Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Jun;87(6):1903–1909. doi: 10.1172/JCI115215

Stabilization of F-actin prevents cAMP-elicited Cl- secretion in T84 cells.

M Shapiro 1, J Matthews 1, G Hecht 1, C Delp 1, J L Madara 1
PMCID: PMC296941  PMID: 1645745

Abstract

T84 cells, a human intestinal epithelial cell line, serve as a model of electrogenic Cl- secretion. We find that cAMP-elicited Cl- secretion in T84 cells is accompanied by a marked redistribution of F-actin in the basolateral portion of the cell. To prevent this F-actin redistribution and thereby assess its importance to Cl- secretion, we have defined simple conditions under which this model epithelium can be loaded with nitrobenzoxadiazole (NBD)-phallicidin. This reagent binds F-actin with high affinity thus stabilizing the F-actin cytoskeleton by preventing depolymerization, an event necessary for dynamic reordering of actin microfilaments. NBD-phallicidin loading is not cytotoxic as assessed by lactic dehydrogenase release, protein synthesis, transepithelial resistance, and the ability of the loaded cells to pump Na+ in an absorptive direction in response to the apical addition of a Na+ ionophore. However, cAMP-elicited redistribution of F-actin and the cAMP-elicited Cl- secretory response are both markedly impaired in NBD-phallicidin preloaded T84 cells. In contrast, the carbachol-elicited Cl- secretory response (Ca++ mediated) is not attenuated by NBD-phallicidin preloading nor is it accompanied by redistribution of F-actin. These findings suggest that the cAMP-elicited cytoskeletal redistribution we describe is an integral part of cAMP-elicited Cl- secretion in T84 cells.

Full text

PDF
1903

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barak L. S., Yocum R. R., Nothnagel E. A., Webb W. W. Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin. Proc Natl Acad Sci U S A. 1980 Feb;77(2):980–984. doi: 10.1073/pnas.77.2.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barak L. S., Yocum R. R., Webb W. W. In vivo staining of cytoskeletal actin by autointernalization of nontoxic concentrations of nitrobenzoxadiazole-phallacidin. J Cell Biol. 1981 May;89(2):368–372. doi: 10.1083/jcb.89.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cartwright C. A., McRoberts J. A., Mandel K. G., Dharmsathaphorn K. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line. J Clin Invest. 1985 Nov;76(5):1837–1842. doi: 10.1172/JCI112176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Critchlow J., Magee D., Ito S., Takeuchi K., Silen W. Requirements for restitution of the surface epithelium of frog stomach after mucosal injury. Gastroenterology. 1985 Jan;88(1 Pt 2):237–249. doi: 10.1016/s0016-5085(85)80177-3. [DOI] [PubMed] [Google Scholar]
  6. Dharmsathaphorn K., Mandel K. G., Masui H., McRoberts J. A. Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl- cotransport system. J Clin Invest. 1985 Feb;75(2):462–471. doi: 10.1172/JCI111721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dharmsathaphorn K., McRoberts J. A., Mandel K. G., Tisdale L. D., Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol. 1984 Feb;246(2 Pt 1):G204–G208. doi: 10.1152/ajpgi.1984.246.2.G204. [DOI] [PubMed] [Google Scholar]
  8. Dharmsathaphorn K., Pandol S. J. Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J Clin Invest. 1986 Feb;77(2):348–354. doi: 10.1172/JCI112311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duffey M. E., Hainau B., Ho S., Bentzel C. J. Regulation of epithelial tight junction permeability by cyclic AMP. Nature. 1981 Dec 3;294(5840):451–453. doi: 10.1038/294451a0. [DOI] [PubMed] [Google Scholar]
  10. Hagen S. J., Trier J. S. Immunocytochemical localization of actin in epithelial cells of rat small intestine by light and electron microscopy. J Histochem Cytochem. 1988 Jul;36(7):717–727. doi: 10.1177/36.7.3290330. [DOI] [PubMed] [Google Scholar]
  11. Hamaguchi Y., Mabuchi I. Effects of phalloidin microinjection and localization of fluorescein-labeled phalloidin in living sand dollar eggs. Cell Motil. 1982;2(2):103–113. doi: 10.1002/cm.970020203. [DOI] [PubMed] [Google Scholar]
  12. Hecht G., Pothoulakis C., LaMont J. T., Madara J. L. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest. 1988 Nov;82(5):1516–1524. doi: 10.1172/JCI113760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Howard T. H., Oresajo C. O. The kinetics of chemotactic peptide-induced change in F-actin content, F-actin distribution, and the shape of neutrophils. J Cell Biol. 1985 Sep;101(3):1078–1085. doi: 10.1083/jcb.101.3.1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobson H. R. Altered permeability in the proximal tubule response to cyclic AMP. Am J Physiol. 1979 Jan;236(1):F71–F79. doi: 10.1152/ajprenal.1979.236.1.F71. [DOI] [PubMed] [Google Scholar]
  15. Jørgensen P. L., Petersen J., Rees W. D. Identification of a Na+,K+, Cl--cotransport protein of Mr 34 000 from kidney by photolabeling with [3H]bumethanide. The protein is associated with cytoskeleton components. Biochim Biophys Acta. 1984 Aug 8;775(1):105–110. doi: 10.1016/0005-2736(84)90240-2. [DOI] [PubMed] [Google Scholar]
  16. KOSTYO J. L., KNOBIL E. The effect of growth hormone on the in vitro incorporation of leucine-2-C14 into the protein of rat diaphragm. Endocrinology. 1959 Sep;65:395–401. doi: 10.1210/endo-65-3-395. [DOI] [PubMed] [Google Scholar]
  17. Lamb N. J., Fernandez A., Conti M. A., Adelstein R., Glass D. B., Welch W. J., Feramisco J. R. Regulation of actin microfilament integrity in living nonmuscle cells by the cAMP-dependent protein kinase and the myosin light chain kinase. J Cell Biol. 1988 Jun;106(6):1955–1971. doi: 10.1083/jcb.106.6.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Madara J. L., Barenberg D., Carlson S. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J Cell Biol. 1986 Jun;102(6):2125–2136. doi: 10.1083/jcb.102.6.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Madara J. L., Dharmsathaphorn K. Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol. 1985 Dec;101(6):2124–2133. doi: 10.1083/jcb.101.6.2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Madara J. L., Pappenheimer J. R. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol. 1987;100(2):149–164. doi: 10.1007/BF02209147. [DOI] [PubMed] [Google Scholar]
  21. Madara J. L., Stafford J., Barenberg D., Carlson S. Functional coupling of tight junctions and microfilaments in T84 monolayers. Am J Physiol. 1988 Mar;254(3 Pt 1):G416–G423. doi: 10.1152/ajpgi.1988.254.3.G416. [DOI] [PubMed] [Google Scholar]
  22. Marchesi V. T. Stabilizing infrastructure of cell membranes. Annu Rev Cell Biol. 1985;1:531–561. doi: 10.1146/annurev.cb.01.110185.002531. [DOI] [PubMed] [Google Scholar]
  23. Mercier F., Reggio H., Devilliers G., Bataille D., Mangeat P. Membrane-cytoskeleton dynamics in rat parietal cells: mobilization of actin and spectrin upon stimulation of gastric acid secretion. J Cell Biol. 1989 Feb;108(2):441–453. doi: 10.1083/jcb.108.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mills J. W., Lubin M. Effect of adenosine 3',5'-cyclic monophosphate on volume and cytoskeleton of MDCK cells. Am J Physiol. 1986 Feb;250(2 Pt 1):C319–C324. doi: 10.1152/ajpcell.1986.250.2.C319. [DOI] [PubMed] [Google Scholar]
  25. Mooseker M. S. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol. 1985;1:209–241. doi: 10.1146/annurev.cb.01.110185.001233. [DOI] [PubMed] [Google Scholar]
  26. Nelson W. J., Hammerton R. W. A membrane-cytoskeletal complex containing Na+,K+-ATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J Cell Biol. 1989 Mar;108(3):893–902. doi: 10.1083/jcb.108.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Grady S. M., Palfrey H. C., Field M. Characteristics and functions of Na-K-Cl cotransport in epithelial tissues. Am J Physiol. 1987 Aug;253(2 Pt 1):C177–C192. doi: 10.1152/ajpcell.1987.253.2.C177. [DOI] [PubMed] [Google Scholar]
  28. Phillips P. G., Lum H., Malik A. B., Tsan M. F. Phallacidin prevents thrombin-induced increases in endothelial permeability to albumin. Am J Physiol. 1989 Sep;257(3 Pt 1):C562–C567. doi: 10.1152/ajpcell.1989.257.3.C562. [DOI] [PubMed] [Google Scholar]
  29. Rodewald R., Newman S. B., Karnovsky M. J. Contraction of isolated brush borders from the intestinal epithelium. J Cell Biol. 1976 Sep;70(3):541–554. doi: 10.1083/jcb.70.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stelzner T. J., Weil J. V., O'Brien R. F. Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J Cell Physiol. 1989 Apr;139(1):157–166. doi: 10.1002/jcp.1041390122. [DOI] [PubMed] [Google Scholar]
  31. Weymer A., Huott P., Liu W., McRoberts J. A., Dharmsathaphorn K. Chloride secretory mechanism induced by prostaglandin E1 in a colonic epithelial cell line. J Clin Invest. 1985 Nov;76(5):1828–1836. doi: 10.1172/JCI112175. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES