig. 2.

Packing diagram viewed approximately along the c axis, showing the complex network of O—H···O hydrogen bonds (dashed lines).

Crystal data

[Ni(C12H16NO5)2]·2H2O F(000) = 1272
Mr = 603.26 Dx = 1.506 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4933 reflections
a = 12.0142 (10) Å θ = 2.0–25.5°
b = 10.9876 (10) Å µ = 0.80 mm1
c = 20.324 (2) Å T = 293 K
β = 97.501 (1)° Block, green
V = 2660.0 (4) Å3 0.44 × 0.29 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4933 independent reflections
Radiation source: fine-focus sealed tube 4436 reflections with I > 2σ(I)
graphite Rint = 0.043
φ and ω scans θmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −14→11
Tmin = 0.721, Tmax = 0.857 k = −13→13
13321 measured reflections l = −24→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.069P)2 + 2.387P] where P = (Fo2 + 2Fc2)/3
4933 reflections (Δ/σ)max = 0.032
376 parameters Δρmax = 0.38 e Å3
8 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9480 (2) 0.2452 (2) 0.86933 (11) 0.0233 (5)
C2 1.0283 (2) 0.2677 (3) 0.92480 (12) 0.0311 (6)
H2 1.1023 0.2433 0.9242 0.037*
C3 0.9989 (3) 0.3243 (3) 0.97874 (13) 0.0386 (7)
H3 1.0524 0.3390 1.0153 0.046*
C4 0.8871 (3) 0.3610 (3) 0.97952 (14) 0.0391 (7)
H4 0.8671 0.4003 1.0168 0.047*
C5 0.8073 (2) 0.3402 (2) 0.92655 (13) 0.0307 (6)
C6 0.8335 (2) 0.2797 (2) 0.86879 (11) 0.0228 (5)
C7 0.6684 (2) 0.3019 (2) 0.62935 (12) 0.0231 (5)
C8 0.6897 (3) 0.3685 (2) 0.57276 (13) 0.0325 (6)
C9 0.6097 (3) 0.3783 (3) 0.51866 (15) 0.0468 (8)
H9 0.6251 0.4238 0.4823 0.056*
C10 0.5051 (3) 0.3210 (3) 0.51678 (16) 0.0515 (9)
H10 0.4509 0.3307 0.4801 0.062*
C11 0.4834 (3) 0.2522 (3) 0.56833 (15) 0.0404 (7)
H11 0.4143 0.2136 0.5668 0.048*
C12 0.5639 (2) 0.2379 (2) 0.62428 (12) 0.0269 (5)
C13 0.8357 (4) 0.4634 (4) 0.52069 (18) 0.0638 (11)
H13A 0.8300 0.3993 0.4883 0.096*
H13B 0.9128 0.4872 0.5312 0.096*
H13C 0.7921 0.5319 0.5030 0.096*
C14 0.5356 (2) 0.1521 (2) 0.67266 (13) 0.0265 (5)
H14 0.4621 0.1238 0.6679 0.032*
C15 0.5631 (2) 0.0166 (2) 0.76457 (13) 0.0264 (5)
C16 0.6607 (2) −0.0731 (2) 0.77949 (14) 0.0312 (6)
H16A 0.6454 −0.1291 0.8141 0.037*
H16B 0.6694 −0.1199 0.7400 0.037*
C17 0.4562 (2) −0.0513 (3) 0.73736 (15) 0.0344 (6)
H17A 0.4381 −0.1104 0.7698 0.041*
H17B 0.3943 0.0059 0.7296 0.041*
C18 0.5411 (3) 0.0770 (3) 0.82811 (14) 0.0370 (6)
H18A 0.5226 0.0156 0.8592 0.044*
H18B 0.6083 0.1190 0.8478 0.044*
C19 0.6632 (3) 0.4399 (3) 0.97696 (15) 0.0488 (8)
H19A 0.6755 0.3908 1.0163 0.073*
H19B 0.5850 0.4603 0.9678 0.073*
H19C 0.7068 0.5131 0.9835 0.073*
C20 0.9938 (2) 0.1930 (2) 0.81394 (12) 0.0228 (5)
H20 1.0712 0.1823 0.8182 0.027*
C21 0.9989 (2) 0.1161 (2) 0.70684 (12) 0.0229 (5)
C22 0.9245 (2) 0.0216 (2) 0.66780 (12) 0.0260 (5)
H22A 0.9502 0.0080 0.6251 0.031*
H22B 0.9290 −0.0549 0.6918 0.031*
C23 1.0163 (2) 0.2240 (2) 0.66147 (12) 0.0276 (5)
H23A 1.0622 0.1977 0.6282 0.033*
H23B 0.9441 0.2490 0.6386 0.033*
C24 1.1143 (2) 0.0572 (2) 0.72948 (13) 0.0282 (5)
H24A 1.1428 0.0193 0.6919 0.034*
H24B 1.1675 0.1189 0.7475 0.034*
N1 0.93758 (17) 0.16035 (17) 0.75960 (9) 0.0199 (4)
N2 0.60221 (17) 0.11097 (18) 0.72161 (10) 0.0228 (4)
Ni1 0.76754 (2) 0.15968 (3) 0.742167 (14) 0.01963 (12)
O1 0.4508 (2) 0.1618 (2) 0.81592 (14) 0.0531 (6)
H1 0.4759 0.2313 0.8178 0.080*
O2 0.46970 (17) −0.11101 (19) 0.67775 (11) 0.0418 (5)
H2A 0.4079 −0.1255 0.6571 0.063*
O3 0.74281 (14) 0.30277 (15) 0.68125 (8) 0.0233 (4)
O4 0.81045 (15) 0.06375 (17) 0.65815 (9) 0.0301 (4)
O5 1.06823 (16) 0.32512 (17) 0.69579 (10) 0.0341 (4)
H5 1.0200 0.3734 0.7042 0.051*
O6 1.10157 (16) −0.03050 (19) 0.77806 (11) 0.0399 (5)
H6 1.1596 −0.0702 0.7859 0.060*
O7 0.2701 (2) 0.1557 (2) 0.87725 (16) 0.0584 (7)
O8 0.6646 (2) 0.8964 (2) 0.60240 (12) 0.0524 (6)
O9 0.79479 (19) 0.4219 (2) 0.57859 (10) 0.0440 (5)
O10 0.76155 (15) −0.00657 (17) 0.80057 (10) 0.0311 (4)
O11 0.69602 (18) 0.3743 (2) 0.92284 (10) 0.0446 (5)
O12 0.75320 (14) 0.26451 (16) 0.82089 (8) 0.0258 (4)
H10A 0.815 (2) −0.054 (3) 0.803 (2) 0.080*
H1AA 0.690 (3) 0.8269 (14) 0.603 (2) 0.080*
H2AA 0.329 (2) 0.151 (3) 0.862 (2) 0.080*
H4AA 0.768 (3) 0.008 (3) 0.645 (2) 0.080*
H1BB 0.605 (2) 0.902 (3) 0.618 (2) 0.080*
H2BB 0.243 (3) 0.0900 (16) 0.886 (2) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0281 (12) 0.0218 (12) 0.0198 (11) −0.0011 (10) 0.0026 (9) −0.0003 (9)
C2 0.0308 (13) 0.0363 (15) 0.0247 (13) 0.0002 (12) −0.0020 (10) 0.0005 (11)
C3 0.0432 (17) 0.0480 (18) 0.0220 (13) −0.0017 (14) −0.0059 (12) −0.0053 (12)
C4 0.0487 (18) 0.0460 (17) 0.0222 (13) 0.0024 (14) 0.0036 (12) −0.0104 (12)
C5 0.0367 (15) 0.0310 (14) 0.0247 (13) 0.0056 (11) 0.0052 (11) −0.0026 (10)
C6 0.0300 (13) 0.0203 (11) 0.0177 (11) −0.0016 (10) 0.0022 (9) 0.0016 (9)
C7 0.0293 (13) 0.0164 (11) 0.0232 (12) 0.0003 (10) 0.0022 (10) −0.0012 (9)
C8 0.0461 (16) 0.0242 (13) 0.0265 (13) −0.0038 (12) 0.0026 (11) 0.0015 (10)
C9 0.073 (2) 0.0381 (16) 0.0257 (14) −0.0042 (16) −0.0061 (14) 0.0096 (12)
C10 0.065 (2) 0.0432 (18) 0.0374 (17) −0.0052 (16) −0.0254 (16) 0.0094 (14)
C11 0.0407 (16) 0.0311 (15) 0.0442 (17) −0.0031 (12) −0.0144 (13) 0.0020 (12)
C12 0.0294 (13) 0.0217 (12) 0.0276 (12) 0.0018 (10) −0.0035 (10) −0.0005 (10)
C13 0.094 (3) 0.053 (2) 0.052 (2) −0.018 (2) 0.040 (2) −0.0003 (17)
C14 0.0231 (12) 0.0206 (12) 0.0346 (14) −0.0017 (10) −0.0015 (10) −0.0026 (10)
C15 0.0262 (12) 0.0206 (12) 0.0333 (13) −0.0046 (10) 0.0068 (10) 0.0036 (10)
C16 0.0318 (14) 0.0220 (13) 0.0391 (14) −0.0031 (11) 0.0022 (11) 0.0055 (11)
C17 0.0268 (13) 0.0267 (14) 0.0494 (17) −0.0059 (11) 0.0037 (12) 0.0054 (12)
C18 0.0429 (16) 0.0336 (15) 0.0375 (15) −0.0038 (13) 0.0170 (12) 0.0044 (12)
C19 0.056 (2) 0.057 (2) 0.0362 (16) 0.0188 (16) 0.0167 (14) −0.0120 (15)
C20 0.0223 (12) 0.0202 (11) 0.0253 (12) −0.0011 (10) 0.0011 (9) 0.0006 (9)
C21 0.0248 (12) 0.0220 (12) 0.0225 (11) 0.0003 (10) 0.0056 (9) −0.0032 (9)
C22 0.0307 (13) 0.0203 (12) 0.0265 (12) 0.0007 (10) 0.0022 (10) −0.0055 (10)
C23 0.0331 (13) 0.0269 (13) 0.0239 (12) −0.0017 (11) 0.0080 (10) −0.0004 (10)
C24 0.0267 (13) 0.0261 (13) 0.0322 (13) 0.0031 (10) 0.0054 (10) −0.0007 (10)
N1 0.0236 (10) 0.0174 (10) 0.0190 (10) 0.0009 (8) 0.0044 (8) 0.0006 (7)
N2 0.0221 (10) 0.0186 (10) 0.0276 (11) −0.0009 (8) 0.0028 (8) −0.0005 (8)
Ni1 0.02003 (18) 0.01864 (18) 0.01981 (18) −0.00071 (11) 0.00109 (12) −0.00067 (11)
O1 0.0484 (14) 0.0359 (12) 0.0817 (18) 0.0007 (10) 0.0338 (13) −0.0071 (12)
O2 0.0364 (11) 0.0328 (11) 0.0528 (13) −0.0080 (9) −0.0074 (9) −0.0070 (10)
O3 0.0269 (9) 0.0198 (8) 0.0223 (8) −0.0042 (7) −0.0004 (7) 0.0010 (7)
O4 0.0286 (9) 0.0285 (10) 0.0319 (10) −0.0018 (8) −0.0014 (7) −0.0101 (8)
O5 0.0351 (11) 0.0263 (10) 0.0421 (11) −0.0068 (8) 0.0096 (9) −0.0016 (8)
O6 0.0309 (10) 0.0326 (11) 0.0560 (13) 0.0111 (9) 0.0046 (9) 0.0139 (9)
O7 0.0449 (14) 0.0510 (15) 0.0836 (19) 0.0014 (11) 0.0248 (13) −0.0003 (13)
O8 0.0615 (16) 0.0469 (14) 0.0485 (13) −0.0191 (12) 0.0057 (11) −0.0043 (11)
O9 0.0523 (13) 0.0463 (12) 0.0351 (11) −0.0156 (10) 0.0125 (9) 0.0085 (9)
O10 0.0281 (9) 0.0250 (9) 0.0390 (10) 0.0007 (8) −0.0004 (8) 0.0041 (8)
O11 0.0417 (12) 0.0646 (14) 0.0275 (10) 0.0182 (11) 0.0046 (9) −0.0162 (10)
O12 0.0246 (9) 0.0298 (9) 0.0222 (8) 0.0023 (7) 0.0008 (7) −0.0059 (7)

Geometric parameters (Å, °)

C1—C2 1.406 (3) C17—H17B 0.970
C1—C6 1.426 (4) C18—O1 1.427 (4)
C1—C20 1.435 (3) C18—H18A 0.970
C2—C3 1.347 (4) C18—H18B 0.970
C2—H2 0.930 C19—O11 1.414 (3)
C3—C4 1.405 (5) C19—H19A 0.960
C3—H3 0.930 C19—H19B 0.960
C4—C5 1.364 (4) C19—H19C 0.960
C4—H4 0.930 C20—N1 1.269 (3)
C5—O11 1.381 (3) C20—H20 0.930
C5—C6 1.419 (3) C21—N1 1.461 (3)
C6—O12 1.289 (3) C21—C22 1.524 (3)
C7—O3 1.290 (3) C21—C23 1.533 (3)
C7—C8 1.414 (4) C21—C24 1.545 (3)
C7—C12 1.431 (4) C22—O4 1.435 (3)
C8—C9 1.366 (4) C22—H22A 0.970
C8—O9 1.384 (4) C22—H22B 0.970
C9—C10 1.402 (5) C23—O5 1.413 (3)
C9—H9 0.930 C23—H23A 0.970
C10—C11 1.345 (5) C23—H23B 0.970
C10—H10 0.930 C24—O6 1.402 (3)
C11—C12 1.402 (4) C24—H24A 0.970
C11—H11 0.930 C24—H24B 0.970
C12—C14 1.435 (4) N1—Ni1 2.027 (2)
C13—O9 1.409 (4) N2—Ni1 2.047 (2)
C13—H13A 0.960 Ni1—O12 1.9971 (17)
C13—H13B 0.960 Ni1—O3 1.9993 (17)
C13—H13C 0.960 Ni1—O4 2.1266 (18)
C14—N2 1.275 (3) Ni1—O10 2.1847 (19)
C14—H14 0.930 O1—H1 0.820
C15—N2 1.471 (3) O2—H2A 0.820
C15—C18 1.506 (4) O4—H4AA 0.82 (3)
C15—C17 1.526 (3) O5—H5 0.820
C15—C16 1.531 (4) O6—H6 0.820
C16—O10 1.432 (3) O7—H2AA 0.81 (3)
C16—H16A 0.970 O7—H2BB 0.82 (2)
C16—H16B 0.970 O8—H1AA 0.82 (2)
C17—O2 1.406 (4) O8—H1BB 0.82 (3)
C17—H17A 0.970 O10—H10A 0.82 (3)
C2—C1—C6 121.3 (2) O11—C19—H19B 109.5
C2—C1—C20 114.0 (2) H19A—C19—H19B 109.5
C6—C1—C20 124.6 (2) O11—C19—H19C 109.5
C3—C2—C1 120.6 (3) H19A—C19—H19C 109.5
C3—C2—H2 119.7 H19B—C19—H19C 109.5
C1—C2—H2 119.7 N1—C20—C1 125.5 (2)
C2—C3—C4 119.6 (3) N1—C20—H20 117.2
C2—C3—H3 120.2 C1—C20—H20 117.2
C4—C3—H3 120.2 N1—C21—C22 106.9 (2)
C5—C4—C3 121.2 (3) N1—C21—C23 107.81 (19)
C5—C4—H4 119.4 C22—C21—C23 109.3 (2)
C3—C4—H4 119.4 N1—C21—C24 116.1 (2)
C4—C5—O11 125.0 (2) C22—C21—C24 108.2 (2)
C4—C5—C6 121.5 (3) C23—C21—C24 108.4 (2)
O11—C5—C6 113.5 (2) O4—C22—C21 109.65 (19)
O12—C6—C5 117.4 (2) O4—C22—H22A 109.7
O12—C6—C1 126.7 (2) C21—C22—H22A 109.7
C5—C6—C1 115.9 (2) O4—C22—H22B 109.7
O3—C7—C8 118.8 (2) C21—C22—H22B 109.7
O3—C7—C12 124.8 (2) H22A—C22—H22B 108.2
C8—C7—C12 116.4 (2) O5—C23—C21 113.4 (2)
C9—C8—O9 125.0 (3) O5—C23—H23A 108.9
C9—C8—C7 120.8 (3) C21—C23—H23A 108.9
O9—C8—C7 114.2 (2) O5—C23—H23B 108.9
C8—C9—C10 121.3 (3) C21—C23—H23B 108.9
C8—C9—H9 119.3 H23A—C23—H23B 107.7
C10—C9—H9 119.3 O6—C24—C21 108.7 (2)
C11—C10—C9 119.7 (3) O6—C24—H24A 109.9
C11—C10—H10 120.2 C21—C24—H24A 109.9
C9—C10—H10 120.2 O6—C24—H24B 109.9
C10—C11—C12 120.8 (3) C21—C24—H24B 109.9
C10—C11—H11 119.6 H24A—C24—H24B 108.3
C12—C11—H11 119.6 C20—N1—C21 118.1 (2)
C11—C12—C7 120.6 (2) C20—N1—Ni1 124.24 (17)
C11—C12—C14 115.5 (2) C21—N1—Ni1 117.62 (15)
C7—C12—C14 123.9 (2) C14—N2—C15 119.8 (2)
O9—C13—H13A 109.5 C14—N2—Ni1 124.04 (18)
O9—C13—H13B 109.5 C15—N2—Ni1 116.08 (15)
H13A—C13—H13B 109.5 O12—Ni1—O3 91.21 (7)
O9—C13—H13C 109.5 O12—Ni1—N1 92.77 (7)
H13A—C13—H13C 109.5 O3—Ni1—N1 99.80 (7)
H13B—C13—H13C 109.5 O12—Ni1—N2 97.55 (8)
N2—C14—C12 126.0 (2) O3—Ni1—N2 91.00 (7)
N2—C14—H14 117.0 N1—Ni1—N2 164.91 (8)
C12—C14—H14 117.0 O12—Ni1—O4 169.89 (7)
N2—C15—C18 107.7 (2) O3—Ni1—O4 85.67 (7)
N2—C15—C17 116.6 (2) N1—Ni1—O4 78.33 (7)
C18—C15—C17 107.0 (2) N2—Ni1—O4 92.12 (8)
N2—C15—C16 106.0 (2) O12—Ni1—O10 91.98 (7)
C18—C15—C16 109.2 (2) O3—Ni1—O10 168.87 (7)
C17—C15—C16 110.1 (2) N1—Ni1—O10 90.69 (7)
O10—C16—C15 109.1 (2) N2—Ni1—O10 78.01 (7)
O10—C16—H16A 109.9 O4—Ni1—O10 92.89 (7)
C15—C16—H16A 109.9 C18—O1—H1 109.5
O10—C16—H16B 109.9 C17—O2—H2A 109.5
C15—C16—H16B 109.9 C7—O3—Ni1 122.09 (15)
H16A—C16—H16B 108.3 C22—O4—Ni1 112.16 (13)
O2—C17—C15 110.7 (2) C22—O4—H4AA 110 (3)
O2—C17—H17A 109.5 Ni1—O4—H4AA 115 (3)
C15—C17—H17A 109.5 C23—O5—H5 109.5
O2—C17—H17B 109.5 C24—O6—H6 109.5
C15—C17—H17B 109.5 H2AA—O7—H2BB 115 (3)
H17A—C17—H17B 108.1 H1AA—O8—H1BB 114 (3)
O1—C18—C15 110.7 (2) C8—O9—C13 118.7 (3)
O1—C18—H18A 109.5 C16—O10—Ni1 110.53 (14)
C15—C18—H18A 109.5 C16—O10—H10A 109 (3)
O1—C18—H18B 109.5 Ni1—O10—H10A 118 (3)
C15—C18—H18B 109.5 C5—O11—C19 117.5 (2)
H18A—C18—H18B 108.1 C6—O12—Ni1 123.07 (16)
O11—C19—H19A 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.85 2.670 (3) 179
O2—H2A···O11ii 0.82 1.91 2.666 (3) 152
O2—H2A···O12ii 0.82 2.37 3.010 (3) 135
O5—H5···O6iii 0.82 1.87 2.691 (3) 174
O6—H6···O3iv 0.82 1.89 2.671 (2) 159
O10—H10A···O5iv 0.82 (3) 1.93 (3) 2.751 (3) 175 (5)
O8—H1AA···O7i 0.82 (2) 1.97 (1) 2.775 (4) 166 (4)
O4—H4AA···O8v 0.82 (3) 1.88 (4) 2.686 (3) 170 (4)
O8—H1BB···O2vi 0.82 (3) 2.16 (3) 2.962 (3) 167 (4)
O7—H2BB···O9ii 0.82 (2) 2.06 (1) 2.862 (4) 168 (4)
O7—H2AA···O1 0.81 (3) 1.84 (3) 2.641 (3) 169 (4)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+2, y+1/2, −z+3/2; (iv) −x+2, y−1/2, −z+3/2; (v) x, y−1, z; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2378).

References

  1. Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Kritagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739–1753.
  4. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Yaghi, O. M., Li, H. & Groy, T. L. (1996). J. Am. Chem. Soc., 118, 9096–9101.
  7. Zhang, Y., Jianmin, L., Min, Z., Wang, Q. & Wu, X. (1998). Chem. Lett., 27, 1051–1052.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022028/bi2378sup1.cif

e-65-0m779-sup1.cif (24KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022028/bi2378Isup2.hkl

e-65-0m779-Isup2.hkl (241.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES