Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 13;65(Pt 7):m766–m767. doi: 10.1107/S1600536809021795

Diaqua­bis(2-bromo­benzoato-κO)bis­(N,N-diethyl­nicotinamide-κN 1)nickel(II)

Tuncer Hökelek a,*, Filiz Yılmaz b, Barış Tercan c, F Elif Özbek d, Hacali Necefoğlu d
PMCID: PMC2969431  PMID: 21582698

Abstract

In the monomeric centrosymmetric title NiII complex, [Ni(C7H4BrO2)2(C10H14N2O)2(H2O)2], the NiII ion is located on an inversion center. The asymmetric unit contains one 2-bromo­benzoate ligand, one diethyl­nicotinamide (DENA) ligand and one coordinated water mol­ecule. The four O atoms in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by two N atoms of two DENA ligands in the axial positions. The dihedral angle between the benzene ring and the attached carboxyl­ate group is 87.73 (15)°, while the pyridine and benzene rings are oriented at a dihedral angle of 42.48 (7)°. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to (10Inline graphic). In addition, C—H⋯O hydrogen bonds are observed.

Related literature

For general backgroud, see: Antolini et al. (1982); Bigoli et al. (1972); Nadzhafov et al. (1981); Shnulin et al. (1981). For related structures, see: Hökelek et al. (2009a ,b ,c ,d ); Özbek et al. (2009); Sertçelik et al. (2009a ,b ,c ); Tercan et al. (2009).graphic file with name e-65-0m766-scheme1.jpg

Experimental

Crystal data

  • [Ni(C7H4BrO2)2(C10H14N2O)2(H2O)2]

  • M r = 851.22

  • Monoclinic, Inline graphic

  • a = 12.8506 (3) Å

  • b = 10.3448 (2) Å

  • c = 14.9418 (4) Å

  • β = 114.004 (2)°

  • V = 1814.53 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 100 K

  • 0.34 × 0.25 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.442, T max = 0.710

  • 16814 measured reflections

  • 4528 independent reflections

  • 3603 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.078

  • S = 1.04

  • 4528 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021795/ci2824sup1.cif

e-65-0m766-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021795/ci2824Isup2.hkl

e-65-0m766-Isup2.hkl (217.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O1 2.0359 (14)
Ni1—O4 2.0818 (15)
Ni1—N1 2.1207 (17)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O3i 0.80 (3) 1.97 (3) 2.770 (2) 176 (4)
O4—H42⋯O2ii 0.78 (4) 1.88 (4) 2.623 (3) 161 (3)
C4—H4⋯O2iii 0.93 2.54 3.172 (3) 126
C8—H8⋯O3i 0.93 2.31 3.241 (3) 177
C10—H10⋯O1iv 0.93 2.47 3.392 (3) 172
C14—H14A⋯O2v 0.97 2.50 3.448 (3) 166
C14—H14B⋯O3vi 0.97 2.55 3.483 (3) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

supplementary crystallographic information

Comment

Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).

The structure determination of the title compound, (I), a nickel complex with two 2-bromobenzoate (BB), two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the NiII ion on a centre of symmetry (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by two N atoms of two DENA ligands (N1, N1') in axial positions (Table 1 and Fig. 1).

The near equality of C1—O1 [1.267 (3) Å] and C1—O2 [1.240 (3) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.262 (3) and 1.249 (3) Å in [Mn(DENA)2(C8H5O3)2(H2O)2], (II) (Sertçelik et al., 2009a), 1.263 (4) and 1.249 (4) Å in [Ni(DENA)2(C8H5O3)2(H2O)2], (III) (Sertçelik et al., 2009b), 1.262 (5) and 1.257 (5) Å in [Co(DENA)2(C8H5O3)2(H2O)2], (IV) (Sertçelik et al., 2009c), 1.244 (4) and 1.270 (4) Å in [Co(NA)2(H2O)4](C7H4FO2)2, (V) (Özbek et al., 2009), 1.284 (2), 1.248 (2) and 1.278 (2), 1.241 (2) Å in [Zn(NA)2(C8H8NO2)2], (VI) (Tercan et al., 2009), 1.267 (3) and 1.258 (3) Å in [Ni(NA)2(C7H4ClO2)2(H2O)2], (VII) (Hökelek et al., 2009a), 1.263 (2) and 1.240 (2) Å in [Zn(DENA)2(C7H4BrO2)2(H2O)2], (VIII) (Hökelek et al., 2009b), 1.2611 (17) and 1.2396 (19) Å in [Mn(DENA)2(C7H4BrO2)2(H2O)2], (IX) (Hökelek et al., 2009c) and 1.2616 (17) and 1.2435 (18) Å in [Ni(DENA)2(C7H4ClO2)2(H2O)2], (X) (Hökelek et al., 2009d). In (I), the average Ni—O bond length is 2.0589 (15) Å and the Ni1 atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.291 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2-C7) is 87.73 (15)°, while that between rings A and B (N1/C8-C12) is 42.48 (7)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 2) link the molecules into a two-dimensional network parallel to the (1 0 1). In addition, C—H···O hydrogen bonds are observed.

Experimental

The title compound was prepared by the reaction of NiSO4.6H2O (1.31 g, 5 mmol) in H2O (20 ml) and i>N,N-diethylnicotinamide (1.78 g, 10 mmol) in H2O (20 ml) with sodium 2-bromobenzoate (2.23 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for 2 d, giving blue single crystals.

Refinement

H atoms of water molecule were located in difference Fourier maps and refined isotropically. The remaining H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator (1 - x, -y, -z).

Crystal data

[Ni(C7H4BrO2)2(C10H14N2O)2(H2O)2] F(000) = 868
Mr = 851.22 Dx = 1.558 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5301 reflections
a = 12.8506 (3) Å θ = 2.5–28.3°
b = 10.3448 (2) Å µ = 2.79 mm1
c = 14.9418 (4) Å T = 100 K
β = 114.004 (2)° Block, blue
V = 1814.53 (8) Å3 0.34 × 0.25 × 0.12 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer 4528 independent reflections
Radiation source: fine-focus sealed tube 3603 reflections with I > 2σ(I)
graphite Rint = 0.044
φ and ω scans θmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −17→17
Tmin = 0.442, Tmax = 0.710 k = −13→13
16814 measured reflections l = −19→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.7499P] where P = (Fo2 + 2Fc2)/3
4528 reflections (Δ/σ)max = 0.001
233 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.77 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.17947 (2) 0.14287 (2) 0.072440 (17) 0.02619 (8)
Ni1 0.5000 0.0000 0.0000 0.01120 (9)
O1 0.46945 (12) 0.05353 (14) 0.11821 (10) 0.0154 (3)
O2 0.37193 (16) −0.11792 (15) 0.13480 (13) 0.0270 (4)
O3 0.07077 (13) 0.11718 (14) −0.39530 (10) 0.0173 (3)
O4 0.61679 (13) 0.15121 (15) 0.03504 (12) 0.0146 (3)
H41 0.607 (3) 0.219 (3) 0.056 (2) 0.036 (9)*
H42 0.621 (3) 0.159 (3) −0.015 (3) 0.040 (9)*
N1 0.36374 (15) 0.12018 (16) −0.08963 (12) 0.0134 (4)
N2 0.01992 (15) −0.00539 (17) −0.29453 (12) 0.0167 (4)
C1 0.41035 (18) −0.0066 (2) 0.15502 (15) 0.0156 (4)
C2 0.38690 (18) 0.0695 (2) 0.23103 (15) 0.0163 (4)
C3 0.29000 (19) 0.1455 (2) 0.20453 (16) 0.0196 (4)
C4 0.2709 (2) 0.2248 (2) 0.27162 (17) 0.0247 (5)
H4 0.2060 0.2761 0.2521 0.030*
C5 0.3501 (2) 0.2258 (2) 0.36754 (18) 0.0278 (5)
H5 0.3394 0.2799 0.4128 0.033*
C6 0.4451 (2) 0.1473 (2) 0.39693 (18) 0.0269 (5)
H6 0.4967 0.1462 0.4622 0.032*
C7 0.4636 (2) 0.0699 (2) 0.32851 (16) 0.0217 (5)
H7 0.5281 0.0178 0.3484 0.026*
C8 0.36086 (18) 0.2475 (2) −0.07399 (15) 0.0158 (4)
H8 0.4205 0.2842 −0.0210 0.019*
C9 0.27291 (18) 0.3269 (2) −0.13331 (16) 0.0173 (4)
H9 0.2747 0.4151 −0.1207 0.021*
C10 0.18249 (17) 0.2735 (2) −0.21145 (15) 0.0161 (4)
H10 0.1233 0.3249 −0.2531 0.019*
C11 0.18272 (17) 0.1406 (2) −0.22590 (14) 0.0142 (4)
C12 0.27482 (17) 0.0686 (2) −0.16478 (14) 0.0142 (4)
H12 0.2753 −0.0197 −0.1762 0.017*
C13 0.08624 (17) 0.08196 (19) −0.31130 (15) 0.0139 (4)
C14 −0.07886 (18) −0.0564 (2) −0.37834 (16) 0.0187 (4)
H14A −0.0945 −0.1439 −0.3640 0.022*
H14B −0.0611 −0.0595 −0.4355 0.022*
C15 −0.18402 (19) 0.0266 (2) −0.40082 (18) 0.0251 (5)
H15A −0.2463 −0.0081 −0.4566 0.038*
H15B −0.1687 0.1133 −0.4148 0.038*
H15C −0.2036 0.0270 −0.3453 0.038*
C16 0.0277 (2) −0.0429 (2) −0.19692 (16) 0.0259 (5)
H16A −0.0472 −0.0364 −0.1961 0.031*
H16B 0.0776 0.0171 −0.1486 0.031*
C17 0.0725 (2) −0.1794 (3) −0.16850 (19) 0.0348 (6)
H17A 0.0684 −0.2022 −0.1077 0.052*
H17B 0.1502 −0.1836 −0.1611 0.052*
H17C 0.0271 −0.2385 −0.2187 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02396 (13) 0.03283 (15) 0.02130 (13) 0.00577 (10) 0.00871 (9) 0.00345 (10)
Ni1 0.01157 (17) 0.01200 (18) 0.00955 (17) −0.00007 (13) 0.00379 (13) −0.00031 (13)
O1 0.0171 (7) 0.0169 (7) 0.0139 (7) −0.0024 (6) 0.0080 (6) −0.0022 (6)
O2 0.0446 (11) 0.0170 (8) 0.0312 (9) −0.0089 (7) 0.0275 (8) −0.0057 (7)
O3 0.0209 (8) 0.0158 (7) 0.0119 (7) −0.0003 (6) 0.0032 (6) 0.0022 (6)
O4 0.0173 (7) 0.0128 (8) 0.0139 (8) −0.0008 (6) 0.0065 (6) −0.0006 (6)
N1 0.0146 (8) 0.0135 (8) 0.0118 (8) 0.0001 (7) 0.0052 (7) 0.0011 (6)
N2 0.0174 (9) 0.0198 (9) 0.0112 (8) −0.0032 (7) 0.0041 (7) −0.0005 (7)
C1 0.0171 (10) 0.0166 (10) 0.0142 (10) 0.0028 (8) 0.0077 (8) 0.0016 (8)
C2 0.0209 (10) 0.0153 (11) 0.0184 (10) −0.0030 (8) 0.0137 (9) −0.0019 (8)
C3 0.0225 (11) 0.0203 (11) 0.0185 (11) −0.0006 (9) 0.0110 (9) 0.0011 (9)
C4 0.0306 (13) 0.0230 (12) 0.0286 (13) 0.0011 (10) 0.0203 (11) −0.0026 (10)
C5 0.0391 (14) 0.0261 (13) 0.0279 (13) −0.0078 (11) 0.0237 (11) −0.0110 (10)
C6 0.0300 (13) 0.0343 (14) 0.0189 (11) −0.0101 (11) 0.0126 (10) −0.0063 (10)
C7 0.0194 (11) 0.0260 (12) 0.0215 (11) −0.0024 (9) 0.0101 (9) −0.0025 (9)
C8 0.0172 (10) 0.0155 (10) 0.0142 (10) −0.0013 (8) 0.0058 (8) −0.0013 (8)
C9 0.0199 (10) 0.0128 (10) 0.0180 (10) −0.0001 (8) 0.0064 (8) −0.0002 (8)
C10 0.0159 (10) 0.0175 (10) 0.0135 (10) 0.0029 (8) 0.0046 (8) 0.0027 (8)
C11 0.0153 (10) 0.0159 (10) 0.0111 (9) −0.0013 (8) 0.0052 (8) 0.0006 (8)
C12 0.0154 (10) 0.0146 (10) 0.0127 (10) −0.0003 (8) 0.0058 (8) 0.0002 (8)
C13 0.0137 (9) 0.0109 (9) 0.0144 (10) 0.0021 (8) 0.0029 (8) 0.0009 (8)
C14 0.0189 (10) 0.0185 (11) 0.0161 (10) −0.0049 (9) 0.0043 (8) −0.0026 (8)
C15 0.0193 (11) 0.0290 (13) 0.0235 (12) 0.0002 (9) 0.0052 (9) 0.0036 (10)
C16 0.0253 (12) 0.0369 (14) 0.0144 (10) −0.0126 (10) 0.0069 (9) 0.0000 (10)
C17 0.0284 (13) 0.0422 (16) 0.0254 (13) −0.0081 (12) 0.0022 (11) 0.0177 (11)

Geometric parameters (Å, °)

Br1—C3 1.906 (2) C7—H7 0.93
Ni1—O1 2.0359 (14) C8—N1 1.341 (3)
Ni1—O1i 2.0359 (14) C8—H8 0.93
Ni1—O4 2.0818 (15) C9—C8 1.387 (3)
Ni1—O4i 2.0818 (15) C9—H9 0.93
Ni1—N1 2.1207 (17) C10—C9 1.384 (3)
Ni1—N1i 2.1207 (17) C10—H10 0.93
O1—C1 1.267 (3) C11—C10 1.392 (3)
O2—C1 1.240 (3) C11—C12 1.382 (3)
O3—C13 1.243 (2) C11—C13 1.499 (3)
O4—H41 0.80 (3) C12—N1 1.344 (3)
O4—H42 0.78 (3) C12—H12 0.93
N2—C13 1.334 (3) C14—C15 1.519 (3)
N2—C14 1.471 (3) C14—H14A 0.97
N2—C16 1.473 (3) C14—H14B 0.97
C2—C1 1.510 (3) C15—H15A 0.96
C2—C7 1.387 (3) C15—H15B 0.96
C3—C2 1.387 (3) C15—H15C 0.96
C3—C4 1.392 (3) C16—C17 1.518 (4)
C4—C5 1.379 (3) C16—H16A 0.97
C4—H4 0.93 C16—H16B 0.97
C5—H5 0.93 C17—H17A 0.96
C6—C5 1.381 (4) C17—H17B 0.96
C6—C7 1.393 (3) C17—H17C 0.96
C6—H6 0.93
O1—Ni1—O1i 180.00 (7) C2—C7—H7 119.6
O1—Ni1—O4 87.20 (6) C6—C7—H7 119.6
O1i—Ni1—O4 92.80 (6) N1—C8—C9 122.93 (19)
O1—Ni1—O4i 92.80 (6) N1—C8—H8 118.5
O1i—Ni1—O4i 87.20 (6) C9—C8—H8 118.5
O1—Ni1—N1 89.27 (6) C8—C9—H9 120.4
O1i—Ni1—N1 90.73 (6) C10—C9—C8 119.3 (2)
O1—Ni1—N1i 90.73 (6) C10—C9—H9 120.4
O1i—Ni1—N1i 89.27 (6) C9—C10—C11 118.11 (19)
O4i—Ni1—O4 180.00 (9) C9—C10—H10 120.9
O4—Ni1—N1 92.52 (6) C11—C10—H10 120.9
O4i—Ni1—N1 87.48 (6) C10—C11—C13 118.60 (18)
O4—Ni1—N1i 87.48 (6) C12—C11—C10 119.01 (19)
O4i—Ni1—N1i 92.52 (6) C12—C11—C13 122.28 (18)
N1i—Ni1—N1 180.00 (16) N1—C12—C11 123.15 (19)
C1—O1—Ni1 127.15 (13) N1—C12—H12 118.4
Ni1—O4—H41 123 (2) C11—C12—H12 118.4
Ni1—O4—H42 99 (2) O3—C13—N2 122.44 (18)
H41—O4—H42 112 (3) O3—C13—C11 118.57 (18)
C8—N1—Ni1 122.69 (14) N2—C13—C11 118.99 (18)
C8—N1—C12 117.44 (18) N2—C14—C15 111.57 (18)
C12—N1—Ni1 119.87 (14) N2—C14—H14A 109.3
C13—N2—C14 118.61 (17) N2—C14—H14B 109.3
C13—N2—C16 124.98 (18) C15—C14—H14A 109.3
C14—N2—C16 115.85 (18) C15—C14—H14B 109.3
O1—C1—C2 114.11 (18) H14A—C14—H14B 108.0
O2—C1—O1 126.8 (2) C14—C15—H15A 109.5
O2—C1—C2 119.06 (19) C14—C15—H15B 109.5
C3—C2—C1 120.77 (19) C14—C15—H15C 109.5
C7—C2—C1 121.2 (2) H15A—C15—H15B 109.5
C7—C2—C3 118.0 (2) H15A—C15—H15C 109.5
C2—C3—Br1 119.46 (17) H15B—C15—H15C 109.5
C2—C3—C4 121.9 (2) N2—C16—C17 112.8 (2)
C4—C3—Br1 118.60 (18) N2—C16—H16A 109.0
C3—C4—H4 120.6 N2—C16—H16B 109.0
C5—C4—C3 118.8 (2) C17—C16—H16A 109.0
C5—C4—H4 120.6 C17—C16—H16B 109.0
C5—C6—C7 119.8 (2) H16A—C16—H16B 107.8
C5—C6—H6 120.1 C16—C17—H17A 109.5
C7—C6—H6 120.1 C16—C17—H17B 109.5
C4—C5—C6 120.6 (2) C16—C17—H17C 109.5
C4—C5—H5 119.7 H17A—C17—H17B 109.5
C6—C5—H5 119.7 H17A—C17—H17C 109.5
C2—C7—C6 120.8 (2) H17B—C17—H17C 109.5
O4i—Ni1—O1—C1 8.54 (17) C1—C2—C7—C6 175.5 (2)
O4—Ni1—O1—C1 −171.46 (17) C3—C2—C7—C6 −1.8 (3)
N1i—Ni1—O1—C1 −84.02 (17) Br1—C3—C2—C1 5.0 (3)
N1—Ni1—O1—C1 95.98 (17) Br1—C3—C2—C7 −177.63 (16)
O1—Ni1—N1—C8 58.46 (17) C4—C3—C2—C1 −174.6 (2)
O1i—Ni1—N1—C8 −121.54 (17) C4—C3—C2—C7 2.7 (3)
O1—Ni1—N1—C12 −120.53 (16) Br1—C3—C4—C5 179.28 (18)
O1i—Ni1—N1—C12 59.47 (16) C2—C3—C4—C5 −1.1 (4)
O4i—Ni1—N1—C8 151.29 (17) C3—C4—C5—C6 −1.5 (4)
O4—Ni1—N1—C8 −28.71 (17) C5—C6—C7—C2 −0.7 (4)
O4i—Ni1—N1—C12 −27.70 (16) C7—C6—C5—C4 2.4 (4)
O4—Ni1—N1—C12 152.30 (16) C9—C8—N1—C12 −2.1 (3)
Ni1—O1—C1—O2 10.3 (3) C9—C8—N1—Ni1 178.91 (16)
Ni1—O1—C1—C2 −169.71 (13) C10—C9—C8—N1 1.1 (3)
C14—N2—C13—O3 −3.5 (3) C11—C10—C9—C8 1.4 (3)
C14—N2—C13—C11 176.21 (18) C12—C11—C10—C9 −2.8 (3)
C16—N2—C13—O3 −174.5 (2) C13—C11—C10—C9 −179.0 (2)
C16—N2—C13—C11 5.1 (3) C10—C11—C12—N1 1.9 (3)
C13—N2—C14—C15 −88.5 (2) C13—C11—C12—N1 177.95 (19)
C16—N2—C14—C15 83.4 (2) C10—C11—C13—O3 61.2 (3)
C13—N2—C16—C17 −110.3 (2) C10—C11—C13—N2 −118.5 (2)
C14—N2—C16—C17 78.4 (2) C12—C11—C13—O3 −114.9 (2)
C3—C2—C1—O2 −88.9 (3) C12—C11—C13—N2 65.5 (3)
C7—C2—C1—O2 93.8 (3) C11—C12—N1—C8 0.5 (3)
C3—C2—C1—O1 91.1 (2) C11—C12—N1—Ni1 179.58 (16)
C7—C2—C1—O1 −86.2 (2)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H41···O3ii 0.80 (3) 1.97 (3) 2.770 (2) 176 (4)
O4—H42···O2i 0.78 (4) 1.88 (4) 2.623 (3) 161 (3)
C4—H4···O2iii 0.93 2.54 3.172 (3) 126
C8—H8···O3ii 0.93 2.31 3.241 (3) 177
C10—H10···O1iv 0.93 2.47 3.392 (3) 172
C14—H14A···O2v 0.97 2.50 3.448 (3) 166
C14—H14B···O3vi 0.97 2.55 3.483 (3) 161

Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (i) −x+1, −y, −z; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) x−1/2, −y−1/2, z−1/2; (vi) −x, −y, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2824).

References

  1. Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem.21, 1391–1395.
  2. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467. [DOI] [PMC free article] [PubMed]
  8. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m481–m482. [DOI] [PMC free article] [PubMed]
  9. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m533–m534. [DOI] [PMC free article] [PubMed]
  10. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m545–m546. [DOI] [PMC free article] [PubMed]
  11. Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim.22, 124–128.
  12. Özbek, F. E., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m341–m342. [DOI] [PMC free article] [PubMed]
  13. Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m324–m325. [DOI] [PMC free article] [PubMed]
  14. Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m326–m327. [DOI] [PMC free article] [PubMed]
  15. Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009c). Acta Cryst. E65, m389–m390. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim.7, 1409–1416.
  18. Tercan, B., Hökelek, T., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m109–m110. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021795/ci2824sup1.cif

e-65-0m766-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021795/ci2824Isup2.hkl

e-65-0m766-Isup2.hkl (217.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES