Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1661. doi: 10.1107/S160053680902323X

Ethyl 5-formyl-3,4-dimethyl-1H-pyrrole-2-carboxyl­ate

Wei-Na Wu a, Yuan Wang a,*, Qiu-Fen Wang a
PMCID: PMC2969404  PMID: 21582923

Abstract

The mol­ecule of the title compound, C10H13NO3, is approximately planar (maximum deviation 0.1424 Å). In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds, and the dimeric units are linked by non-classical C—H⋯O hydrogen bonds, forming a layered structure.

Related literature

For a related structure, see: Kang et al. (2008). For our studies of bis­(pyrrol-2-yl-methyl­eneamine) ligands, see: Wang et al. (2008, 2009). For the synthesis, see: Wang et al. (2008). graphic file with name e-65-o1661-scheme1.jpg

Experimental

Crystal data

  • C10H13NO3

  • M r = 195.21

  • Triclinic, Inline graphic

  • a = 7.2223 (12) Å

  • b = 7.4347 (12) Å

  • c = 10.0488 (17) Å

  • α = 78.412 (2)°

  • β = 84.191 (2)°

  • γ = 79.051 (2)°

  • V = 517.84 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.980, T max = 0.986

  • 6232 measured reflections

  • 2416 independent reflections

  • 1692 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.212

  • S = 1.07

  • 2416 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902323X/gw2066sup1.cif

e-65-o1661-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902323X/gw2066Isup2.hkl

e-65-o1661-Isup2.hkl (118.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.07 2.919 (2) 169
C5—H5A⋯O1ii 0.93 2.54 3.347 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Schiff Base bearing pyrrole units have been extensively investigated for a long time because they could stabilize mono- or binuclear metal complexes which have various structures and special properties. As part of our owning studies of bis(pyrrol-2-yl-methyleneamine) ligands (Wang et al., 2008), we report here the crystal structure of the title compound, (I), (Fig. 1), which is approximately planar.

The molecules are joined to dimers via intermolecular N—H···O hydrogen bonds (Table 1), and the dimeric units are linked with each other by nonclassical C—H···O hydrogen bonds (Table 1) to form a layered geometry (Fig. 2).

Experimental

A quantity of POCl3 (2.30 g, 0.015 mol) was added dropwise to DMF (1.10 g, 0.015 mol) under stirring on an ice-water bath, then a CH2Cl2 solution (30 ml) containing 3,4-dimethyl-2-ethoxycarbonyl-pyrrole (2.51 g, 0.015 mol) was added. After stirring at room temperature for 4 h, a 10% Na2CO3 solution (80 ml) was added. The reaction mixture was refluxing for 0.5 h, then cooled to room temperature, extracted with CH2Cl2 (3×10 ml), and dried with anhydrous Na2CO3. The solvent was evaporated under reduced pressure. The crude product was treated with column chromatography on silica gel [petroleum ether-ethyl acetate (100:1)] to yield (I) 2.25 g (77%). Colorless prisms of (I) were obtained by slow evaporation of an ethanol solution.

Refinement

(type here to add refinement details)

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound shown with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Layered structure of the title compound. Hydrogen-bonding interactions are shown as dashed lines.

Crystal data

C10H13NO3 Z = 2
Mr = 195.21 F(000) = 208
Triclinic, P1 Dx = 1.252 Mg m3
a = 7.2223 (12) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.4347 (12) Å Cell parameters from 2123 reflections
c = 10.0488 (17) Å θ = 2.1–27.7°
α = 78.412 (2)° µ = 0.09 mm1
β = 84.191 (2)° T = 296 K
γ = 79.051 (2)° Prism, colorless
V = 517.84 (15) Å3 0.30 × 0.18 × 0.15 mm

Data collection

Bruker SMART CCD diffractometer 2416 independent reflections
Radiation source: fine-focus sealed tube 1692 reflections with I > 2σ(I)
graphite Rint = 0.017
φ and ω scans θmax = 27.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.980, Tmax = 0.986 k = −9→9
6232 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1226P)2 + 0.0669P] where P = (Fo2 + 2Fc2)/3
2416 reflections (Δ/σ)max < 0.001
129 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C4 0.3634 (3) 0.8003 (2) 1.03572 (18) 0.0519 (5)
C8 0.2197 (3) 0.8074 (3) 1.1488 (2) 0.0593 (5)
C3 0.5533 (3) 0.7196 (2) 1.0262 (2) 0.0556 (5)
C1 0.4613 (3) 0.8683 (3) 0.8185 (2) 0.0585 (5)
C2 0.6149 (3) 0.7620 (3) 0.8883 (2) 0.0605 (5)
C5 0.4495 (4) 0.9519 (4) 0.6766 (2) 0.0780 (7)
H5A 0.5582 0.9328 0.6195 0.094*
C7 0.6715 (3) 0.6084 (3) 1.1392 (2) 0.0720 (6)
H7A 0.7978 0.5703 1.1030 0.108*
H7B 0.6181 0.5001 1.1808 0.108*
H7C 0.6741 0.6836 1.2060 0.108*
C9 0.1496 (4) 0.7387 (5) 1.3863 (3) 0.1023 (10)
H9A 0.1126 0.8660 1.4008 0.123*
H9B 0.0375 0.6948 1.3693 0.123*
C10 0.2342 (5) 0.6221 (6) 1.5051 (3) 0.1191 (12)
H10A 0.1453 0.6265 1.5826 0.179*
H10B 0.3450 0.6663 1.5212 0.179*
H10C 0.2687 0.4960 1.4906 0.179*
C6 0.8106 (3) 0.7039 (4) 0.8285 (3) 0.0872 (8)
H6A 0.8884 0.6318 0.8993 0.131*
H6B 0.8631 0.8128 0.7869 0.131*
H6C 0.8059 0.6301 0.7612 0.131*
O3 0.2874 (2) 0.7315 (2) 1.26943 (15) 0.0771 (5)
O2 0.0572 (2) 0.8726 (3) 1.13418 (17) 0.0899 (6)
O1 0.3095 (3) 1.0448 (3) 0.62612 (17) 0.1053 (7)
N1 0.3105 (2) 0.8889 (2) 0.90931 (15) 0.0539 (4)
H1A 0.1993 0.9484 0.8903 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C4 0.0506 (9) 0.0554 (9) 0.0481 (10) −0.0087 (7) −0.0052 (7) −0.0051 (7)
C8 0.0550 (11) 0.0682 (11) 0.0493 (10) −0.0082 (8) −0.0053 (8) 0.0004 (8)
C3 0.0517 (10) 0.0526 (9) 0.0619 (11) −0.0072 (7) −0.0068 (8) −0.0095 (8)
C1 0.0601 (11) 0.0638 (11) 0.0518 (11) −0.0101 (8) 0.0033 (8) −0.0155 (8)
C2 0.0555 (11) 0.0608 (10) 0.0652 (12) −0.0072 (8) 0.0024 (9) −0.0180 (9)
C5 0.0779 (15) 0.1027 (17) 0.0473 (12) −0.0053 (13) 0.0084 (11) −0.0156 (11)
C7 0.0584 (12) 0.0679 (12) 0.0837 (15) 0.0005 (9) −0.0165 (10) −0.0048 (10)
C9 0.0778 (16) 0.148 (3) 0.0571 (14) −0.0005 (16) 0.0093 (12) 0.0119 (14)
C10 0.108 (2) 0.161 (3) 0.0668 (17) −0.010 (2) 0.0026 (16) 0.0126 (18)
C6 0.0651 (14) 0.0912 (16) 0.0983 (19) −0.0010 (12) 0.0157 (13) −0.0233 (14)
O3 0.0625 (9) 0.1094 (12) 0.0475 (8) −0.0070 (8) −0.0043 (7) 0.0061 (7)
O2 0.0552 (9) 0.1288 (15) 0.0616 (10) 0.0092 (9) 0.0013 (7) 0.0126 (9)
O1 0.0927 (14) 0.1528 (19) 0.0505 (10) 0.0128 (12) −0.0006 (9) −0.0065 (10)
N1 0.0507 (8) 0.0637 (9) 0.0445 (8) −0.0055 (7) −0.0028 (6) −0.0083 (6)

Geometric parameters (Å, °)

C4—N1 1.364 (2) C7—H7B 0.9600
C4—C3 1.390 (3) C7—H7C 0.9600
C4—C8 1.461 (3) C9—C10 1.443 (4)
C8—O2 1.194 (2) C9—O3 1.463 (3)
C8—O3 1.330 (2) C9—H9A 0.9700
C3—C2 1.405 (3) C9—H9B 0.9700
C3—C7 1.500 (3) C10—H10A 0.9600
C1—N1 1.354 (2) C10—H10B 0.9600
C1—C2 1.396 (3) C10—H10C 0.9600
C1—C5 1.440 (3) C6—H6A 0.9600
C2—C6 1.498 (3) C6—H6B 0.9600
C5—O1 1.206 (3) C6—H6C 0.9600
C5—H5A 0.9300 N1—H1A 0.8600
C7—H7A 0.9600
N1—C4—C3 108.93 (17) H7B—C7—H7C 109.5
N1—C4—C8 117.47 (17) C10—C9—O3 108.7 (3)
C3—C4—C8 133.61 (18) C10—C9—H9A 109.9
O2—C8—O3 123.29 (19) O3—C9—H9A 109.9
O2—C8—C4 123.38 (19) C10—C9—H9B 109.9
O3—C8—C4 113.32 (17) O3—C9—H9B 109.9
C4—C3—C2 106.33 (17) H9A—C9—H9B 108.3
C4—C3—C7 127.64 (19) C9—C10—H10A 109.5
C2—C3—C7 126.03 (19) C9—C10—H10B 109.5
N1—C1—C2 108.25 (17) H10A—C10—H10B 109.5
N1—C1—C5 121.70 (19) C9—C10—H10C 109.5
C2—C1—C5 130.0 (2) H10A—C10—H10C 109.5
C1—C2—C3 107.43 (18) H10B—C10—H10C 109.5
C1—C2—C6 126.8 (2) C2—C6—H6A 109.5
C3—C2—C6 125.8 (2) C2—C6—H6B 109.5
O1—C5—C1 125.0 (2) H6A—C6—H6B 109.5
O1—C5—H5A 117.5 C2—C6—H6C 109.5
C1—C5—H5A 117.5 H6A—C6—H6C 109.5
C3—C7—H7A 109.5 H6B—C6—H6C 109.5
C3—C7—H7B 109.5 C8—O3—C9 115.39 (18)
H7A—C7—H7B 109.5 C1—N1—C4 109.06 (16)
C3—C7—H7C 109.5 C1—N1—H1A 125.5
H7A—C7—H7C 109.5 C4—N1—H1A 125.5
N1—C4—C8—O2 6.4 (3) C7—C3—C2—C1 −179.66 (18)
C3—C4—C8—O2 −173.7 (2) C4—C3—C2—C6 −179.9 (2)
N1—C4—C8—O3 −174.52 (16) C7—C3—C2—C6 −0.1 (3)
C3—C4—C8—O3 5.4 (3) N1—C1—C5—O1 −0.2 (4)
N1—C4—C3—C2 −0.1 (2) C2—C1—C5—O1 −178.7 (2)
C8—C4—C3—C2 179.9 (2) O2—C8—O3—C9 −2.1 (4)
N1—C4—C3—C7 −179.99 (18) C4—C8—O3—C9 178.8 (2)
C8—C4—C3—C7 0.1 (3) C10—C9—O3—C8 169.4 (3)
N1—C1—C2—C3 −0.7 (2) C2—C1—N1—C4 0.6 (2)
C5—C1—C2—C3 178.0 (2) C5—C1—N1—C4 −178.23 (18)
N1—C1—C2—C6 179.8 (2) C3—C4—N1—C1 −0.3 (2)
C5—C1—C2—C6 −1.5 (4) C8—C4—N1—C1 179.68 (15)
C4—C3—C2—C1 0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.07 2.919 (2) 169
C5—H5A···O1ii 0.93 2.54 3.347 (3) 145

Symmetry codes: (i) −x, −y+2, −z+2; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2066).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kang, S.-S., Li, H.-L., Zeng, H.-S. & Wang, H.-B. (2008). Acta Cryst. E64, o1125. [DOI] [PMC free article] [PubMed]
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wang, Y., Wu, W.-N. & Yang, Z.-Y. (2009). X-ray Struct. Anal. Online, 25, 33-34.
  6. Wang, Y., Yang, Z.-Y. & Chen, Z.-N. (2008). Bioorg. Med. Chem. Lett., 18, 298-303. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902323X/gw2066sup1.cif

e-65-o1661-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902323X/gw2066Isup2.hkl

e-65-o1661-Isup2.hkl (118.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES