Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):m835. doi: 10.1107/S1600536809023575

(S)-1-(1-Ferrocenylmethyl-1H-benz­imidazol-2-yl)ethanol monohydrate

Rong Xia a,*
PMCID: PMC2969406  PMID: 21582752

Abstract

In the structure of the title compound, [Fe(C5H5)(C15H15N2O)]·H2O, the unsubstituted cyclo­penta­diene (Cp) ring is disordered over two positions, with site-occupancy factors of 0.636 (12) and 0.364 (12). The dihedral angles between the planes of the substituted Cp ring and the major and minor components of the disordered ring are 0.8 (3) and 3.4 (6)°, respectively. The crystal packing is stabilized by inter­molecular O—H⋯O hydrogen bonds, forming zigzag chains running parallel to the a axis.

Related literature

For applications of ferrocene compounds, see: Savage et al. (2006); Carr et al. (2001). For the biological and pharmaceutical activity of imidazole and benzimidazole derivatives, see: Matsuno et al. (2000); Garuti et al. (1999). For the synthesis and crystal structure of (±)-1-(1H-benzimidazol-2-yl)ethanol, see: Xia & Xu (2008).graphic file with name e-65-0m835-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C15H15N2O)]·H2O

  • M r = 378.25

  • Orthorhombic, Inline graphic

  • a = 7.678 (5) Å

  • b = 12.480 (8) Å

  • c = 19.428 (12) Å

  • V = 1862 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.30 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.724, T max = 0.785

  • 19049 measured reflections

  • 4236 independent reflections

  • 3622 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.113

  • S = 1.05

  • 4236 reflections

  • 243 parameters

  • 146 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 1811 Friedel pairs

  • Flack parameter: 0.03 (2)

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023575/rz2334sup1.cif

e-65-0m835-sup1.cif (23.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023575/rz2334Isup2.hkl

e-65-0m835-Isup2.hkl (207.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWB⋯O1i 0.85 2.37 2.806 (5) 112
O1—H1′′⋯OW 0.82 2.34 3.016 (5) 140

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support by the start-up fund of Southeast University is gratefully acknowledged.

supplementary crystallographic information

Comment

The organometallic compound ferrocene has found several novel applications due to its stability, spectroscopic properties, electrochemical properties and ease of use (Savage et al., 2006). The ferrocene unit can affect the properties of the binding site and likewise binding event can affect the properties of ferrocene (Carr et al., 2001). Imidazole and benzimidazole derivatives are important heteroaromatic compounds and have attracted considerable attention because of their good biological and pharmaceutical activities (Matsuno et al., 2000; Garuti et al., 1999).

In the title compound (Fig. 1), the unsubstituted cyclopentadiene (Cp) ring is disordered over two positions, with site-occupancy factors of 0.636 (12) and 0.364 (12) for the major and minor components respectively. The dihedral angles between the substituted Cp ring and the major and minor components of the disordered ring are 0.8 (3)° and 3.4 (6)°, respectively. All bond lengths and angels are normal. The dihedral angle between the benzimidazole ring system and the substituted Cp ring is 72.92 (9)°. In the crystal structure (Fig. 2), the molecules are connected through intermolecular O—H···O hydrogen bonds (Table 1) to form zigzag chains running parallel to the a axis.

Experimental

The title compound was synthesized by the reaction of L-(-)-1-(1H-benzimidazol-2-yl)ethanol (10 mmol) with a solution of FeCH2N+(CH3)3I- (10 mmol) in water (20 ml) at 105 °C. L-(-)-1-(1H-Benzimidazol-2-yl)ethanol was synthesized by the reaction of benzene-1,2-diamine and ethyl L-(-)-lactate at 115°C according to the literature method (Xia & Xu, 2008). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution at room temperature over a period of one week.

Refinement

All H atoms were fixed geometrically and treated as riding, with C—H = 0.93-0.98 Å, O—H = 0.82-0.85 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl, hydroxyl and water H atoms. The C1—C5 cyclopentadiene ring is disordered over two positions, with refined site-occupancy factors of 0.636 (12) and 0.364 (12) for the major and minor components respectively. During the refinement of the disordered cyclopentadiene ring, soft proximity (SIMU) and rigid-bond restraints (DELU) were applied to the anisotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. Only the major component of disorder is shown.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the a axis. Intermolecular O—H···O hydrogen bonds are shown as dashed lines.

Crystal data

[Fe(C5H5)(C15H15N2O)]·H2O F(000) = 792
Mr = 378.25 Dx = 1.349 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4425 reflections
a = 7.678 (5) Å θ = 2.7–27.5°
b = 12.480 (8) Å µ = 0.83 mm1
c = 19.428 (12) Å T = 293 K
V = 1862 (2) Å3 Block, colourless
Z = 4 0.40 × 0.35 × 0.30 mm

Data collection

Rigaku SCXmini diffractometer 4236 independent reflections
Radiation source: fine-focus sealed tube 3622 reflections with I > 2σ(I)
graphite Rint = 0.042
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 2.7°
ω scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −16→16
Tmin = 0.724, Tmax = 0.785 l = −25→25
19049 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1498P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
4236 reflections Δρmax = 0.32 e Å3
243 parameters Δρmin = −0.21 e Å3
146 restraints Absolute structure: Flack (1983), 1811 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.03 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.12377 (5) 0.11965 (3) 0.10136 (2) 0.05548 (14)
C1 0.2965 (13) 0.2388 (10) 0.0874 (6) 0.076 (2) 0.636 (12)
H1 0.3040 0.3018 0.1128 0.092* 0.636 (12)
C2 0.3868 (13) 0.1411 (10) 0.1064 (6) 0.088 (2) 0.636 (12)
H2 0.4582 0.1309 0.1445 0.105* 0.636 (12)
C3 0.3440 (15) 0.0626 (9) 0.0545 (6) 0.090 (2) 0.636 (12)
H3 0.3799 −0.0085 0.0519 0.108* 0.636 (12)
C4 0.2340 (16) 0.1193 (11) 0.0081 (5) 0.087 (2) 0.636 (12)
H4 0.1888 0.0883 −0.0316 0.104* 0.636 (12)
C5 0.198 (2) 0.2298 (13) 0.0278 (7) 0.081 (2) 0.636 (12)
H5 0.1278 0.2805 0.0063 0.097* 0.636 (12)
C1' 0.344 (2) 0.218 (2) 0.0982 (13) 0.076 (2) 0.364 (12)
H1' 0.3815 0.2628 0.1333 0.092* 0.364 (12)
C2' 0.384 (3) 0.104 (2) 0.0815 (11) 0.088 (2) 0.364 (12)
H2' 0.4599 0.0594 0.1059 0.105* 0.364 (12)
C3' 0.294 (3) 0.0763 (17) 0.0258 (12) 0.090 (2) 0.364 (12)
H3' 0.3024 0.0082 0.0068 0.108* 0.364 (12)
C4' 0.187 (3) 0.1529 (19) −0.0023 (11) 0.087 (2) 0.364 (12)
H4' 0.1092 0.1521 −0.0391 0.104* 0.364 (12)
C5' 0.236 (4) 0.233 (2) 0.0447 (15) 0.081 (2) 0.364 (12)
H5' 0.1904 0.3009 0.0384 0.097* 0.364 (12)
C6 0.0499 (5) 0.0507 (3) 0.19164 (17) 0.0656 (8)
H6 0.1226 0.0277 0.2270 0.079*
C7 −0.0067 (6) −0.0118 (3) 0.1347 (2) 0.0781 (10)
H7 0.0243 −0.0825 0.1260 0.094*
C8 −0.1161 (5) 0.0507 (3) 0.09454 (18) 0.0714 (8)
H8 −0.1717 0.0286 0.0544 0.086*
C9 −0.1290 (4) 0.1537 (3) 0.12467 (16) 0.0617 (7)
H9 −0.1943 0.2108 0.1080 0.074*
C10 −0.0239 (3) 0.1541 (2) 0.18508 (14) 0.0490 (6)
C11 −0.0006 (4) 0.2455 (2) 0.23385 (14) 0.0553 (7)
H11A 0.0989 0.2317 0.2633 0.066*
H11B 0.0226 0.3105 0.2081 0.066*
C12 −0.2966 (4) 0.3248 (2) 0.25873 (14) 0.0531 (7)
C13 −0.3238 (4) 0.3941 (3) 0.20362 (16) 0.0636 (8)
H13A −0.2437 0.4009 0.1680 0.076*
C14 −0.4778 (5) 0.4525 (3) 0.2051 (2) 0.0791 (11)
H14A −0.5003 0.5008 0.1698 0.095*
C15 −0.6005 (6) 0.4410 (4) 0.2581 (2) 0.0918 (12)
H15A −0.7020 0.4818 0.2571 0.110*
C16 −0.5738 (5) 0.3712 (4) 0.3111 (2) 0.0827 (10)
H16A −0.6565 0.3628 0.3457 0.099*
C17 −0.4184 (4) 0.3126 (3) 0.31211 (16) 0.0632 (8)
C18 −0.1993 (4) 0.2124 (3) 0.33753 (15) 0.0601 (7)
C19 −0.0719 (5) 0.1412 (3) 0.37575 (19) 0.0757 (10)
H19A −0.0051 0.1004 0.3417 0.091*
C20 −0.1628 (7) 0.0627 (4) 0.4224 (3) 0.1130 (17)
H20A −0.0778 0.0186 0.4451 0.169*
H20B −0.2393 0.0183 0.3957 0.169*
H20C −0.2292 0.1011 0.4563 0.169*
N1 −0.1568 (3) 0.2606 (2) 0.27640 (11) 0.0538 (6)
N2 −0.3554 (4) 0.2401 (2) 0.36061 (13) 0.0683 (7)
O1 0.0467 (4) 0.2076 (3) 0.41300 (18) 0.0971 (9)
H1'' 0.1441 0.1808 0.4120 0.146*
OW 0.4102 (5) 0.1890 (3) 0.47061 (15) 0.1251 (12)
HWB 0.4440 0.2535 0.4746 0.188*
HWC 0.3948 0.1621 0.5104 0.188*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0499 (2) 0.0611 (2) 0.0554 (2) 0.0041 (2) 0.01120 (19) 0.0056 (2)
C1 0.042 (5) 0.101 (5) 0.086 (5) −0.012 (3) 0.007 (4) 0.018 (4)
C2 0.051 (2) 0.129 (7) 0.084 (6) 0.007 (4) 0.017 (4) 0.021 (4)
C3 0.072 (6) 0.119 (4) 0.079 (6) 0.029 (3) 0.028 (4) 0.005 (4)
C4 0.079 (7) 0.124 (7) 0.058 (4) 0.009 (4) 0.019 (3) 0.016 (4)
C5 0.068 (7) 0.104 (3) 0.071 (7) −0.004 (4) 0.012 (3) 0.029 (4)
C1' 0.042 (5) 0.101 (5) 0.086 (5) −0.012 (3) 0.007 (4) 0.018 (4)
C2' 0.051 (2) 0.129 (7) 0.084 (6) 0.007 (4) 0.017 (4) 0.021 (4)
C3' 0.072 (6) 0.119 (4) 0.079 (6) 0.029 (3) 0.028 (4) 0.005 (4)
C4' 0.079 (7) 0.124 (7) 0.058 (4) 0.009 (4) 0.019 (3) 0.016 (4)
C5' 0.068 (7) 0.104 (3) 0.071 (7) −0.004 (4) 0.012 (3) 0.029 (4)
C6 0.0729 (19) 0.0610 (17) 0.0627 (18) 0.0124 (15) 0.0137 (16) 0.0162 (15)
C7 0.099 (3) 0.0551 (18) 0.081 (2) −0.0086 (19) 0.025 (2) −0.0063 (17)
C8 0.0674 (19) 0.083 (2) 0.0638 (18) −0.0155 (18) −0.002 (2) −0.0108 (17)
C9 0.0454 (14) 0.083 (2) 0.0564 (15) 0.0054 (15) −0.0020 (13) −0.0046 (14)
C10 0.0421 (13) 0.0572 (15) 0.0476 (13) 0.0021 (11) 0.0044 (11) 0.0056 (12)
C11 0.0479 (14) 0.0623 (17) 0.0559 (17) 0.0006 (13) −0.0042 (12) 0.0015 (14)
C12 0.0512 (15) 0.0579 (16) 0.0501 (15) 0.0052 (13) −0.0090 (12) −0.0099 (12)
C13 0.0656 (18) 0.0669 (19) 0.0582 (16) 0.0019 (15) −0.0125 (14) −0.0036 (15)
C14 0.080 (2) 0.075 (2) 0.082 (2) 0.0162 (19) −0.033 (2) −0.0011 (19)
C15 0.077 (3) 0.099 (3) 0.099 (3) 0.031 (2) −0.018 (2) −0.020 (2)
C16 0.066 (2) 0.101 (3) 0.081 (2) 0.021 (2) 0.0003 (18) −0.021 (2)
C17 0.0593 (18) 0.0718 (19) 0.0586 (17) 0.0068 (14) −0.0012 (14) −0.0115 (16)
C18 0.071 (2) 0.0627 (18) 0.0471 (14) 0.0018 (15) −0.0013 (14) −0.0036 (13)
C19 0.084 (2) 0.077 (2) 0.0655 (18) 0.0096 (18) −0.0145 (18) 0.0093 (17)
C20 0.129 (4) 0.099 (3) 0.111 (3) −0.020 (3) −0.046 (3) 0.045 (3)
N1 0.0567 (14) 0.0597 (13) 0.0449 (11) 0.0061 (11) −0.0005 (11) −0.0005 (10)
N2 0.0730 (17) 0.0795 (17) 0.0523 (13) 0.0063 (15) 0.0105 (14) −0.0061 (12)
O1 0.0643 (15) 0.121 (2) 0.106 (2) −0.0134 (15) −0.0203 (16) 0.0323 (18)
OW 0.124 (3) 0.177 (3) 0.0739 (17) 0.012 (3) 0.0232 (18) 0.0031 (19)

Geometric parameters (Å, °)

Fe1—C5' 1.98 (3) C7—C8 1.387 (5)
Fe1—C4 2.000 (10) C7—H7 0.9300
Fe1—C1 2.011 (12) C8—C9 1.416 (5)
Fe1—C7 2.029 (4) C8—H8 0.9300
Fe1—C10 2.029 (3) C9—C10 1.424 (4)
Fe1—C6 2.034 (3) C9—H9 0.9300
Fe1—C8 2.037 (4) C10—C11 1.494 (4)
Fe1—C9 2.038 (3) C11—N1 1.469 (4)
Fe1—C3' 2.036 (17) C11—H11A 0.9700
Fe1—C2 2.040 (10) C11—H11B 0.9700
Fe1—C2' 2.05 (2) C12—N1 1.383 (4)
Fe1—C3 2.048 (8) C12—C13 1.392 (4)
C1—C5 1.388 (12) C12—C17 1.404 (4)
C1—C2 1.451 (13) C13—C14 1.390 (5)
C1—H1 0.9300 C13—H13A 0.9300
C2—C3 1.444 (14) C14—C15 1.403 (6)
C2—H2 0.9300 C14—H14A 0.9300
C3—C4 1.423 (10) C15—C16 1.365 (6)
C3—H3 0.9300 C15—H15A 0.9300
C4—C5 1.46 (2) C16—C17 1.400 (5)
C4—H4 0.9300 C16—H16A 0.9300
C5—H5 0.9300 C17—N2 1.393 (4)
C1'—C5' 1.34 (2) C18—N2 1.325 (4)
C1'—C2' 1.49 (3) C18—N1 1.370 (4)
C1'—H1' 0.9300 C18—C19 1.516 (5)
C2'—C3' 1.33 (2) C19—O1 1.428 (5)
C2'—H2' 0.9300 C19—C20 1.507 (6)
C3'—C4' 1.37 (2) C19—H19A 0.9800
C3'—H3' 0.9300 C20—H20A 0.9600
C4'—C5' 1.40 (4) C20—H20B 0.9600
C4'—H4' 0.9300 C20—H20C 0.9600
C5'—H5' 0.9300 O1—H1'' 0.8200
C6—C10 1.415 (4) OW—HWB 0.8501
C6—C7 1.421 (5) OW—HWC 0.8500
C6—H6 0.9300
C5'—Fe1—C4 46.8 (9) Fe1—C1'—H1' 125.5
C5'—Fe1—C1 27.6 (8) C3'—C2'—C1' 108.2 (18)
C4—Fe1—C1 66.5 (5) C3'—C2'—Fe1 70.5 (12)
C5'—Fe1—C7 165.0 (8) C1'—C2'—Fe1 70.4 (12)
C4—Fe1—C7 119.8 (4) C3'—C2'—H2' 125.9
C1—Fe1—C7 165.2 (3) C1'—C2'—H2' 125.9
C5'—Fe1—C10 122.4 (9) Fe1—C2'—H2' 124.8
C4—Fe1—C10 164.4 (4) C2'—C3'—C4' 117 (2)
C1—Fe1—C10 108.7 (4) C2'—C3'—Fe1 71.4 (11)
C7—Fe1—C10 68.85 (13) C4'—C3'—Fe1 73.6 (13)
C5'—Fe1—C6 154.1 (8) C2'—C3'—H3' 121.4
C4—Fe1—C6 153.9 (4) C4'—C3'—H3' 121.4
C1—Fe1—C6 127.8 (4) Fe1—C3'—H3' 125.2
C7—Fe1—C6 40.95 (14) C3'—C4'—C5' 94.2 (18)
C10—Fe1—C6 40.76 (12) C3'—C4'—Fe1 67.7 (12)
C5'—Fe1—C8 131.0 (7) C5'—C4'—Fe1 65.2 (16)
C4—Fe1—C8 108.8 (4) C3'—C4'—H4' 132.9
C1—Fe1—C8 154.1 (3) C5'—C4'—H4' 132.9
C7—Fe1—C8 39.88 (15) Fe1—C4'—H4' 125.9
C10—Fe1—C8 68.68 (13) C1'—C5'—C4' 125 (2)
C6—Fe1—C8 68.00 (15) C1'—C5'—Fe1 75.1 (16)
C5'—Fe1—C9 112.9 (8) C4'—C5'—Fe1 74.9 (17)
C4—Fe1—C9 127.2 (4) C1'—C5'—H5' 117.5
C1—Fe1—C9 120.3 (3) C4'—C5'—H5' 117.5
C7—Fe1—C9 68.11 (16) Fe1—C5'—H5' 124.1
C10—Fe1—C9 41.00 (11) C10—C6—C7 107.9 (3)
C6—Fe1—C9 68.35 (13) C10—C6—Fe1 69.42 (17)
C8—Fe1—C9 40.68 (14) C7—C6—Fe1 69.3 (2)
C5'—Fe1—C3' 60.7 (11) C10—C6—H6 126.0
C4—Fe1—C3' 22.4 (5) C7—C6—H6 126.0
C1—Fe1—C3' 71.2 (7) Fe1—C6—H6 126.8
C7—Fe1—C3' 109.4 (6) C8—C7—C6 108.3 (3)
C10—Fe1—C3' 172.7 (8) C8—C7—Fe1 70.4 (2)
C6—Fe1—C3' 133.4 (7) C6—C7—Fe1 69.73 (19)
C8—Fe1—C3' 114.8 (6) C8—C7—H7 125.8
C9—Fe1—C3' 145.6 (7) C6—C7—H7 125.8
C5'—Fe1—C2 60.2 (7) Fe1—C7—H7 125.6
C4—Fe1—C2 68.0 (4) C7—C8—C9 108.7 (3)
C1—Fe1—C2 42.0 (3) C7—C8—Fe1 69.7 (2)
C7—Fe1—C2 125.4 (3) C9—C8—Fe1 69.69 (19)
C10—Fe1—C2 119.1 (4) C7—C8—H8 125.7
C6—Fe1—C2 106.9 (3) C9—C8—H8 125.7
C8—Fe1—C2 162.5 (4) Fe1—C8—H8 126.5
C9—Fe1—C2 154.8 (4) C8—C9—C10 107.7 (3)
C3'—Fe1—C2 55.6 (6) C8—C9—Fe1 69.6 (2)
C5'—Fe1—C2' 62.6 (10) C10—C9—Fe1 69.17 (17)
C4—Fe1—C2' 54.3 (6) C8—C9—H9 126.1
C1—Fe1—C2' 53.3 (7) C10—C9—H9 126.1
C7—Fe1—C2' 117.7 (7) Fe1—C9—H9 126.6
C10—Fe1—C2' 135.9 (7) C6—C10—C9 107.3 (3)
C6—Fe1—C2' 113.2 (6) C6—C10—C11 126.2 (3)
C8—Fe1—C2' 146.1 (8) C9—C10—C11 126.4 (3)
C9—Fe1—C2' 173.2 (8) C6—C10—Fe1 69.82 (17)
C3'—Fe1—C2' 38.1 (7) C9—C10—Fe1 69.83 (17)
C2—Fe1—C2' 18.9 (6) C11—C10—Fe1 127.10 (19)
C5'—Fe1—C3 69.0 (9) N1—C11—C10 110.9 (2)
C4—Fe1—C3 41.1 (3) N1—C11—H11A 109.5
C1—Fe1—C3 69.7 (5) C10—C11—H11A 109.5
C7—Fe1—C3 105.6 (3) N1—C11—H11B 109.5
C10—Fe1—C3 153.1 (4) C10—C11—H11B 109.5
C6—Fe1—C3 117.8 (4) H11A—C11—H11B 108.1
C8—Fe1—C3 124.8 (4) N1—C12—C13 131.8 (3)
C9—Fe1—C3 163.2 (4) N1—C12—C17 105.7 (3)
C3'—Fe1—C3 19.7 (5) C13—C12—C17 122.4 (3)
C2—Fe1—C3 41.4 (4) C14—C13—C12 115.9 (3)
C2'—Fe1—C3 22.5 (5) C14—C13—H13A 122.0
C5—C1—C2 113.8 (11) C12—C13—H13A 122.0
C5—C1—Fe1 72.1 (9) C13—C14—C15 122.2 (4)
C2—C1—Fe1 70.1 (6) C13—C14—H14A 118.9
C5—C1—H1 123.1 C15—C14—H14A 118.9
C2—C1—H1 123.1 C16—C15—C14 121.2 (4)
Fe1—C1—H1 126.5 C16—C15—H15A 119.4
C3—C2—C1 106.5 (8) C14—C15—H15A 119.4
C3—C2—Fe1 69.6 (5) C15—C16—C17 118.2 (4)
C1—C2—Fe1 68.0 (6) C15—C16—H16A 120.9
C3—C2—H2 126.8 C17—C16—H16A 120.9
C1—C2—H2 126.8 N2—C17—C16 130.1 (3)
Fe1—C2—H2 127.2 N2—C17—C12 109.8 (3)
C4—C3—C2 103.9 (8) C16—C17—C12 120.1 (3)
C4—C3—Fe1 67.6 (5) N2—C18—N1 113.2 (3)
C2—C3—Fe1 69.0 (5) N2—C18—C19 124.8 (3)
C4—C3—H3 128.0 N1—C18—C19 121.9 (3)
C2—C3—H3 128.0 O1—C19—C20 111.6 (3)
Fe1—C3—H3 126.9 O1—C19—C18 108.6 (3)
C3—C4—C5 114.6 (10) C20—C19—C18 112.2 (4)
C3—C4—Fe1 71.2 (5) O1—C19—H19A 108.1
C5—C4—Fe1 71.3 (8) C20—C19—H19A 108.1
C3—C4—H4 122.7 C18—C19—H19A 108.1
C5—C4—H4 122.7 C19—C20—H20A 109.5
Fe1—C4—H4 126.5 C19—C20—H20B 109.5
C1—C5—C4 101.1 (10) H20A—C20—H20B 109.5
C1—C5—Fe1 68.1 (8) C19—C20—H20C 109.5
C4—C5—Fe1 66.7 (8) H20A—C20—H20C 109.5
C1—C5—H5 129.4 H20B—C20—H20C 109.5
C4—C5—H5 129.4 C18—N1—C12 106.5 (2)
Fe1—C5—H5 127.2 C18—N1—C11 128.8 (3)
C5'—C1'—C2' 95 (2) C12—N1—C11 124.6 (2)
C5'—C1'—Fe1 66.6 (17) C18—N2—C17 104.7 (3)
C2'—C1'—Fe1 67.4 (12) C19—O1—H1'' 109.5
C5'—C1'—H1' 132.3 HWB—OW—HWC 109.5
C2'—C1'—H1' 132.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
OW—HWB···O1i 0.85 2.37 2.806 (5) 112
O1—H1''···OW 0.82 2.34 3.016 (5) 140

Symmetry codes: (i) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2334).

References

  1. Carr, D. J., Coles, J. S., Hursthouse, B. M. & Tucker, H. R. J. (2001). J. Organomet. Chem.637, 304–310.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Garuti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett.9, 2525–2530. [DOI] [PubMed]
  4. Matsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull 48, 1778–1781. [DOI] [PubMed]
  5. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Savage, D., Alley, S. R., Goel, A., Hogan, T., Ida, Y., Kelly, P. N., Lehmann, L. & Kenny, P. T. M. (2006). Inorg. Chem. Commun.9, 1267–1270.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Xia, R. & Xu, H.-J. (2008). Acta Cryst. E64, o1223. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023575/rz2334sup1.cif

e-65-0m835-sup1.cif (23.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023575/rz2334Isup2.hkl

e-65-0m835-Isup2.hkl (207.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES