Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):o1710. doi: 10.1107/S1600536809024003

4,6,7,9,10,12-Hexahydro-1,3-dithiolo[4,5-f][1,4,9]oxadithia­cyclo­undecine-2-thione

Rui-Bin Hou a, Bao Li b, Bing-Zhu Yin a,*, Li-Xin Wu b
PMCID: PMC2969415  PMID: 21582961

Abstract

In the title mol­ecule, C9H12S5O, the five-membered ring and attached S atom are essentially coplanar [mean deviation from the mean plane = 0.020 (1) Å]. The two S atoms belonging to the macrocycle deviate from this plane by 1.005 (1) and 1.337 (2) Å. In the crystal, π–π inter­actions link the mol­ecules into centrosymmetric dimers with a short distance of 3.753 (5) Å between the centroids of the five-membered rings.

Related literature

The title compound was prepared according to Chen et al. (2005). For background literature concerning crown-ether-annulated 1,3-dithiol-2-thione derivatives, see: Hansen et al. (1992); Trippé et al. (2002).graphic file with name e-65-o1710-scheme1.jpg

Experimental

Crystal data

  • C9H12OS5

  • M r = 296.49

  • Triclinic, Inline graphic

  • a = 8.3425 (17) Å

  • b = 8.9611 (18) Å

  • c = 9.820 (2) Å

  • α = 98.10 (3)°

  • β = 106.58 (3)°

  • γ = 112.74 (3)°

  • V = 622.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 291 K

  • 0.15 × 0.12 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.877, T max = 0.900

  • 6141 measured reflections

  • 2813 independent reflections

  • 2560 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.106

  • S = 1.06

  • 2813 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024003/cv2573sup1.cif

e-65-o1710-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024003/cv2573Isup2.hkl

e-65-o1710-Isup2.hkl (138.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

supplementary crystallographic information

Comment

Crown ether annulated 1,3-dithiol-2-thione derivatives have been intensively investigated as key intermediate of the crowned tetrathiafulvalenes because the latter molecules show electrochemical signaling for various metal cations (Hansen et al.,1992; Trippé et al., 2002). We report hererin the crystal structure of the title compound, (I).

In (I) (Fig. 1), five-membered ring and attached S2 atom are essentially coplanar with the mean deviation of 0.020 (1) Å from the mean plane P. The plane defined by the rest non-hydrogen atoms forms an angle of 70.25 (4) ° with P. The π-π interactions with the short distance of 3.753 (5) Å between the centroids of five-membered rings link the molecules into centrosymmetric dimers.

Experimental

The title compound was prepared according to the literature (Chen et al., 2005). Single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum at room temperatue.

Refinement

Carbon-bound H-atoms were placed in calculated positions with C—H 0.97 Å and were included in the refinement in the riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.

Crystal data

C9H12OS5 Z = 2
Mr = 296.49 F(000) = 308
Triclinic, P1 Dx = 1.583 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3425 (17) Å Cell parameters from 5678 reflections
b = 8.9611 (18) Å θ = 3.4–27.0°
c = 9.820 (2) Å µ = 0.90 mm1
α = 98.10 (3)° T = 291 K
β = 106.58 (3)° Block, yellow
γ = 112.74 (3)° 0.15 × 0.12 × 0.12 mm
V = 622.2 (2) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 2813 independent reflections
Radiation source: fine-focus sealed tube 2560 reflections with I > 2σ(I)
graphite Rint = 0.017
ω scans θmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −10→10
Tmin = 0.877, Tmax = 0.900 k = −11→11
6141 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.2783P] where P = (Fo2 + 2Fc2)/3
2813 reflections (Δ/σ)max = 0.003
136 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Experimental. (See detailed section in the paper)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3295 (3) 0.6916 (3) 0.4927 (2) 0.0376 (4)
C2 0.2130 (3) 0.8764 (2) 0.3463 (2) 0.0300 (4)
C3 0.1113 (3) 0.9792 (2) 0.3073 (2) 0.0354 (4)
H3A 0.1194 1.0051 0.2161 0.042*
H3B 0.1724 1.0851 0.3848 0.042*
C4 −0.2203 (3) 0.6799 (3) 0.1413 (3) 0.0408 (5)
H4A −0.1445 0.6233 0.1746 0.049*
H4B −0.3469 0.6075 0.1315 0.049*
C5 −0.2231 (3) 0.6956 (3) −0.0092 (3) 0.0486 (5)
H5A −0.2975 0.5852 −0.0811 0.058*
H5B −0.2805 0.7677 −0.0378 0.058*
C6 −0.0193 (3) 0.6766 (3) −0.1285 (3) 0.0466 (5)
H6A −0.1108 0.6664 −0.2208 0.056*
H6B −0.0423 0.5639 −0.1211 0.056*
C7 0.1742 (3) 0.7686 (3) −0.1276 (2) 0.0439 (5)
H7A 0.1991 0.8846 −0.1229 0.053*
H7B 0.1754 0.7190 −0.2215 0.053*
C8 0.4004 (3) 0.9279 (2) 0.1782 (2) 0.0367 (4)
H8A 0.5328 1.0056 0.2243 0.044*
H8B 0.3342 0.9920 0.1443 0.044*
C9 0.3363 (2) 0.8552 (2) 0.2922 (2) 0.0294 (4)
O1 −0.0377 (2) 0.7650 (2) −0.0088 (2) 0.0600 (5)
S1 0.43959 (7) 0.73453 (6) 0.36855 (5) 0.03533 (15)
S2 0.36763 (14) 0.58331 (12) 0.60929 (8) 0.0708 (3)
S3 0.17163 (8) 0.77394 (7) 0.48048 (6) 0.03867 (15)
S4 −0.13328 (7) 0.87314 (7) 0.28369 (6) 0.04162 (16)
S5 0.36387 (8) 0.77082 (7) 0.01819 (6) 0.04019 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0448 (11) 0.0454 (11) 0.0277 (9) 0.0247 (9) 0.0138 (8) 0.0110 (8)
C2 0.0293 (8) 0.0333 (9) 0.0239 (8) 0.0121 (7) 0.0089 (7) 0.0061 (7)
C3 0.0375 (10) 0.0361 (9) 0.0347 (10) 0.0190 (8) 0.0136 (8) 0.0087 (8)
C4 0.0313 (9) 0.0420 (10) 0.0486 (12) 0.0163 (8) 0.0140 (9) 0.0140 (9)
C5 0.0318 (10) 0.0615 (14) 0.0431 (12) 0.0164 (10) 0.0121 (9) 0.0057 (10)
C6 0.0439 (11) 0.0526 (12) 0.0361 (11) 0.0199 (10) 0.0127 (9) 0.0023 (9)
C7 0.0506 (12) 0.0565 (13) 0.0329 (10) 0.0266 (10) 0.0214 (9) 0.0172 (9)
C8 0.0388 (10) 0.0339 (9) 0.0361 (10) 0.0107 (8) 0.0200 (8) 0.0097 (8)
C9 0.0283 (8) 0.0289 (8) 0.0276 (9) 0.0101 (7) 0.0105 (7) 0.0059 (7)
O1 0.0356 (8) 0.0692 (11) 0.0481 (10) 0.0048 (8) 0.0198 (7) −0.0146 (8)
S1 0.0340 (3) 0.0422 (3) 0.0348 (3) 0.0204 (2) 0.0152 (2) 0.0112 (2)
S2 0.1147 (7) 0.0990 (6) 0.0578 (4) 0.0820 (6) 0.0517 (4) 0.0521 (4)
S3 0.0443 (3) 0.0543 (3) 0.0322 (3) 0.0285 (2) 0.0224 (2) 0.0188 (2)
S4 0.0399 (3) 0.0544 (3) 0.0438 (3) 0.0303 (2) 0.0214 (2) 0.0135 (2)
S5 0.0468 (3) 0.0511 (3) 0.0357 (3) 0.0300 (2) 0.0217 (2) 0.0135 (2)

Geometric parameters (Å, °)

C1—S2 1.642 (2) C5—H5A 0.9700
C1—S1 1.726 (2) C5—H5B 0.9700
C1—S3 1.726 (2) C6—O1 1.402 (3)
C2—C9 1.346 (3) C6—C7 1.499 (3)
C2—C3 1.495 (3) C6—H6A 0.9700
C2—S3 1.7471 (19) C6—H6B 0.9700
C3—S4 1.814 (2) C7—S5 1.796 (2)
C3—H3A 0.9700 C7—H7A 0.9700
C3—H3B 0.9700 C7—H7B 0.9700
C4—C5 1.498 (3) C8—C9 1.497 (3)
C4—S4 1.802 (2) C8—S5 1.820 (2)
C4—H4A 0.9700 C8—H8A 0.9700
C4—H4B 0.9700 C8—H8B 0.9700
C5—O1 1.426 (3) C9—S1 1.747 (2)
S2—C1—S1 124.30 (13) O1—C6—H6A 109.7
S2—C1—S3 123.21 (13) C7—C6—H6A 109.7
S1—C1—S3 112.49 (12) O1—C6—H6B 109.7
C9—C2—C3 127.67 (18) C7—C6—H6B 109.7
C9—C2—S3 115.53 (15) H6A—C6—H6B 108.2
C3—C2—S3 116.79 (14) C6—C7—S5 117.34 (17)
C2—C3—S4 112.96 (14) C6—C7—H7A 108.0
C2—C3—H3A 109.0 S5—C7—H7A 108.0
S4—C3—H3A 109.0 C6—C7—H7B 108.0
C2—C3—H3B 109.0 S5—C7—H7B 108.0
S4—C3—H3B 109.0 H7A—C7—H7B 107.2
H3A—C3—H3B 107.8 C9—C8—S5 114.07 (14)
C5—C4—S4 116.74 (17) C9—C8—H8A 108.7
C5—C4—H4A 108.1 S5—C8—H8A 108.7
S4—C4—H4A 108.1 C9—C8—H8B 108.7
C5—C4—H4B 108.1 S5—C8—H8B 108.7
S4—C4—H4B 108.1 H8A—C8—H8B 107.6
H4A—C4—H4B 107.3 C2—C9—C8 127.63 (18)
O1—C5—C4 110.55 (19) C2—C9—S1 116.14 (15)
O1—C5—H5A 109.5 C8—C9—S1 116.20 (14)
C4—C5—H5A 109.5 C6—O1—C5 113.57 (18)
O1—C5—H5B 109.5 C1—S1—C9 97.73 (10)
C4—C5—H5B 109.5 C1—S3—C2 98.01 (10)
H5A—C5—H5B 108.1 C4—S4—C3 102.59 (10)
O1—C6—C7 109.68 (19) C7—S5—C8 103.70 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2573).

References

  1. Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem.25, 570–575.
  2. Hansen, T. K., Jϕrgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem.57, 6403–6409.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Trippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett.4, 2461–2464. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024003/cv2573sup1.cif

e-65-o1710-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024003/cv2573Isup2.hkl

e-65-o1710-Isup2.hkl (138.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES