Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):o1519. doi: 10.1107/S1600536809021011

2,3-Diamino­pyridinium benzoate

Kasthuri Balasubramani a, Hoong-Kun Fun a,*,
PMCID: PMC2969407  PMID: 21582810

Abstract

In the title compound, C5H8N3 +·C7H5O2 , the pyridine N atom is protonated. The carboxyl­ate group of the benzoate anion is twisted away from the attached ring by 10.91 (9)°. In the crystal structure, N—H⋯O hydrogen bonds between 2,3-diamino­pyridinium cations and benzoate anions, and π–π inter­actions between the pyridinium rings [centroid–centroid distance = 3.6467 (9) Å] form a two-dimensional network parallel to (001). In the network, N—H⋯O hydrogen bonds form R 2 2(8) and R 2 1(7) ring motifs.

Related literature

For general background to pyridine derivatives, see: Pozharski et al. (1997); Katritzky et al. (1996). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o1519-scheme1.jpg

Experimental

Crystal data

  • C5H8N3 +·C7H5O2

  • M r = 231.25

  • Orthorhombic, Inline graphic

  • a = 10.1498 (3) Å

  • b = 11.0656 (3) Å

  • c = 20.7368 (7) Å

  • V = 2329.03 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.43 × 0.40 × 0.03 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.935, T max = 0.998

  • 27109 measured reflections

  • 3443 independent reflections

  • 2559 reflections with I > 2σ(I)

  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.124

  • S = 1.09

  • 3443 reflections

  • 206 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021011/ci2821sup1.cif

e-65-o1519-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021011/ci2821Isup2.hkl

e-65-o1519-Isup2.hkl (165.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.96 (2) 1.77 (2) 2.7218 (18) 176 (2)
N2—H1N2⋯O1 0.90 (2) 1.94 (2) 2.8377 (18) 173 (2)
N2—H2N2⋯O2i 0.88 (2) 2.01 (2) 2.8873 (17) 170 (2)
N3—H1N3⋯O2i 0.91 (2) 2.02 (2) 2.9206 (19) 173 (2)
N3—H2N3⋯O1ii 0.95 (2) 2.00 (2) 2.9382 (19) 170 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and KB thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KB thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit (Fig 1), contains a protonated 2,3-diaminopyridinium cation and a benzoate anion. The bond lengths (Allen et al.,1987) and angles are normal. In the 2,3-diaminopyridinium cation, the protonated N1 atom has lead to a slight increase in C8—N1—C12 angle to 123.30 (14)°. Moreover, the carboxylate group is twisted slightly out of the attached ring; the dihedral angle between C1—C6 and O1/O2/C7/C6 planes is 10.91 (9)°. The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.0089 (17) Å for atom C9.

In the crystal packing, the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The two amino groups (N2 and N3) are involved in N—H···O hydrogen bonding interactions to form an R12(7) ring motif. The cationic and anionic units are linked through N—H···O hydrogen bonds (Table 1 and Fig 2) to form a two-dimensional network parallel to the (001) plane. The crystal structure is further stabilized by π-π stacking interactions between the pyridinium rings of the cations at (x, y, z) and (-x, 1-y, 1-z), with a centroid to centroid distance of 3.6467 (9) Å.

Experimental

Hot methanol solutions (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and benzoic acid (31 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement

All H atoms were located in a difference Fourier map and allowed to refine freely [N-H = 0.89 (2)–0.95 (2) Å and C–H = 0.97 (18)–1.02 (2) Å].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

Part of the crystal packing of the title compound. Dashed lines indicate hydrogen bonds.

Crystal data

C5H8N3+·C7H5O2 F(000) = 976
Mr = 231.25 Dx = 1.319 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3782 reflections
a = 10.1498 (3) Å θ = 2.8–27.9°
b = 11.0656 (3) Å µ = 0.09 mm1
c = 20.7368 (7) Å T = 100 K
V = 2329.03 (12) Å3 Plate, brown
Z = 8 0.43 × 0.40 × 0.03 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3443 independent reflections
Radiation source: fine-focus sealed tube 2559 reflections with I > 2σ(I)
graphite Rint = 0.070
φ and ω scans θmax = 30.1°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −14→14
Tmin = 0.935, Tmax = 0.998 k = −15→15
27109 measured reflections l = −26→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0394P)2 + 1.0527P] where P = (Fo2 + 2Fc2)/3
3443 reflections (Δ/σ)max = 0.001
206 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.41320 (11) 0.39789 (9) 0.63510 (5) 0.0253 (3)
O2 0.39681 (11) 0.57595 (9) 0.58541 (5) 0.0257 (3)
C6 0.54129 (15) 0.55976 (13) 0.67572 (8) 0.0217 (3)
C1 0.57778 (16) 0.49395 (15) 0.73019 (8) 0.0271 (4)
C2 0.66687 (18) 0.54115 (17) 0.77390 (10) 0.0347 (4)
C3 0.72160 (19) 0.65474 (16) 0.76378 (10) 0.0365 (4)
C4 0.68658 (19) 0.72004 (16) 0.70966 (10) 0.0375 (5)
C5 0.59687 (17) 0.67368 (14) 0.66578 (9) 0.0296 (4)
C7 0.44423 (15) 0.50698 (13) 0.62917 (7) 0.0211 (3)
C9 0.06661 (15) 0.32936 (13) 0.46855 (8) 0.0220 (3)
C8 0.15562 (15) 0.37759 (13) 0.51515 (8) 0.0211 (3)
N1 0.22115 (13) 0.47997 (11) 0.50049 (7) 0.0230 (3)
N2 0.17608 (14) 0.32713 (12) 0.57320 (7) 0.0239 (3)
N3 −0.00614 (14) 0.22766 (12) 0.48334 (8) 0.0273 (3)
C12 0.20715 (17) 0.53936 (14) 0.44310 (9) 0.0270 (4)
C11 0.12491 (17) 0.49519 (15) 0.39762 (9) 0.0288 (4)
C10 0.05443 (17) 0.38821 (14) 0.41056 (9) 0.0268 (4)
H12A 0.262 (2) 0.6122 (17) 0.4384 (9) 0.039 (5)*
H11A 0.1152 (17) 0.5333 (16) 0.3555 (9) 0.028 (5)*
H10A −0.0033 (18) 0.3556 (15) 0.3778 (9) 0.027 (5)*
H1A 0.5401 (19) 0.4138 (17) 0.7363 (9) 0.037 (5)*
H2A 0.690 (2) 0.4955 (18) 0.8134 (10) 0.045 (6)*
H3A 0.785 (2) 0.6890 (17) 0.7969 (10) 0.043 (6)*
H4A 0.726 (2) 0.7970 (19) 0.7013 (10) 0.051 (6)*
H5A 0.5737 (18) 0.7200 (17) 0.6276 (9) 0.032 (5)*
H1N1 0.283 (2) 0.5096 (18) 0.5312 (9) 0.039 (5)*
H1N2 0.248 (2) 0.3487 (16) 0.5959 (9) 0.033 (5)*
H2N2 0.146 (2) 0.253 (2) 0.5800 (10) 0.047 (6)*
H1N3 0.021 (2) 0.1812 (18) 0.5170 (10) 0.042 (6)*
H2N3 −0.043 (2) 0.1882 (17) 0.4469 (10) 0.041 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0278 (6) 0.0181 (5) 0.0298 (6) −0.0009 (4) −0.0021 (5) 0.0002 (4)
O2 0.0280 (6) 0.0205 (5) 0.0285 (6) −0.0020 (4) −0.0058 (5) 0.0020 (4)
C6 0.0181 (7) 0.0209 (7) 0.0261 (8) 0.0037 (5) 0.0001 (6) −0.0025 (6)
C1 0.0252 (8) 0.0271 (8) 0.0291 (9) 0.0039 (6) −0.0009 (7) 0.0015 (7)
C2 0.0335 (10) 0.0398 (10) 0.0308 (10) 0.0067 (8) −0.0089 (8) 0.0007 (8)
C3 0.0339 (10) 0.0346 (9) 0.0410 (11) 0.0058 (7) −0.0150 (8) −0.0104 (8)
C4 0.0361 (10) 0.0245 (8) 0.0520 (12) −0.0009 (7) −0.0165 (9) −0.0026 (8)
C5 0.0298 (9) 0.0227 (7) 0.0364 (10) 0.0003 (6) −0.0111 (8) 0.0019 (7)
C7 0.0197 (7) 0.0210 (7) 0.0226 (8) 0.0019 (5) 0.0027 (6) −0.0013 (6)
C9 0.0194 (7) 0.0182 (7) 0.0285 (9) 0.0017 (5) −0.0004 (6) −0.0027 (6)
C8 0.0192 (7) 0.0175 (6) 0.0265 (8) 0.0028 (5) 0.0011 (6) −0.0016 (6)
N1 0.0223 (7) 0.0186 (6) 0.0281 (7) −0.0011 (5) −0.0013 (6) −0.0012 (5)
N2 0.0237 (7) 0.0213 (6) 0.0269 (8) −0.0029 (5) −0.0020 (6) 0.0014 (5)
N3 0.0288 (7) 0.0217 (6) 0.0314 (8) −0.0048 (5) −0.0055 (7) 0.0010 (6)
C12 0.0286 (9) 0.0204 (7) 0.0320 (9) −0.0014 (6) 0.0008 (7) 0.0038 (6)
C11 0.0319 (9) 0.0260 (8) 0.0285 (9) 0.0006 (7) −0.0019 (7) 0.0054 (7)
C10 0.0252 (8) 0.0269 (8) 0.0283 (9) 0.0000 (6) −0.0043 (7) −0.0014 (7)

Geometric parameters (Å, °)

O1—C7 1.2537 (17) C9—N3 1.3805 (19)
O2—C7 1.2796 (18) C9—C8 1.427 (2)
C6—C1 1.394 (2) C8—N2 1.343 (2)
C6—C5 1.396 (2) C8—N1 1.3484 (19)
C6—C7 1.498 (2) N1—C12 1.367 (2)
C1—C2 1.383 (2) N1—H1N1 0.96 (2)
C1—H1A 0.974 (19) N2—H1N2 0.90 (2)
C2—C3 1.390 (3) N2—H2N2 0.88 (2)
C2—H2A 0.99 (2) N3—H1N3 0.91 (2)
C3—C4 1.381 (3) N3—H2N3 0.95 (2)
C3—H3A 1.02 (2) C12—C11 1.351 (2)
C4—C5 1.386 (2) C12—H12A 0.99 (2)
C4—H4A 0.96 (2) C11—C10 1.409 (2)
C5—H5A 0.972 (19) C11—H11A 0.975 (18)
C9—C10 1.373 (2) C10—H10A 0.966 (18)
C1—C6—C5 118.94 (15) N3—C9—C8 119.55 (15)
C1—C6—C7 119.56 (14) N2—C8—N1 118.36 (14)
C5—C6—C7 121.50 (14) N2—C8—C9 123.34 (14)
C2—C1—C6 120.50 (16) N1—C8—C9 118.29 (14)
C2—C1—H1A 121.0 (12) C8—N1—C12 123.30 (14)
C6—C1—H1A 118.5 (12) C8—N1—H1N1 117.7 (12)
C1—C2—C3 120.25 (17) C12—N1—H1N1 119.0 (12)
C1—C2—H2A 120.4 (12) C8—N2—H1N2 118.9 (12)
C3—C2—H2A 119.3 (12) C8—N2—H2N2 118.3 (14)
C4—C3—C2 119.53 (17) H1N2—N2—H2N2 116.3 (18)
C4—C3—H3A 121.2 (11) C9—N3—H1N3 117.9 (13)
C2—C3—H3A 119.3 (11) C9—N3—H2N3 114.0 (12)
C3—C4—C5 120.59 (17) H1N3—N3—H2N3 118.1 (17)
C3—C4—H4A 120.4 (13) C11—C12—N1 119.87 (15)
C5—C4—H4A 119.0 (13) C11—C12—H12A 125.2 (11)
C4—C5—C6 120.18 (17) N1—C12—H12A 114.9 (11)
C4—C5—H5A 119.9 (11) C12—C11—C10 118.99 (16)
C6—C5—H5A 119.9 (11) C12—C11—H11A 122.1 (11)
O1—C7—O2 123.33 (14) C10—C11—H11A 118.9 (11)
O1—C7—C6 118.52 (14) C9—C10—C11 121.30 (16)
O2—C7—C6 118.15 (13) C9—C10—H10A 119.5 (10)
C10—C9—N3 122.21 (15) C11—C10—H10A 119.2 (10)
C10—C9—C8 118.22 (14)
C5—C6—C1—C2 0.5 (2) C10—C9—C8—N2 −179.52 (15)
C7—C6—C1—C2 −179.77 (15) N3—C9—C8—N2 1.9 (2)
C6—C1—C2—C3 −0.3 (3) C10—C9—C8—N1 1.4 (2)
C1—C2—C3—C4 −0.1 (3) N3—C9—C8—N1 −177.16 (13)
C2—C3—C4—C5 0.5 (3) N2—C8—N1—C12 −179.52 (14)
C3—C4—C5—C6 −0.3 (3) C9—C8—N1—C12 −0.4 (2)
C1—C6—C5—C4 −0.1 (3) C8—N1—C12—C11 −0.4 (2)
C7—C6—C5—C4 −179.90 (16) N1—C12—C11—C10 0.2 (2)
C1—C6—C7—O1 −10.6 (2) N3—C9—C10—C11 176.89 (15)
C5—C6—C7—O1 169.17 (15) C8—C9—C10—C11 −1.7 (2)
C1—C6—C7—O2 169.17 (14) C12—C11—C10—C9 0.8 (3)
C5—C6—C7—O2 −11.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2 0.96 (2) 1.77 (2) 2.7218 (18) 176 (2)
N2—H1N2···O1 0.90 (2) 1.94 (2) 2.8377 (18) 173 (2)
N2—H2N2···O2i 0.88 (2) 2.01 (2) 2.8873 (17) 170 (2)
N3—H1N3···O2i 0.91 (2) 2.02 (2) 2.9206 (19) 173 (2)
N3—H2N3···O1ii 0.95 (2) 2.00 (2) 2.9382 (19) 170 (2)

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2821).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding Oxford University Press.
  6. Jeffrey, G. A. & Saenger, W. (1991). In Hydrogen Bonding in Biological Structures Berlin: Springer.
  7. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
  8. Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society New York: Wiley.
  9. Scheiner, S. (1997). In Hydrogen Bonding, A Theoretical Perspective Oxford University Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021011/ci2821sup1.cif

e-65-o1519-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021011/ci2821Isup2.hkl

e-65-o1519-Isup2.hkl (165.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES