Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):m802. doi: 10.1107/S1600536809023010

{2,2′-[1,1′-(Ethyl­enedioxy­dinitrilo)diethyl­idyne]di-1-naphtholato}copper(II)

Wen-Kui Dong a,*, Jian-Chao Wu a, Jian Yao a, Shang-Sheng Gong a, Jun-Feng Tong a
PMCID: PMC2969428  PMID: 21582727

Abstract

The title complex, [Cu(C26H22N2O4)], is isostructural with its Ni analogue. All intramolecular distances and angles are very similar for the two structures, whereas the packing of the molecules, including C—H⋯O and C—H⋯π interactions, are slightly different.

Related literature

For transition metal complexes with multidentate salen-type ligands, see: Akine et al. (2005); Dong et al. (2009a ,b ); Katsuki (1995); Ray et al. (2003); Sun et al. (2008). For the isostructural Ni complex, see: Dong et al. (2009c ).graphic file with name e-65-0m802-scheme1.jpg

Experimental

Crystal data

  • [Cu(C26H22N2O4)]

  • M r = 490.00

  • Monoclinic, Inline graphic

  • a = 13.0288 (17) Å

  • b = 7.8934 (12) Å

  • c = 21.292 (2) Å

  • β = 103.217 (2)°

  • V = 2131.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 298 K

  • 0.41 × 0.17 × 0.07 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.670, T max = 0.929

  • 10698 measured reflections

  • 3753 independent reflections

  • 2278 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.108

  • S = 1.03

  • 3753 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023010/at2815sup1.cif

e-65-0m802-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023010/at2815Isup2.hkl

e-65-0m802-Isup2.hkl (184KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O3i 0.96 2.64 3.375 (5) 134
C23—H23⋯O2ii 0.93 2.43 3.261 (5) 149
C4—H4CCg8i 0.96 2.68 3.564 (6) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg8 is the centroid of the C21–C26 ring.

Acknowledgments

The authors acknowledge finanical support from the ‘Jing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University.

supplementary crystallographic information

Comment

Transition metal complexes with multidentate salen-type ligands are very interesting in modern coordination chemistry because they have mono-, di- or tri-nuclear metal complexes with important stereochemistry (Katsuki et al., 1995; Akine et al., 2005; Dong et al., 2009b). Metal derivatives of salen-type compounds have been investigated extensively, and copper(II) complexes play a major role in both synthetic and structural research (Ray et al., 2003; Dong et al., 2009a).

In this paper, a new mononuclear copper(II) complex with salen-type bisoxime chelating ligand, 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol, has been synthesized (Sun et al., 2008). The X-ray crystallography of the title complex (Fig. 1) reveals the complex crystallizes in the monoclinic system, with P21/c space group. There is a crystallographic twofold screw axis (symmetry code: 1/2 - x, 1/2 + y, 1/2 - z). The dihedral angle between the coordination plane of O3—Cu1—N1 and that of O4—Cu1—N2 is 26.53°, indicating slight distortion toward tetrahedral geometry from the square planar structure [Cu1—O3: 1.876 (3) Å; Cu1—O4: 1.895 (3) Å; Cu1—N1: 1.976 (3) Å; Cu1—N2: 1.947 (3) Å]), with a mean deviation of 0.016 Å from the N2O2 plane. The crystal structure is further stabilized by intermolecular C16—H16A···O3, C23—H23···O2 hydrogen bonds and C4—H4C···π interactions (Table 1), which link neighbouring molecules into extended chains along the c axis.

Experimental

A solution of Cu(II) acetate monohydrate (1.7 mg, 0.0085 mmol) in ethanol (5 ml) was added dropwise to a solution of 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol (3.4 mg, 0.0079 mmol) in dichloromethane (5 ml). The colour of the mixing solution turns to brown, immediately, and was allowed to stand at room temperature for about one week, the solvent was partially evaporated and obtained dark-brown needle-like single crystals suitable for X-ray crystallographic analysis.

Refinement

H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), C—H = 0.97 (CH2), or 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecule structure of the title complex possessing a crystallographic twofold screw axis passing through the middle point of (–O)–H2C—CH2–(O–) unit (symmetry code: 1/2 - x, 1/2 + y, 1/2 - z). Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Crystal data

[Cu(C26H22N2O4)] F(000) = 1012
Mr = 490.00 Dx = 1.527 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2535 reflections
a = 13.0288 (17) Å θ = 3.0–25.3°
b = 7.8934 (12) Å µ = 1.06 mm1
c = 21.292 (2) Å T = 298 K
β = 103.217 (2)° Needle, dark-brown
V = 2131.7 (5) Å3 0.41 × 0.17 × 0.07 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 3753 independent reflections
Radiation source: fine-focus sealed tube 2278 reflections with I > 2σ(I)
graphite Rint = 0.051
φ and ω scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→13
Tmin = 0.670, Tmax = 0.929 k = −9→9
10698 measured reflections l = −25→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0328P)2 + 2.0905P] where P = (Fo2 + 2Fc2)/3
3753 reflections (Δ/σ)max = 0.001
298 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.73155 (4) 0.18038 (7) 0.77719 (2) 0.04608 (19)
N1 0.7004 (3) 0.1798 (4) 0.86373 (14) 0.0465 (9)
N2 0.8811 (2) 0.2362 (4) 0.79867 (15) 0.0452 (9)
O1 0.7720 (2) 0.1113 (4) 0.91807 (14) 0.0680 (9)
O2 0.9266 (2) 0.2769 (4) 0.86424 (13) 0.0512 (8)
O3 0.5864 (2) 0.1927 (4) 0.74053 (12) 0.0555 (8)
O4 0.7494 (2) 0.0995 (4) 0.69654 (13) 0.0562 (8)
C1 0.8537 (4) 0.0179 (6) 0.9005 (2) 0.0689 (14)
H1A 0.8289 −0.0266 0.8572 0.083*
H1B 0.8730 −0.0772 0.9297 0.083*
C2 0.9486 (3) 0.1269 (6) 0.9028 (2) 0.0637 (13)
H2A 0.9779 0.1594 0.9472 0.076*
H2B 1.0015 0.0610 0.8882 0.076*
C3 0.6172 (3) 0.2413 (5) 0.87978 (19) 0.0465 (11)
C4 0.6114 (4) 0.2381 (7) 0.94956 (19) 0.0661 (14)
H4A 0.6453 0.1376 0.9697 0.099*
H4B 0.5389 0.2384 0.9523 0.099*
H4C 0.6463 0.3362 0.9711 0.099*
C5 0.5175 (3) 0.2722 (5) 0.76545 (19) 0.0435 (10)
C6 0.5294 (3) 0.3069 (5) 0.83128 (19) 0.0447 (10)
C7 0.4498 (4) 0.4048 (6) 0.8504 (2) 0.0572 (12)
H7 0.4581 0.4316 0.8938 0.069*
C8 0.3623 (4) 0.4603 (6) 0.8078 (2) 0.0622 (13)
H8 0.3129 0.5248 0.8225 0.075*
C9 0.3450 (3) 0.4223 (6) 0.7418 (2) 0.0532 (12)
C10 0.4212 (3) 0.3260 (5) 0.7203 (2) 0.0466 (10)
C11 0.4048 (3) 0.2850 (6) 0.6547 (2) 0.0553 (12)
H11 0.4546 0.2203 0.6404 0.066*
C12 0.3158 (4) 0.3395 (7) 0.6113 (2) 0.0737 (15)
H12 0.3054 0.3109 0.5679 0.088*
C13 0.2418 (4) 0.4369 (7) 0.6322 (3) 0.0781 (16)
H13 0.1819 0.4739 0.6027 0.094*
C14 0.2557 (4) 0.4787 (6) 0.6952 (3) 0.0694 (14)
H14 0.2057 0.5458 0.7082 0.083*
C15 0.9430 (3) 0.2702 (5) 0.7603 (2) 0.0441 (10)
C16 1.0539 (3) 0.3300 (6) 0.7877 (2) 0.0596 (12)
H16A 1.0532 0.4490 0.7969 0.089*
H16B 1.0961 0.3103 0.7569 0.089*
H16C 1.0831 0.2690 0.8266 0.089*
C17 0.8113 (3) 0.1659 (5) 0.66393 (18) 0.0388 (10)
C18 0.9056 (3) 0.2506 (5) 0.69117 (19) 0.0418 (10)
C19 0.9665 (3) 0.3161 (6) 0.6492 (2) 0.0530 (11)
H19 1.0285 0.3736 0.6672 0.064*
C20 0.9390 (3) 0.2994 (6) 0.5845 (2) 0.0564 (12)
H20 0.9819 0.3440 0.5592 0.068*
C21 0.8443 (3) 0.2135 (5) 0.5550 (2) 0.0485 (11)
C22 0.7806 (3) 0.1459 (5) 0.59432 (19) 0.0427 (10)
C23 0.6864 (3) 0.0651 (5) 0.5649 (2) 0.0502 (11)
H23 0.6435 0.0213 0.5904 0.060*
C24 0.6560 (4) 0.0493 (6) 0.4991 (2) 0.0613 (13)
H24 0.5929 −0.0043 0.4802 0.074*
C25 0.7202 (4) 0.1138 (7) 0.4606 (2) 0.0712 (15)
H25 0.7005 0.1010 0.4160 0.085*
C26 0.8112 (4) 0.1952 (7) 0.4879 (2) 0.0641 (13)
H26 0.8524 0.2398 0.4615 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0401 (3) 0.0603 (4) 0.0372 (3) −0.0043 (3) 0.0077 (2) −0.0032 (3)
N1 0.046 (2) 0.056 (2) 0.0345 (19) −0.0113 (19) 0.0022 (16) 0.0057 (18)
N2 0.043 (2) 0.050 (2) 0.039 (2) −0.0019 (17) 0.0021 (16) −0.0126 (17)
O1 0.060 (2) 0.093 (3) 0.0447 (19) −0.0031 (19) −0.0005 (16) 0.0194 (18)
O2 0.0535 (18) 0.051 (2) 0.0445 (17) −0.0028 (15) 0.0010 (13) −0.0102 (15)
O3 0.0415 (16) 0.087 (2) 0.0368 (16) −0.0011 (17) 0.0062 (13) −0.0113 (16)
O4 0.0506 (18) 0.077 (2) 0.0449 (17) −0.0232 (16) 0.0196 (14) −0.0171 (16)
C1 0.068 (3) 0.055 (3) 0.070 (3) 0.002 (3) −0.012 (3) 0.018 (3)
C2 0.056 (3) 0.064 (3) 0.062 (3) 0.013 (3) −0.005 (2) 0.002 (3)
C3 0.052 (3) 0.051 (3) 0.037 (2) −0.019 (2) 0.011 (2) 0.000 (2)
C4 0.068 (3) 0.093 (4) 0.039 (3) −0.018 (3) 0.015 (2) 0.002 (3)
C5 0.041 (2) 0.046 (3) 0.044 (2) −0.015 (2) 0.011 (2) −0.001 (2)
C6 0.047 (2) 0.048 (3) 0.041 (2) −0.010 (2) 0.015 (2) −0.005 (2)
C7 0.066 (3) 0.060 (3) 0.051 (3) −0.016 (3) 0.025 (3) −0.005 (2)
C8 0.058 (3) 0.051 (3) 0.085 (4) −0.007 (3) 0.032 (3) −0.006 (3)
C9 0.045 (3) 0.043 (3) 0.073 (3) −0.011 (2) 0.017 (2) 0.007 (3)
C10 0.041 (2) 0.047 (3) 0.051 (3) −0.013 (2) 0.008 (2) 0.004 (2)
C11 0.044 (3) 0.060 (3) 0.059 (3) −0.012 (2) 0.005 (2) 0.006 (2)
C12 0.058 (3) 0.090 (4) 0.063 (3) −0.021 (3) −0.008 (3) 0.018 (3)
C13 0.048 (3) 0.075 (4) 0.100 (5) −0.006 (3) −0.006 (3) 0.028 (4)
C14 0.045 (3) 0.057 (3) 0.106 (4) −0.003 (2) 0.016 (3) 0.011 (3)
C15 0.039 (2) 0.037 (3) 0.056 (3) 0.0032 (19) 0.008 (2) −0.009 (2)
C16 0.043 (3) 0.062 (3) 0.070 (3) −0.004 (2) 0.006 (2) −0.008 (3)
C17 0.033 (2) 0.040 (3) 0.045 (2) 0.0005 (19) 0.0113 (18) −0.006 (2)
C18 0.039 (2) 0.042 (3) 0.045 (2) 0.002 (2) 0.0125 (19) −0.003 (2)
C19 0.043 (2) 0.052 (3) 0.066 (3) −0.004 (2) 0.017 (2) −0.001 (3)
C20 0.057 (3) 0.062 (3) 0.057 (3) −0.001 (3) 0.026 (2) 0.004 (3)
C21 0.051 (3) 0.051 (3) 0.046 (3) 0.009 (2) 0.013 (2) 0.006 (2)
C22 0.044 (2) 0.044 (3) 0.041 (2) 0.006 (2) 0.0108 (19) −0.001 (2)
C23 0.049 (3) 0.050 (3) 0.050 (3) 0.001 (2) 0.010 (2) −0.002 (2)
C24 0.055 (3) 0.077 (4) 0.045 (3) 0.004 (3) −0.004 (2) −0.008 (3)
C25 0.072 (4) 0.094 (4) 0.044 (3) 0.010 (3) 0.005 (3) 0.009 (3)
C26 0.066 (3) 0.078 (4) 0.051 (3) 0.008 (3) 0.019 (2) 0.016 (3)

Geometric parameters (Å, °)

Cu1—O3 1.876 (3) C10—C11 1.402 (6)
Cu1—O4 1.895 (3) C11—C12 1.376 (6)
Cu1—N2 1.947 (3) C11—H11 0.9300
Cu1—N1 1.976 (3) C12—C13 1.385 (7)
N1—C3 1.302 (5) C12—H12 0.9300
N1—O1 1.417 (4) C13—C14 1.352 (7)
N2—C15 1.301 (5) C13—H13 0.9300
N2—O2 1.423 (4) C14—H14 0.9300
O1—C1 1.414 (5) C15—C18 1.449 (5)
O2—C2 1.432 (5) C15—C16 1.504 (5)
O3—C5 1.304 (5) C16—H16A 0.9600
O4—C17 1.290 (4) C16—H16B 0.9600
C1—C2 1.497 (6) C16—H16C 0.9600
C1—H1A 0.9700 C17—C18 1.403 (5)
C1—H1B 0.9700 C17—C22 1.453 (5)
C2—H2A 0.9700 C18—C19 1.422 (5)
C2—H2B 0.9700 C19—C20 1.346 (6)
C3—C6 1.450 (6) C19—H19 0.9300
C3—C4 1.505 (5) C20—C21 1.421 (6)
C4—H4A 0.9600 C20—H20 0.9300
C4—H4B 0.9600 C21—C26 1.404 (6)
C4—H4C 0.9600 C21—C22 1.411 (5)
C5—C6 1.401 (5) C22—C23 1.398 (5)
C5—C10 1.458 (5) C23—C24 1.372 (5)
C6—C7 1.426 (6) C23—H23 0.9300
C7—C8 1.357 (6) C24—C25 1.394 (6)
C7—H7 0.9300 C24—H24 0.9300
C8—C9 1.402 (6) C25—C26 1.357 (6)
C8—H8 0.9300 C25—H25 0.9300
C9—C10 1.407 (6) C26—H26 0.9300
C9—C14 1.417 (6)
O3—Cu1—O4 87.76 (11) C11—C10—C5 120.1 (4)
O3—Cu1—N2 160.95 (14) C9—C10—C5 120.5 (4)
O4—Cu1—N2 88.05 (12) C12—C11—C10 120.7 (5)
O3—Cu1—N1 89.17 (12) C12—C11—H11 119.7
O4—Cu1—N1 159.73 (14) C10—C11—H11 119.7
N2—Cu1—N1 100.93 (13) C11—C12—C13 120.0 (5)
C3—N1—O1 111.1 (3) C11—C12—H12 120.0
C3—N1—Cu1 127.2 (3) C13—C12—H12 120.0
O1—N1—Cu1 121.7 (3) C14—C13—C12 120.6 (5)
C15—N2—O2 113.0 (3) C14—C13—H13 119.7
C15—N2—Cu1 129.1 (3) C12—C13—H13 119.7
O2—N2—Cu1 116.9 (2) C13—C14—C9 121.4 (5)
C1—O1—N1 112.2 (3) C13—C14—H14 119.3
N2—O2—C2 111.0 (3) C9—C14—H14 119.3
C5—O3—Cu1 125.3 (2) N2—C15—C18 120.2 (4)
C17—O4—Cu1 124.9 (3) N2—C15—C16 120.0 (4)
O1—C1—C2 110.9 (4) C18—C15—C16 119.8 (4)
O1—C1—H1A 109.5 C15—C16—H16A 109.5
C2—C1—H1A 109.5 C15—C16—H16B 109.5
O1—C1—H1B 109.5 H16A—C16—H16B 109.5
C2—C1—H1B 109.5 C15—C16—H16C 109.5
H1A—C1—H1B 108.0 H16A—C16—H16C 109.5
O2—C2—C1 113.6 (3) H16B—C16—H16C 109.5
O2—C2—H2A 108.8 O4—C17—C18 124.6 (4)
C1—C2—H2A 108.8 O4—C17—C22 116.4 (3)
O2—C2—H2B 108.8 C18—C17—C22 118.9 (4)
C1—C2—H2B 108.8 C17—C18—C19 118.4 (4)
H2A—C2—H2B 107.7 C17—C18—C15 122.0 (4)
N1—C3—C6 121.0 (4) C19—C18—C15 119.6 (4)
N1—C3—C4 119.0 (4) C20—C19—C18 123.4 (4)
C6—C3—C4 120.0 (4) C20—C19—H19 118.3
C3—C4—H4A 109.5 C18—C19—H19 118.3
C3—C4—H4B 109.5 C19—C20—C21 120.0 (4)
H4A—C4—H4B 109.5 C19—C20—H20 120.0
C3—C4—H4C 109.5 C21—C20—H20 120.0
H4A—C4—H4C 109.5 C26—C21—C22 118.7 (4)
H4B—C4—H4C 109.5 C26—C21—C20 122.2 (4)
O3—C5—C6 124.9 (4) C22—C21—C20 119.1 (4)
O3—C5—C10 116.2 (4) C23—C22—C21 118.8 (4)
C6—C5—C10 119.0 (4) C23—C22—C17 121.0 (4)
C5—C6—C7 118.0 (4) C21—C22—C17 120.1 (4)
C5—C6—C3 122.1 (4) C24—C23—C22 121.2 (4)
C7—C6—C3 119.8 (4) C24—C23—H23 119.4
C8—C7—C6 122.6 (4) C22—C23—H23 119.4
C8—C7—H7 118.7 C23—C24—C25 119.7 (4)
C6—C7—H7 118.7 C23—C24—H24 120.1
C7—C8—C9 121.2 (4) C25—C24—H24 120.1
C7—C8—H8 119.4 C26—C25—C24 120.3 (4)
C9—C8—H8 119.4 C26—C25—H25 119.9
C8—C9—C10 118.5 (4) C24—C25—H25 119.9
C8—C9—C14 123.5 (5) C25—C26—C21 121.3 (4)
C10—C9—C14 118.0 (5) C25—C26—H26 119.3
C11—C10—C9 119.4 (4) C21—C26—H26 119.3
O3—Cu1—N1—C3 −25.1 (4) C14—C9—C10—C5 176.7 (4)
O4—Cu1—N1—C3 −106.3 (5) O3—C5—C10—C11 2.8 (6)
N2—Cu1—N1—C3 138.7 (3) C6—C5—C10—C11 −176.6 (4)
O3—Cu1—N1—O1 156.5 (3) O3—C5—C10—C9 −175.8 (4)
O4—Cu1—N1—O1 75.2 (5) C6—C5—C10—C9 4.7 (6)
N2—Cu1—N1—O1 −39.8 (3) C9—C10—C11—C12 0.7 (6)
O3—Cu1—N2—C15 −51.8 (6) C5—C10—C11—C12 −178.0 (4)
O4—Cu1—N2—C15 25.6 (4) C10—C11—C12—C13 0.5 (7)
N1—Cu1—N2—C15 −172.7 (4) C11—C12—C13—C14 −0.3 (8)
O3—Cu1—N2—O2 115.2 (4) C12—C13—C14—C9 −1.1 (8)
O4—Cu1—N2—O2 −167.5 (3) C8—C9—C14—C13 −179.1 (5)
N1—Cu1—N2—O2 −5.8 (3) C10—C9—C14—C13 2.2 (7)
C3—N1—O1—C1 169.7 (4) O2—N2—C15—C18 −174.5 (3)
Cu1—N1—O1—C1 −11.6 (4) Cu1—N2—C15—C18 −7.2 (6)
C15—N2—O2—C2 −111.8 (4) O2—N2—C15—C16 5.5 (5)
Cu1—N2—O2—C2 79.2 (3) Cu1—N2—C15—C16 172.9 (3)
O4—Cu1—O3—C5 −166.2 (3) Cu1—O4—C17—C18 30.4 (5)
N2—Cu1—O3—C5 −88.8 (5) Cu1—O4—C17—C22 −151.3 (3)
N1—Cu1—O3—C5 33.8 (3) O4—C17—C18—C19 179.4 (4)
O3—Cu1—O4—C17 125.2 (3) C22—C17—C18—C19 1.2 (6)
N2—Cu1—O4—C17 −36.2 (3) O4—C17—C18—C15 0.4 (6)
N1—Cu1—O4—C17 −153.3 (4) C22—C17—C18—C15 −177.8 (3)
N1—O1—C1—C2 93.8 (4) N2—C15—C18—C17 −12.2 (6)
N2—O2—C2—C1 −57.3 (5) C16—C15—C18—C17 167.8 (4)
O1—C1—C2—O2 −55.4 (5) N2—C15—C18—C19 168.8 (4)
O1—N1—C3—C6 −175.4 (3) C16—C15—C18—C19 −11.2 (6)
Cu1—N1—C3—C6 6.0 (6) C17—C18—C19—C20 −0.9 (6)
O1—N1—C3—C4 2.4 (5) C15—C18—C19—C20 178.1 (4)
Cu1—N1—C3—C4 −176.1 (3) C18—C19—C20—C21 0.5 (7)
Cu1—O3—C5—C6 −24.8 (6) C19—C20—C21—C26 178.9 (4)
Cu1—O3—C5—C10 155.8 (3) C19—C20—C21—C22 −0.4 (6)
O3—C5—C6—C7 176.0 (4) C26—C21—C22—C23 −0.8 (6)
C10—C5—C6—C7 −4.6 (6) C20—C21—C22—C23 178.5 (4)
O3—C5—C6—C3 −6.4 (6) C26—C21—C22—C17 −178.6 (4)
C10—C5—C6—C3 173.0 (4) C20—C21—C22—C17 0.7 (6)
N1—C3—C6—C5 15.5 (6) O4—C17—C22—C23 2.8 (6)
C4—C3—C6—C5 −162.4 (4) C18—C17—C22—C23 −178.9 (4)
N1—C3—C6—C7 −167.0 (4) O4—C17—C22—C21 −179.5 (4)
C4—C3—C6—C7 15.2 (6) C18—C17—C22—C21 −1.1 (6)
C5—C6—C7—C8 2.0 (6) C21—C22—C23—C24 0.7 (6)
C3—C6—C7—C8 −175.6 (4) C17—C22—C23—C24 178.5 (4)
C6—C7—C8—C9 0.6 (7) C22—C23—C24—C25 0.3 (7)
C7—C8—C9—C10 −0.6 (6) C23—C24—C25—C26 −1.4 (7)
C7—C8—C9—C14 −179.3 (4) C24—C25—C26—C21 1.4 (8)
C8—C9—C10—C11 179.2 (4) C22—C21—C26—C25 −0.3 (7)
C14—C9—C10—C11 −2.0 (6) C20—C21—C26—C25 −179.5 (5)
C8—C9—C10—C5 −2.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C16—H16A···O3i 0.96 2.64 3.375 (5) 134
C23—H23···O2ii 0.93 2.43 3.261 (5) 149
C4—H4C···Cg8i 0.96 2.68 3.564 (6) 153

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2815).

References

  1. Akine, S., Takanori, T., Taniguchi, T. & Nabeshima, T. (2005). Inorg. Chem.44, 3270–3274. [DOI] [PubMed]
  2. Dong, W. K., Duan, J. G., Guan, Y. H., Shi, J. Y. & Zhao, C. Y. (2009a). Inorg. Chim. Acta, 362, 1129–1134.
  3. Dong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009b). Inorg. Chim. Acta, 362, 117–124.
  4. Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009c). Acta Cryst E65, m803. [DOI] [PMC free article] [PubMed]
  5. Katsuki, T. (1995). Coord. Chem. Rev.140, 189–214.
  6. Ray, M. S., Mukhopadhyay, G. M., Drew, M. G. B., Lu, T. H., Chaudhuri, S. & Ghosh, A. (2003). Inorg. Chem. Commun.6, 961–965.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  10. Sun, Y.-X., Gao, S.-X., Shi, J.-Y. & Dong, W.-K. (2008). Acta Cryst. E64, m226. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809023010/at2815sup1.cif

e-65-0m802-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023010/at2815Isup2.hkl

e-65-0m802-Isup2.hkl (184KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES