Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1655–o1656. doi: 10.1107/S1600536809021114

4′-(4-Methoxy­phen­yl)-1,1′,1′′-trimethyl­dispiro­[indoline-3,2′-pyrrolidine-3′,3′′-pyrrolidine]-2,2′′,5′′-trione

S Nirmala a, K Karthikeyan b, E Theboral Sugi Kamala a, L Sudha c,*, P T Perumal b
PMCID: PMC2969413  PMID: 21582918

Abstract

In the title compound, C24H25N3O4, the pyrrolidine ring adopts an envelope conformation while the pyrrolidine-2′′,5′′-dione ring adopts a twist conformation. The indoline unit is planar [maximum deviation of −0.050 (9) Å] and forms a dihedral angle of 40.36 (4)° with the methoxy­phenyl ring. Intra­molecular C—H⋯O hydrogen bonds are observed. In the crystal, mol­ecules are linked into a two-dimensional network parallel to the ab plane by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the biological activity of spiro-pyrrolidine-containing compounds, see: Araki et al. (2002); Gore et al. (1991); James et al. (1991); Kobayashi et al. (1991); Tietze et al. (1988). For the biological activity of indole derivatives, see: Harris & Uhle (1960); Ho et al. (1986); Stevenson et al. (2000). For a related structure, see: Govind et al. (2003). For ring-puckering parameters, see: Cremer & Pople (1975).graphic file with name e-65-o1655-scheme1.jpg

Experimental

Crystal data

  • C24H25N3O4

  • M r = 419.47

  • Orthorhombic, Inline graphic

  • a = 11.2074 (3) Å

  • b = 11.2406 (3) Å

  • c = 33.6082 (9) Å

  • V = 4233.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.17 × 0.15 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.978, T max = 0.987

  • 17736 measured reflections

  • 5023 independent reflections

  • 3269 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.152

  • S = 1.07

  • 5023 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021114/ci2815sup1.cif

e-65-o1655-sup1.cif (24.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021114/ci2815Isup2.hkl

e-65-o1655-Isup2.hkl (241.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2 0.93 2.52 3.122 (2) 123
C12—H12A⋯O1 0.97 2.58 3.222 (2) 124
C20—H20⋯O1 0.93 2.56 3.400 (2) 150
C12—H12B⋯O1i 0.97 2.56 3.264 (2) 129
C16—H16⋯O4ii 0.93 2.50 3.394 (2) 161
C19—H19⋯O2iii 0.93 2.54 3.440 (2) 162
C21—H21CCg1iv 0.96 2.93 3.592 (2) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1 is the centroid of the C15–C20 ring.

Acknowledgments

SN thanks Dr Babu Vargheese, SAIF, IIT Madras, India, for his help with the data collection. SN also thanks SRM management, India, for their support.

supplementary crystallographic information

Comment

Spiro compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). The spiro-pyrrolidine ring system is also found in phermones, antibiotics (Gore et al., 1991) and antitumour agents (Tietze et al., 1988; Araki et al., 2002).

Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Indole derivatives exhibit antiallergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle, 1960; Ho et al., 1986). In view of this biological importance, the crystal structure of the title compound was determined and the results are presented here.

An ORTEP (Farrugia,1997) plot of the molecule is shown in Fig.1. The indole unit is planar, with a maximum deviation of -0.050 (9) Å for atom C1. The dihedral angle between the indole unit and the methoxyphenyl ring is 40.36 (4)°. The sum of angles at atoms N1 (360.0°) and N3 (359.9°) is in accordance with sp2 hybridization, whereas the sum of angles at N2 (335.5°) is in accordance with sp3 hybridization. The N1—C5 and C5—O1 bond lengths show electron delocalization over atoms N1, C5 and O1. In the oxindole ring system, the variation in endocyclic angles are due to the fusion of the five- and six-membered rings (Govind et al., 2003). The methoxy group is almost coplanar with the C15-C20 benzene ring [C21—O4—C18—C17 = 174.7 (2)°]. The N2/C1-C4 pyrrolidine ring adopts an envelope conformation with puckering parameters q2 and φ of 0.404 (2) Å and -38.8 (2)° respectively (Cremer & Pople, 1975). Atom N2 deviates by 0.590 Å from the least-squares plane through the remaining four atoms. The N3/C2/C12-C14 pyrrolidine ring adopts a twist conformation, with puckering parameters q2 and φ of 0.233 (2) Å and -13.2 (4)° respectively (Cremer & Pople, 1975).

The molecular structure is stabilized by intramolecular C— H···O hydrogen bonds and the crystal packing is determined by intermolecular C—H···O hydrogen bonds and C—H···π interactions involving C15—C20 benzene rings (Table 1). In addition the packing is stabilized by van der Waals forces.

Experimental

A mixture of sarcosine (1 mmol), 1-methylisatin (1 mmol) and 3-(4-methoxybenzylidine)-1-methyl-pyrrolidine-2,5-dione (1 mmol) was refluxed in methanol. Completion of the reaction was evidenced by TLC analysis. The solvent was then removed in vacuo and the crude product subjected to column chromatography (100–200 mesh) using petroleum ether–ethyl acetate as eluent. Single crystals were obtained by crystallization from petroleum ether and ethyl acetate mixture.

Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing of the molecules viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonds have been omitted.

Crystal data

C24H25N3O4 F(000) = 1776
Mr = 419.47 Dx = 1.316 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5049 reflections
a = 11.2074 (3) Å θ = 2.4–25.7°
b = 11.2406 (3) Å µ = 0.09 mm1
c = 33.6082 (9) Å T = 293 K
V = 4233.9 (2) Å3 Prism, colourless
Z = 8 0.25 × 0.17 × 0.15 mm

Data collection

Bruker Kappa APEXII area-detector diffractometer 5023 independent reflections
Radiation source: fine-focus sealed tube 3269 reflections with I > 2σ(I)
graphite Rint = 0.028
ω and φ scans θmax = 28.4°, θmin = 1.2°
Absorption correction: multi-scan (Blessing, 1995) h = −14→11
Tmin = 0.978, Tmax = 0.987 k = −15→11
17736 measured reflections l = −43→43

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.5831P] where P = (Fo2 + 2Fc2)/3
5023 reflections (Δ/σ)max = 0.001
284 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.01846 (15) 0.47299 (15) 0.12817 (5) 0.0327 (4)
C2 −0.06510 (14) 0.36884 (14) 0.11357 (5) 0.0316 (4)
C3 −0.09503 (15) 0.40199 (16) 0.06949 (5) 0.0365 (4)
H3 −0.0535 0.3440 0.0527 0.044*
C4 −0.03321 (17) 0.52114 (18) 0.06291 (5) 0.0433 (5)
H4A −0.0046 0.5282 0.0358 0.052*
H4B −0.0868 0.5868 0.0685 0.052*
C5 −0.05564 (15) 0.56643 (16) 0.15170 (5) 0.0357 (4)
C6 0.08728 (16) 0.49862 (17) 0.19406 (6) 0.0408 (4)
C7 0.1549 (2) 0.4819 (2) 0.22787 (7) 0.0582 (6)
H7 0.1375 0.5215 0.2515 0.070*
C8 0.2500 (2) 0.4037 (2) 0.22515 (7) 0.0665 (7)
H8 0.2959 0.3885 0.2476 0.080*
C9 0.2780 (2) 0.3480 (2) 0.18998 (7) 0.0608 (6)
H9 0.3434 0.2972 0.1888 0.073*
C10 0.20970 (17) 0.36673 (17) 0.15631 (6) 0.0456 (5)
H10 0.2295 0.3301 0.1324 0.055*
C11 0.11189 (15) 0.44049 (15) 0.15873 (5) 0.0353 (4)
C12 −0.16608 (15) 0.33962 (16) 0.14310 (5) 0.0371 (4)
H12A −0.1860 0.4087 0.1591 0.045*
H12B −0.2371 0.3133 0.1291 0.045*
C13 −0.11700 (16) 0.24208 (18) 0.16851 (6) 0.0425 (4)
C14 0.00594 (15) 0.25280 (16) 0.11418 (5) 0.0350 (4)
C15 −0.22493 (16) 0.39732 (16) 0.05782 (5) 0.0364 (4)
C16 −0.26396 (17) 0.30838 (16) 0.03233 (5) 0.0402 (4)
H16 −0.2092 0.2538 0.0224 0.048*
C17 −0.38205 (17) 0.29936 (17) 0.02148 (6) 0.0443 (5)
H17 −0.4061 0.2395 0.0041 0.053*
C18 −0.46497 (16) 0.37864 (17) 0.03623 (5) 0.0385 (4)
C19 −0.42807 (17) 0.46898 (18) 0.06074 (6) 0.0455 (5)
H19 −0.4829 0.5242 0.0702 0.055*
C20 −0.30887 (17) 0.47782 (18) 0.07131 (6) 0.0467 (5)
H20 −0.2848 0.5395 0.0879 0.056*
C21 −0.67018 (18) 0.4326 (2) 0.04175 (7) 0.0595 (6)
H21A −0.6672 0.4262 0.0702 0.089*
H21B −0.7469 0.4068 0.0324 0.089*
H21C −0.6575 0.5139 0.0341 0.089*
C22 −0.0594 (2) 0.6521 (2) 0.21968 (7) 0.0586 (6)
H22A −0.1135 0.7077 0.2077 0.088*
H22B 0.0048 0.6945 0.2322 0.088*
H22C −0.1011 0.6058 0.2393 0.088*
C23 0.0372 (2) 0.0838 (2) 0.16109 (7) 0.0633 (6)
H23A 0.0928 0.1050 0.1816 0.095*
H23B 0.0795 0.0491 0.1391 0.095*
H23C −0.0193 0.0274 0.1713 0.095*
C24 0.12923 (19) 0.63178 (18) 0.09418 (7) 0.0540 (5)
H24A 0.0752 0.6924 0.1031 0.081*
H24B 0.1609 0.6532 0.0686 0.081*
H24C 0.1934 0.6240 0.1129 0.081*
N1 −0.01162 (14) 0.57366 (14) 0.18924 (4) 0.0424 (4)
N2 0.06588 (13) 0.51895 (13) 0.09103 (4) 0.0381 (4)
N3 −0.02527 (14) 0.18934 (13) 0.14773 (5) 0.0416 (4)
O1 −0.13847 (12) 0.62471 (12) 0.13906 (4) 0.0506 (4)
O2 0.07934 (11) 0.21993 (11) 0.09054 (4) 0.0455 (3)
O3 −0.14963 (13) 0.21122 (15) 0.20112 (4) 0.0626 (4)
O4 −0.58015 (12) 0.36018 (13) 0.02477 (4) 0.0529 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0316 (9) 0.0305 (9) 0.0360 (9) 0.0035 (7) −0.0024 (7) −0.0031 (7)
C2 0.0300 (8) 0.0310 (8) 0.0337 (9) 0.0008 (7) 0.0001 (7) −0.0048 (7)
C3 0.0377 (9) 0.0411 (10) 0.0308 (9) 0.0030 (8) −0.0017 (7) −0.0047 (8)
C4 0.0462 (11) 0.0472 (11) 0.0365 (10) −0.0004 (9) −0.0011 (8) 0.0048 (9)
C5 0.0345 (9) 0.0329 (9) 0.0397 (10) 0.0020 (8) −0.0012 (8) −0.0045 (8)
C6 0.0390 (10) 0.0426 (10) 0.0409 (11) −0.0025 (8) −0.0057 (8) −0.0017 (8)
C7 0.0603 (13) 0.0691 (15) 0.0453 (12) −0.0024 (12) −0.0145 (10) −0.0015 (11)
C8 0.0634 (14) 0.0700 (16) 0.0662 (16) 0.0002 (13) −0.0310 (13) 0.0131 (13)
C9 0.0487 (12) 0.0501 (12) 0.0835 (17) 0.0085 (10) −0.0224 (12) 0.0048 (12)
C10 0.0367 (10) 0.0390 (10) 0.0611 (12) 0.0032 (8) −0.0081 (9) −0.0028 (9)
C11 0.0318 (9) 0.0318 (9) 0.0423 (10) −0.0023 (7) −0.0050 (8) −0.0006 (8)
C12 0.0317 (9) 0.0398 (10) 0.0400 (10) −0.0002 (8) 0.0002 (8) −0.0027 (8)
C13 0.0392 (10) 0.0468 (11) 0.0416 (11) −0.0076 (9) −0.0038 (9) 0.0011 (9)
C14 0.0350 (9) 0.0315 (9) 0.0385 (10) −0.0002 (7) −0.0022 (8) −0.0044 (8)
C15 0.0407 (10) 0.0363 (9) 0.0323 (9) 0.0044 (8) −0.0059 (8) −0.0029 (8)
C16 0.0436 (10) 0.0376 (10) 0.0394 (10) 0.0054 (8) −0.0029 (8) −0.0079 (8)
C17 0.0499 (11) 0.0392 (10) 0.0438 (11) −0.0027 (9) −0.0081 (9) −0.0104 (9)
C18 0.0379 (10) 0.0417 (10) 0.0360 (10) −0.0021 (8) −0.0071 (8) 0.0024 (8)
C19 0.0438 (11) 0.0444 (11) 0.0482 (11) 0.0102 (9) −0.0038 (9) −0.0114 (9)
C20 0.0457 (11) 0.0451 (11) 0.0492 (11) 0.0061 (9) −0.0118 (9) −0.0176 (9)
C21 0.0392 (11) 0.0701 (15) 0.0692 (15) 0.0060 (11) −0.0010 (10) −0.0035 (12)
C22 0.0547 (13) 0.0710 (15) 0.0501 (13) 0.0037 (11) 0.0039 (10) −0.0247 (11)
C23 0.0818 (16) 0.0473 (13) 0.0608 (14) 0.0158 (12) −0.0029 (12) 0.0122 (11)
C24 0.0500 (12) 0.0444 (12) 0.0675 (14) −0.0118 (9) 0.0000 (11) 0.0069 (10)
N1 0.0433 (9) 0.0453 (9) 0.0387 (9) 0.0044 (7) −0.0038 (7) −0.0107 (7)
N2 0.0369 (8) 0.0362 (8) 0.0411 (9) −0.0048 (7) 0.0012 (7) 0.0017 (7)
N3 0.0475 (9) 0.0348 (8) 0.0427 (9) 0.0038 (7) −0.0018 (7) 0.0043 (7)
O1 0.0501 (8) 0.0470 (8) 0.0548 (8) 0.0192 (6) −0.0080 (7) −0.0098 (7)
O2 0.0473 (7) 0.0394 (7) 0.0498 (8) 0.0078 (6) 0.0059 (6) −0.0087 (6)
O3 0.0606 (9) 0.0849 (12) 0.0423 (8) −0.0018 (8) 0.0053 (7) 0.0165 (8)
O4 0.0391 (8) 0.0582 (9) 0.0615 (9) 0.0001 (6) −0.0094 (7) −0.0099 (7)

Geometric parameters (Å, °)

C1—N2 1.452 (2) C13—N3 1.377 (2)
C1—C11 1.511 (2) C14—O2 1.202 (2)
C1—C5 1.555 (2) C14—N3 1.379 (2)
C1—C2 1.577 (2) C15—C20 1.382 (2)
C2—C14 1.528 (2) C15—C16 1.387 (2)
C2—C12 1.541 (2) C16—C17 1.377 (3)
C2—C3 1.564 (2) C16—H16 0.93
C3—C15 1.509 (2) C17—C18 1.380 (3)
C3—C4 1.524 (3) C17—H17 0.93
C3—H3 0.98 C18—O4 1.363 (2)
C4—N2 1.458 (2) C18—C19 1.371 (3)
C4—H4A 0.97 C19—C20 1.386 (3)
C4—H4B 0.97 C19—H19 0.93
C5—O1 1.213 (2) C20—H20 0.93
C5—N1 1.357 (2) C21—O4 1.417 (2)
C6—C7 1.379 (3) C21—H21A 0.96
C6—C11 1.383 (3) C21—H21B 0.96
C6—N1 1.402 (2) C21—H21C 0.96
C7—C8 1.384 (3) C22—N1 1.453 (2)
C7—H7 0.93 C22—H22A 0.96
C8—C9 1.374 (3) C22—H22B 0.96
C8—H8 0.93 C22—H22C 0.96
C9—C10 1.382 (3) C23—N3 1.449 (2)
C9—H9 0.93 C23—H23A 0.96
C10—C11 1.377 (2) C23—H23B 0.96
C10—H10 0.93 C23—H23C 0.96
C12—C13 1.495 (3) C24—N2 1.457 (2)
C12—H12A 0.97 C24—H24A 0.96
C12—H12B 0.97 C24—H24B 0.96
C13—O3 1.206 (2) C24—H24C 0.96
N2—C1—C11 114.62 (14) O2—C14—C2 127.58 (17)
N2—C1—C5 113.10 (14) N3—C14—C2 108.69 (15)
C11—C1—C5 100.82 (13) C20—C15—C16 117.38 (16)
N2—C1—C2 102.35 (13) C20—C15—C3 123.29 (16)
C11—C1—C2 116.31 (14) C16—C15—C3 119.33 (16)
C5—C1—C2 110.02 (13) C17—C16—C15 121.32 (17)
C14—C2—C12 101.07 (14) C17—C16—H16 119.3
C14—C2—C3 109.14 (14) C15—C16—H16 119.3
C12—C2—C3 120.23 (14) C16—C17—C18 120.32 (17)
C14—C2—C1 108.66 (13) C16—C17—H17 119.8
C12—C2—C1 113.20 (13) C18—C17—H17 119.8
C3—C2—C1 104.19 (13) O4—C18—C19 124.61 (17)
C15—C3—C4 115.57 (15) O4—C18—C17 115.98 (16)
C15—C3—C2 116.42 (14) C19—C18—C17 119.41 (17)
C4—C3—C2 104.44 (13) C18—C19—C20 119.84 (18)
C15—C3—H3 106.6 C18—C19—H19 120.1
C4—C3—H3 106.6 C20—C19—H19 120.1
C2—C3—H3 106.6 C15—C20—C19 121.69 (17)
N2—C4—C3 103.73 (14) C15—C20—H20 119.2
N2—C4—H4A 111.0 C19—C20—H20 119.2
C3—C4—H4A 111.0 O4—C21—H21A 109.5
N2—C4—H4B 111.0 O4—C21—H21B 109.5
C3—C4—H4B 111.0 H21A—C21—H21B 109.5
H4A—C4—H4B 109.0 O4—C21—H21C 109.5
O1—C5—N1 124.84 (17) H21A—C21—H21C 109.5
O1—C5—C1 126.55 (16) H21B—C21—H21C 109.5
N1—C5—C1 108.61 (15) N1—C22—H22A 109.5
C7—C6—C11 122.24 (18) N1—C22—H22B 109.5
C7—C6—N1 127.72 (18) H22A—C22—H22B 109.5
C11—C6—N1 110.04 (15) N1—C22—H22C 109.5
C6—C7—C8 117.1 (2) H22A—C22—H22C 109.5
C6—C7—H7 121.5 H22B—C22—H22C 109.5
C8—C7—H7 121.5 N3—C23—H23A 109.5
C9—C8—C7 121.5 (2) N3—C23—H23B 109.5
C9—C8—H8 119.3 H23A—C23—H23B 109.5
C7—C8—H8 119.3 N3—C23—H23C 109.5
C8—C9—C10 120.6 (2) H23A—C23—H23C 109.5
C8—C9—H9 119.7 H23B—C23—H23C 109.5
C10—C9—H9 119.7 N2—C24—H24A 109.5
C11—C10—C9 118.96 (19) N2—C24—H24B 109.5
C11—C10—H10 120.5 H24A—C24—H24B 109.5
C9—C10—H10 120.5 N2—C24—H24C 109.5
C10—C11—C6 119.59 (17) H24A—C24—H24C 109.5
C10—C11—C1 131.08 (17) H24B—C24—H24C 109.5
C6—C11—C1 109.33 (15) C5—N1—C6 111.01 (15)
C13—C12—C2 104.72 (14) C5—N1—C22 123.85 (17)
C13—C12—H12A 110.8 C6—N1—C22 125.11 (16)
C2—C12—H12A 110.8 C1—N2—C24 115.17 (15)
C13—C12—H12B 110.8 C1—N2—C4 106.52 (13)
C2—C12—H12B 110.8 C24—N2—C4 113.80 (15)
H12A—C12—H12B 108.9 C13—N3—C14 112.41 (15)
O3—C13—N3 124.28 (19) C13—N3—C23 123.79 (17)
O3—C13—C12 128.21 (18) C14—N3—C23 123.66 (16)
N3—C13—C12 107.50 (16) C18—O4—C21 118.25 (16)
O2—C14—N3 123.71 (17)
N2—C1—C2—C14 93.48 (15) C3—C2—C14—O2 35.9 (2)
C11—C1—C2—C14 −32.26 (19) C1—C2—C14—O2 −77.1 (2)
C5—C1—C2—C14 −146.03 (14) C12—C2—C14—N3 −17.91 (17)
N2—C1—C2—C12 −155.10 (13) C3—C2—C14—N3 −145.57 (14)
C11—C1—C2—C12 79.16 (18) C1—C2—C14—N3 101.41 (15)
C5—C1—C2—C12 −34.61 (18) C4—C3—C15—C20 −52.9 (2)
N2—C1—C2—C3 −22.77 (15) C2—C3—C15—C20 70.3 (2)
C11—C1—C2—C3 −148.51 (14) C4—C3—C15—C16 127.21 (18)
C5—C1—C2—C3 97.71 (15) C2—C3—C15—C16 −109.68 (18)
C14—C2—C3—C15 113.00 (16) C20—C15—C16—C17 −1.2 (3)
C12—C2—C3—C15 −2.9 (2) C3—C15—C16—C17 178.77 (17)
C1—C2—C3—C15 −131.08 (15) C15—C16—C17—C18 −0.7 (3)
C14—C2—C3—C4 −118.28 (15) C16—C17—C18—O4 −178.00 (17)
C12—C2—C3—C4 125.78 (16) C16—C17—C18—C19 2.2 (3)
C1—C2—C3—C4 −2.36 (17) O4—C18—C19—C20 178.42 (18)
C15—C3—C4—N2 155.96 (14) C17—C18—C19—C20 −1.8 (3)
C2—C3—C4—N2 26.73 (18) C16—C15—C20—C19 1.6 (3)
N2—C1—C5—O1 52.8 (2) C3—C15—C20—C19 −178.35 (18)
C11—C1—C5—O1 175.67 (18) C18—C19—C20—C15 −0.1 (3)
C2—C1—C5—O1 −61.0 (2) O1—C5—N1—C6 −177.45 (18)
N2—C1—C5—N1 −126.61 (16) C1—C5—N1—C6 2.0 (2)
C11—C1—C5—N1 −3.74 (18) O1—C5—N1—C22 0.8 (3)
C2—C1—C5—N1 119.62 (15) C1—C5—N1—C22 −179.82 (17)
C11—C6—C7—C8 0.0 (3) C7—C6—N1—C5 −179.8 (2)
N1—C6—C7—C8 −179.1 (2) C11—C6—N1—C5 0.9 (2)
C6—C7—C8—C9 2.0 (4) C7—C6—N1—C22 2.0 (3)
C7—C8—C9—C10 −1.5 (4) C11—C6—N1—C22 −177.27 (18)
C8—C9—C10—C11 −1.1 (3) C11—C1—N2—C24 −64.5 (2)
C9—C10—C11—C6 3.1 (3) C5—C1—N2—C24 50.3 (2)
C9—C10—C11—C1 −176.66 (19) C2—C1—N2—C24 168.64 (14)
C7—C6—C11—C10 −2.6 (3) C11—C1—N2—C4 168.29 (15)
N1—C6—C11—C10 176.70 (16) C5—C1—N2—C4 −76.88 (17)
C7—C6—C11—C1 177.21 (18) C2—C1—N2—C4 41.45 (16)
N1—C6—C11—C1 −3.5 (2) C3—C4—N2—C1 −43.87 (18)
N2—C1—C11—C10 −54.1 (3) C3—C4—N2—C24 −171.88 (15)
C5—C1—C11—C10 −175.93 (19) O3—C13—N3—C14 −170.56 (18)
C2—C1—C11—C10 65.2 (2) C12—C13—N3—C14 10.2 (2)
N2—C1—C11—C6 126.08 (16) O3—C13—N3—C23 5.3 (3)
C5—C1—C11—C6 4.28 (18) C12—C13—N3—C23 −174.00 (18)
C2—C1—C11—C6 −114.63 (16) O2—C14—N3—C13 −175.89 (17)
C14—C2—C12—C13 22.91 (17) C2—C14—N3—C13 5.5 (2)
C3—C2—C12—C13 142.96 (15) O2—C14—N3—C23 8.3 (3)
C1—C2—C12—C13 −93.10 (16) C2—C14—N3—C23 −170.30 (17)
C2—C12—C13—O3 159.54 (19) C19—C18—O4—C21 −5.5 (3)
C2—C12—C13—N3 −21.23 (19) C17—C18—O4—C21 174.65 (18)
C12—C2—C14—O2 163.58 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···O2 0.93 2.52 3.122 (2) 123
C12—H12A···O1 0.97 2.58 3.222 (2) 124
C20—H20···O1 0.93 2.56 3.400 (2) 150
C12—H12B···O1i 0.97 2.56 3.264 (2) 129
C16—H16···O4ii 0.93 2.50 3.394 (2) 161
C19—H19···O2iii 0.93 2.54 3.440 (2) 162
C21—H21C···Cg1iv 0.96 2.93 3.592 (2) 127

Symmetry codes: (i) −x−1/2, y−1/2, z; (ii) x+1/2, −y+1/2, −z; (iii) −x−1/2, y+1/2, z; (iv) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2815).

References

  1. Araki, K., Suenaga, K., Sengoka, T. & Uemura, D. (2002). Tetrahedron, 58, 1983–1996.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354-1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Gore, V. G., Chordia, M. D. & Narasimhan, N. S. (1991). Tetrahedron, 46, 2483-2494.
  7. Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E59, o1438–o1440.
  8. Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther.128, 353–363. [PubMed]
  9. Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem 29, 118–121.
  10. James, D., Kunze, H. B. & Faulker, D. (1991). J. Nat. Prod 54, 1137–1140. [DOI] [PubMed]
  11. Kobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617–6622.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704. [DOI] [PubMed]
  15. Tietze, L.-F., Schneider, G., Woelfling, J., Nobel, T. & Wulff, C. (1988). Angew. Chem. Int. Ed 37, 2469–2470. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021114/ci2815sup1.cif

e-65-o1655-sup1.cif (24.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021114/ci2815Isup2.hkl

e-65-o1655-Isup2.hkl (241.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES