Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):m829. doi: 10.1107/S1600536809023459

Dichloridobis[1-(2-methyl­benzimidazol-1-ylmethyl-κN 3)benzotriazole]mercury(II)

Jie Wu a,*, Jie Yang a, Fang-fang Pan a
PMCID: PMC2969412  PMID: 21582747

Abstract

In the title compound, [HgCl2(C15H13N5)2], the HgII atom is located on a twofold rotation axis and resides in a distorted tetra­hedral coordination environment composed of two Cl atoms and two N atoms from two 1-(2-methyl­benzimidazol-1-ylmeth­yl)benzotriazole ligands.

Related literature

For metal complexes of similar N-heterocyclic ligands, see: Fan et al. (2003); Hoskins et al. (1997); Makoto et al. (2005)graphic file with name e-65-0m829-scheme1.jpg

Experimental

Crystal data

  • [HgCl2(C15H13N5)2]

  • M r = 798.10

  • Monoclinic, Inline graphic

  • a = 15.612 (3) Å

  • b = 12.883 (3) Å

  • c = 14.751 (3) Å

  • β = 97.49 (3)°

  • V = 2941.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.46 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.16 mm

Data collection

  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006) T min = 0.380, T max = 0.476 (expected range = 0.334–0.418)

  • 14609 measured reflections

  • 2587 independent reflections

  • 2379 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.062

  • S = 1.09

  • 2587 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023459/ng2600sup1.cif

e-65-0m829-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023459/ng2600Isup2.hkl

e-65-0m829-Isup2.hkl (127.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Hou Hong-Wei of Zhengzhou University for his help.

supplementary crystallographic information

Comment

The complexation of metal ions by nitrogen heterocyclic compounds has been extensively studied. Owing to the unique ability of the heterocyclic compounds to form stable chelates with various coordiantion modes and its biological activity, many crystal ctructures have been determined (Fan, et al., 2003; Hoskins, et al. 1997; Makoto,et al.,2005). N-(2-methyl-benzoimidazol-3-yl-methyl)-benzotriazole, has the benzotriazole group and the benzoimidazole group and can offer possibilities to form complicated coordiantion compounds. However, the coordiantion chemistry and structural properties of metal complexes with the ligand has never been documented to data. In this paper, we reported the synthesis and crystal structure of the title compound, (I). In (I) (Fig. 1), the HgII atom is coordinated by two Cl atoms and two N atoms from the ligand to form a distorted tetrahedral coordination environment. Each ligand is coordianted to the Hg atom in a monodentate fashion. In the ligand, the benzotriazole group and benzotriazole group is bridged by a methylene, with an N—C—N angle of 111.3 (4)°. The benzotriazole group and the benzoimidazole group are almost perpendicular with each other, with the dihedral angle being 89.9°. Thus, two ligands are bridged by the Hg atom to form a cage-like compound.

Experimental

The ligand N-(2-methyl-benzoimidazol-3-yl-methyl)-benzotriazole (0.04 mmol, 0.118 g) in MeOH (6 ml) was added dropwise to a solution of HgCl2 (0.4 mmol, 0.108 g) in methanol (3 ml). The precipitate was filtered and the resulting solution was allowed to stand at room temperature in the dark. After one week good quality colorless crystals were obtained from the filtrate and dried in air.

Refinement

H atoms were generated geometrically, with C-H = 0.96, 0.86 and 0.93Å for methyl, N and aromatic H, respectively, and constrained to ride their parent atoms with Uiso(H) = x times Ueq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title complex, showing the labeling of the non-H atoms and 30% probability ellipsolids.

Crystal data

[HgCl2(C15H13N5)2] F(000) = 1560
Mr = 798.10 Dx = 1.802 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4239 reflections
a = 15.612 (3) Å θ = 2.1–29.1°
b = 12.883 (3) Å µ = 5.46 mm1
c = 14.751 (3) Å T = 293 K
β = 97.49 (3)° Prism, colorless
V = 2941.5 (11) Å3 0.22 × 0.18 × 0.16 mm
Z = 4

Data collection

Rigaku Saturn724 diffractometer 2587 independent reflections
Radiation source: fine-focus sealed tube 2379 reflections with I > 2σ(I)
graphite Rint = 0.051
Detector resolution: 28.5714 pixels mm-1 θmax = 25.0°, θmin = 2.4°
dtprofit.ref scans h = −18→18
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006) k = −15→15
Tmin = 0.380, Tmax = 0.476 l = −17→17
14609 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0229P)2 + 4.6614P] where P = (Fo2 + 2Fc2)/3
2587 reflections (Δ/σ)max < 0.001
196 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.5000 −0.10389 (2) 0.2500 0.04638 (11)
Cl1 0.62989 (9) −0.19849 (10) 0.30815 (8) 0.0585 (4)
N1 0.4757 (2) 0.0231 (3) 0.3545 (2) 0.0389 (9)
N2 0.4113 (2) 0.1501 (3) 0.4213 (2) 0.0380 (9)
N3 0.3561 (2) 0.3232 (3) 0.4176 (2) 0.0439 (10)
N4 0.3539 (3) 0.3999 (4) 0.4808 (3) 0.0606 (12)
N5 0.3651 (3) 0.4882 (4) 0.4425 (3) 0.0642 (13)
C1 0.3170 (3) 0.0391 (4) 0.3110 (4) 0.0577 (14)
H1A 0.3243 −0.0205 0.2737 0.087*
H1B 0.2941 0.0956 0.2728 0.087*
H1C 0.2778 0.0226 0.3538 0.087*
C2 0.4021 (3) 0.0696 (4) 0.3614 (3) 0.0392 (11)
C3 0.5386 (3) 0.0762 (3) 0.4139 (3) 0.0359 (11)
C4 0.6271 (3) 0.0600 (4) 0.4337 (3) 0.0436 (11)
H4 0.6547 0.0066 0.4064 0.052*
C5 0.6722 (3) 0.1269 (4) 0.4956 (3) 0.0513 (13)
H5 0.7317 0.1191 0.5095 0.062*
C6 0.6311 (3) 0.2054 (4) 0.5377 (3) 0.0541 (13)
H6 0.6637 0.2481 0.5799 0.065*
C7 0.5436 (3) 0.2220 (4) 0.5189 (3) 0.0452 (12)
H7 0.5163 0.2750 0.5469 0.054*
C8 0.4984 (3) 0.1560 (3) 0.4564 (3) 0.0348 (10)
C9 0.3430 (3) 0.2172 (4) 0.4447 (3) 0.0471 (12)
H9A 0.2878 0.1926 0.4145 0.057*
H9B 0.3414 0.2146 0.5102 0.057*
C10 0.3696 (3) 0.3647 (4) 0.3355 (3) 0.0420 (11)
C11 0.3763 (3) 0.3232 (5) 0.2497 (3) 0.0568 (14)
H11 0.3719 0.2523 0.2381 0.068*
C12 0.3900 (3) 0.3936 (5) 0.1833 (4) 0.0636 (16)
H12 0.3946 0.3697 0.1246 0.076*
C13 0.3973 (3) 0.5008 (6) 0.2009 (4) 0.0688 (17)
H13 0.4074 0.5456 0.1539 0.083*
C14 0.3898 (3) 0.5404 (5) 0.2845 (4) 0.0642 (16)
H14 0.3943 0.6114 0.2959 0.077*
C15 0.3752 (3) 0.4707 (4) 0.3524 (3) 0.0496 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.05294 (19) 0.03316 (15) 0.05032 (18) 0.000 −0.00348 (13) 0.000
Cl1 0.0714 (9) 0.0507 (8) 0.0509 (7) 0.0232 (7) −0.0012 (7) 0.0044 (6)
N1 0.039 (2) 0.034 (2) 0.044 (2) 0.0053 (18) 0.0057 (18) −0.0056 (17)
N2 0.035 (2) 0.039 (2) 0.040 (2) 0.0014 (17) 0.0063 (18) −0.0022 (18)
N3 0.050 (2) 0.045 (2) 0.037 (2) 0.0158 (19) 0.0079 (19) −0.0040 (19)
N4 0.080 (3) 0.058 (3) 0.045 (2) 0.023 (3) 0.011 (2) −0.010 (2)
N5 0.085 (4) 0.048 (3) 0.060 (3) 0.014 (3) 0.006 (3) −0.003 (2)
C1 0.042 (3) 0.063 (4) 0.064 (3) −0.001 (3) −0.005 (3) −0.013 (3)
C2 0.040 (3) 0.040 (3) 0.038 (3) −0.005 (2) 0.004 (2) 0.001 (2)
C3 0.041 (3) 0.034 (2) 0.032 (2) −0.002 (2) 0.003 (2) −0.0002 (19)
C4 0.036 (3) 0.046 (3) 0.049 (3) 0.004 (2) 0.007 (2) −0.004 (2)
C5 0.038 (3) 0.057 (3) 0.058 (3) −0.006 (2) 0.005 (2) −0.001 (3)
C6 0.054 (3) 0.057 (3) 0.049 (3) −0.010 (3) −0.001 (3) −0.010 (3)
C7 0.051 (3) 0.039 (3) 0.046 (3) 0.001 (2) 0.007 (2) −0.006 (2)
C8 0.040 (3) 0.032 (2) 0.032 (2) −0.001 (2) 0.005 (2) 0.001 (2)
C9 0.044 (3) 0.056 (3) 0.045 (3) 0.012 (2) 0.018 (2) 0.000 (2)
C10 0.034 (3) 0.054 (3) 0.039 (3) 0.009 (2) 0.007 (2) −0.001 (2)
C11 0.053 (3) 0.074 (4) 0.043 (3) 0.009 (3) 0.007 (3) −0.004 (3)
C12 0.047 (3) 0.107 (5) 0.036 (3) 0.005 (3) 0.004 (2) −0.002 (3)
C13 0.043 (3) 0.094 (5) 0.068 (4) 0.001 (3) 0.001 (3) 0.033 (4)
C14 0.050 (3) 0.064 (4) 0.076 (4) 0.006 (3) −0.001 (3) 0.016 (3)
C15 0.047 (3) 0.054 (3) 0.047 (3) 0.014 (3) 0.002 (2) 0.003 (3)

Geometric parameters (Å, °)

Hg1—N1 2.313 (3) C4—C5 1.380 (7)
Hg1—N1i 2.313 (3) C4—H4 0.9300
Hg1—Cl1i 2.4248 (13) C5—C6 1.387 (7)
Hg1—Cl1 2.4248 (13) C5—H5 0.9300
N1—C2 1.311 (5) C6—C7 1.375 (6)
N1—C3 1.405 (5) C6—H6 0.9300
N2—C2 1.357 (6) C7—C8 1.378 (6)
N2—C8 1.392 (5) C7—H7 0.9300
N2—C9 1.450 (5) C9—H9A 0.9700
N3—N4 1.362 (5) C9—H9B 0.9700
N3—C10 1.366 (6) C10—C15 1.389 (7)
N3—C9 1.444 (6) C10—C11 1.390 (6)
N4—N5 1.293 (6) C11—C12 1.372 (7)
N5—C15 1.377 (6) C11—H11 0.9300
C1—C2 1.488 (6) C12—C13 1.407 (8)
C1—H1A 0.9600 C12—H12 0.9300
C1—H1B 0.9600 C13—C14 1.354 (8)
C1—H1C 0.9600 C13—H13 0.9300
C3—C4 1.391 (6) C14—C15 1.387 (7)
C3—C8 1.395 (6) C14—H14 0.9300
N1—Hg1—N1i 89.97 (18) C6—C5—H5 119.1
N1—Hg1—Cl1i 112.90 (10) C7—C6—C5 121.8 (5)
N1i—Hg1—Cl1i 108.78 (10) C7—C6—H6 119.1
N1—Hg1—Cl1 108.78 (10) C5—C6—H6 119.1
N1i—Hg1—Cl1 112.90 (10) C6—C7—C8 116.6 (4)
Cl1i—Hg1—Cl1 119.65 (7) C6—C7—H7 121.7
C2—N1—C3 106.1 (4) C8—C7—H7 121.7
C2—N1—Hg1 126.6 (3) C7—C8—N2 132.3 (4)
C3—N1—Hg1 126.7 (3) C7—C8—C3 122.3 (4)
C2—N2—C8 107.5 (4) N2—C8—C3 105.4 (4)
C2—N2—C9 126.3 (4) N3—C9—N2 111.3 (4)
C8—N2—C9 126.2 (4) N3—C9—H9A 109.4
N4—N3—C10 110.1 (4) N2—C9—H9A 109.4
N4—N3—C9 118.7 (4) N3—C9—H9B 109.4
C10—N3—C9 131.2 (4) N2—C9—H9B 109.4
N5—N4—N3 108.8 (4) H9A—C9—H9B 108.0
N4—N5—C15 108.4 (4) N3—C10—C15 103.8 (4)
C2—C1—H1A 109.5 N3—C10—C11 134.1 (5)
C2—C1—H1B 109.5 C15—C10—C11 122.1 (5)
H1A—C1—H1B 109.5 C12—C11—C10 115.7 (5)
C2—C1—H1C 109.5 C12—C11—H11 122.2
H1A—C1—H1C 109.5 C10—C11—H11 122.2
H1B—C1—H1C 109.5 C11—C12—C13 122.2 (5)
N1—C2—N2 112.3 (4) C11—C12—H12 118.9
N1—C2—C1 125.1 (4) C13—C12—H12 118.9
N2—C2—C1 122.6 (4) C14—C13—C12 121.6 (5)
C4—C3—C8 120.6 (4) C14—C13—H13 119.2
C4—C3—N1 130.7 (4) C12—C13—H13 119.2
C8—C3—N1 108.7 (4) C13—C14—C15 117.1 (6)
C5—C4—C3 116.9 (4) C13—C14—H14 121.4
C5—C4—H4 121.6 C15—C14—H14 121.4
C3—C4—H4 121.6 N5—C15—C14 129.9 (5)
C4—C5—C6 121.8 (5) N5—C15—C10 108.8 (4)
C4—C5—H5 119.1 C14—C15—C10 121.3 (5)
N1i—Hg1—N1—C2 86.5 (4) C9—N2—C8—C7 −0.3 (8)
Cl1i—Hg1—N1—C2 −24.0 (4) C2—N2—C8—C3 0.3 (5)
Cl1—Hg1—N1—C2 −159.3 (3) C9—N2—C8—C3 −180.0 (4)
N1i—Hg1—N1—C3 −83.5 (3) C4—C3—C8—C7 0.2 (7)
Cl1i—Hg1—N1—C3 166.0 (3) N1—C3—C8—C7 179.9 (4)
Cl1—Hg1—N1—C3 30.7 (4) C4—C3—C8—N2 179.9 (4)
C10—N3—N4—N5 0.3 (6) N1—C3—C8—N2 −0.3 (5)
C9—N3—N4—N5 −178.6 (4) N4—N3—C9—N2 −128.3 (4)
N3—N4—N5—C15 −0.3 (6) C10—N3—C9—N2 53.1 (7)
C3—N1—C2—N2 0.0 (5) C2—N2—C9—N3 −116.4 (5)
Hg1—N1—C2—N2 −171.7 (3) C8—N2—C9—N3 63.9 (6)
C3—N1—C2—C1 −179.6 (4) N4—N3—C10—C15 −0.2 (5)
Hg1—N1—C2—C1 8.7 (7) C9—N3—C10—C15 178.5 (5)
C8—N2—C2—N1 −0.2 (5) N4—N3—C10—C11 −179.2 (5)
C9—N2—C2—N1 −179.9 (4) C9—N3—C10—C11 −0.4 (9)
C8—N2—C2—C1 179.4 (4) N3—C10—C11—C12 179.7 (5)
C9—N2—C2—C1 −0.3 (7) C15—C10—C11—C12 0.8 (7)
C2—N1—C3—C4 180.0 (5) C10—C11—C12—C13 0.3 (8)
Hg1—N1—C3—C4 −8.4 (7) C11—C12—C13—C14 −1.0 (8)
C2—N1—C3—C8 0.2 (5) C12—C13—C14—C15 0.4 (8)
Hg1—N1—C3—C8 171.9 (3) N4—N5—C15—C14 −179.2 (5)
C8—C3—C4—C5 −0.8 (7) N4—N5—C15—C10 0.1 (6)
N1—C3—C4—C5 179.5 (4) C13—C14—C15—N5 −180.0 (5)
C3—C4—C5—C6 1.2 (7) C13—C14—C15—C10 0.8 (8)
C4—C5—C6—C7 −1.1 (8) N3—C10—C15—N5 0.0 (5)
C5—C6—C7—C8 0.5 (7) C11—C10—C15—N5 179.2 (4)
C6—C7—C8—N2 −179.7 (5) N3—C10—C15—C14 179.4 (4)
C6—C7—C8—C3 0.0 (7) C11—C10—C15—C14 −1.4 (8)
C2—N2—C8—C7 −180.0 (5)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2600).

References

  1. Fan, J., Zhu, H. F., Okamura, T., Sun, W. Y., Tang, W. X. & Ueyama, N. (2003). Inorg. Chem.42, 158–162. [DOI] [PubMed]
  2. Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). Angew. Chem.109, 2430–2432.
  3. Makoto, F., Masahide, T., Akiko, H. & Bruno, T. (2005). Acc. Chem. Res.38, 371–380.
  4. Rigaku/MSC (2006). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023459/ng2600sup1.cif

e-65-0m829-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023459/ng2600Isup2.hkl

e-65-0m829-Isup2.hkl (127.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES