Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):o1472–o1473. doi: 10.1107/S1600536809020145

(E)-3-(2,6-Dichloro­phen­yl)-1-(4-methoxy­phen­yl)prop-2-en-1-one

Lotfi Benmekhbi a, Ratiba Belhouas b,*, Sofiane Bouacida c, Salima Mosbah d, Leila Bencharif d
PMCID: PMC2969433  PMID: 21582775

Abstract

In the title compound, C16H12Cl2O2, the dichloro­phenyl and methoxy­phenyl groups are linked by a prop-2-en-1-one group. The C=C double bond is trans configured. The mol­ecule is not planar, as can be seen from the dihedral angle of 6.21 (7)° between the planes of the two rings. The crystal structure can be described by two types of crossed layers which are parallel to (110) and (1Inline graphic0).

Related literature

For background to the applications of chalcones, see: Liu et al. (2003); Li et al. (1995); Hsieh et al. (1998); Barford et al. (2002); Rojas et al. (2002); Nerya et al. (2006); Yang et al. (2000); Ducki et al. (1998); Goto et al. (1991); Indira et al. (2002); Lawrence et al. (2001); Nielsen et al. (2005); Sarker & Nahar (2004); Sarojini et al. (2006). For related structures, see: Yathirajan et al. (2007); Butcher et al. (2007); Fischer et al. (2007).graphic file with name e-65-o1472-scheme1.jpg

Experimental

Crystal data

  • C16H12Cl2O2

  • M r = 307.16

  • Orthorhombic, Inline graphic

  • a = 6.4793 (2) Å

  • b = 12.9807 (5) Å

  • c = 16.7819 (8) Å

  • V = 1411.46 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 100 K

  • 0.37 × 0.28 × 0.2 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 1998) T min = 0.824, T max = 0.913

  • 6643 measured reflections

  • 3211 independent reflections

  • 2964 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.090

  • S = 1.05

  • 3211 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 1331 Friedel pairs

  • Flack parameter: 0.01 (6)

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and DIAMOND (Brandenburg & Berndt, 2001).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020145/bq2141sup1.cif

e-65-o1472-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020145/bq2141Isup2.hkl

e-65-o1472-Isup2.hkl (154.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg1i 0.95 2.84 3.727 157
C7—H7⋯Cg2i 0.95 2.85 3.360 115

Symmetry code: (i) Inline graphic. Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

Acknowledgments

The authors are grateful to Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for the data-collection facilities.

supplementary crystallographic information

Comment

For a structurally simple group of compounds, chalcones have displayed an impressive array for biological activities, among which anti-malarial (Liu et al., 2003), anti protozoal (Li et al., 1995), anti-inflammatory (Hsieh et al., 1998), immunomodulatory (Barford et al., 2002), nitric oxid inhibition (Rojas et al., 2002), tyronase inhibition (Nerya et al., 2006), cytotoxic (Yang et al., 2000) and anticancer (Ducki et al., 1998) activities have been cited in literature.

Chalcone may be useful for the chemotherapy of leishmanisis among others (Lawrence et al., 2001), they are also used as antibiotics (Nielsen et al., 2005). They were synthesized by a base catalyzed Claisen-Schmidt condensation of aromatic aldehydes and ketones. A natural medicine genus Angelica is known to contain large number of naturally occurring chalcones (Sarker et al., 2004). Chalcone derivatives are recognized for NLO properties and have good crystallization ability (Goto et al., 1991; Indira et al., 2002; Sarojini et al., 2006).

Structure of few related chalcones viz., (2E) -1- (2,4-dichlorophenyl) -3-(2-hydrox-3-metoxyphenyl)prop -2-en-1-one (Yathirajan et al., 2007), (2E) -1- (3-hydroxyphenyl) -3-(4-methylphenyl)prop-2-en-1-one (Butcher et al., 2007), (2E)-3-(biphenyl-4-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (Fischer et al., 2007).

The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. A diagram of the layered crystal packing in the unit cell of (I) is shown in Fig. 2. A substituted chalcone adopts an E configuration with respect to the C=C bond of the enone unit. The molecule is not planar, as can be seen from the dihedral angle of 6.21 (7)° between the two rings. The crystal structure can be described by two types of crossed layers, parallel to (110) and (1–10) respectively (Fig. 2).

The packing is stabilized by Van der Walls interactions and by C—H···π interactions resulting in the formation of three dimensional network (Table 1.).

Experimental

To a mixture of 2,6 dichlorobenzaldehyde (1.75 g, 0.01 mol) and 4-methoxyacetophenone (1.50 g, 0.01 mol) in ethanol 20 ml in the presence of a catalytic amount of sodium hydroxide solution (5 ml) was added slowly with stirring (6 h), the contents of the flask were poured into ice cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and purified by recrystallization in ethanol. Crystal suitable for x-ray analysis was grown by slow evaporation of an acetone solution at room temperature.

Refinement

All H atoms were localized in Fourier maps but introduced in calculated positions and treated as riding on their parent C atoms with C—H = 0.95–0.98Å and Uiso(H) =1.2–1.5(carrier atom).

Figures

Fig. 1.

Fig. 1.

(Farrugia, 1997) The structure of the title compound with the atomic labeling scheme. Displacements are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing in (I), viewed down the c axis.

Crystal data

C16H12Cl2O2 F(000) = 632
Mr = 307.16 Dx = 1.445 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3041 reflections
a = 6.4793 (2) Å θ = 2.4–27.4°
b = 12.9807 (5) Å µ = 0.46 mm1
c = 16.7819 (8) Å T = 100 K
V = 1411.46 (10) Å3 Prism, colourless
Z = 4 0.37 × 0.28 × 0.2 mm

Data collection

Bruker APEXII diffractometer 2964 reflections with I > 2σ(I)
graphite Rint = 0.029
CCD rotation images, thin slices scans θmax = 27.4°, θmin = 3.5°
Absorption correction: multi-scan (SADABS, Bruker, 1998) h = −6→8
Tmin = 0.824, Tmax = 0.913 k = −15→16
6643 measured reflections l = −20→21
3211 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.5074P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.002
3211 reflections Δρmax = 0.51 e Å3
182 parameters Δρmin = −0.20 e Å3
0 restraints Absolute structure: Flack (1983), 1331 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.49869 (7) 1.03293 (4) 0.58897 (3) 0.02481 (12)
Cl5 0.06450 (7) 0.84015 (4) 0.35072 (3) 0.02267 (12)
C1 0.2990 (3) 0.95544 (14) 0.55269 (13) 0.0174 (4)
C2 0.1599 (3) 0.91924 (15) 0.60937 (13) 0.0211 (4)
H2 0.1779 0.9363 0.664 0.025*
C3 −0.0051 (3) 0.85821 (14) 0.58604 (13) 0.0226 (4)
H3 −0.1001 0.8333 0.6246 0.027*
C4 −0.0312 (3) 0.83360 (14) 0.50613 (12) 0.0206 (4)
H4 −0.1422 0.7907 0.4898 0.025*
C5 0.1068 (3) 0.87235 (14) 0.45044 (12) 0.0167 (4)
C6 0.2774 (3) 0.93459 (13) 0.47063 (13) 0.0149 (4)
C7 0.4050 (3) 0.97926 (13) 0.40676 (12) 0.0150 (4)
H7 0.3354 0.9928 0.358 0.018*
C8 0.6062 (3) 1.00344 (13) 0.40815 (13) 0.0169 (4)
H8 0.6877 0.9871 0.4535 0.02*
C9 0.7012 (3) 1.05587 (14) 0.33855 (12) 0.0172 (4)
O10 0.61836 (19) 1.05435 (10) 0.27255 (9) 0.0215 (3)
C11 0.8991 (3) 1.11288 (13) 0.35089 (12) 0.0154 (4)
C12 0.9741 (3) 1.13891 (13) 0.42704 (11) 0.0164 (4)
H12 0.9017 1.1168 0.4732 0.02*
C13 1.1527 (3) 1.19652 (14) 0.43510 (12) 0.0172 (4)
H13 1.2022 1.2139 0.4867 0.021*
C14 1.0073 (3) 1.14718 (13) 0.28402 (11) 0.0170 (4)
H14 0.9569 1.131 0.2324 0.02*
C15 1.1874 (3) 1.20463 (14) 0.29156 (12) 0.0173 (4)
H15 1.26 1.227 0.2455 0.021*
C16 1.2603 (3) 1.22906 (14) 0.36746 (12) 0.0172 (4)
O17 1.4376 (2) 1.28344 (10) 0.38116 (8) 0.0224 (3)
C18 1.5488 (3) 1.32052 (14) 0.31247 (13) 0.0225 (4)
H18A 1.5785 1.2628 0.2766 0.034*
H18B 1.6786 1.3522 0.3297 0.034*
H18C 1.4648 1.3718 0.2844 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0219 (2) 0.0314 (2) 0.0211 (3) −0.0074 (2) −0.0005 (2) −0.0049 (2)
Cl5 0.0219 (2) 0.0227 (2) 0.0234 (3) −0.0029 (2) −0.0021 (2) −0.0059 (2)
C1 0.0151 (8) 0.0157 (9) 0.0215 (11) 0.0023 (8) −0.0002 (8) 0.0001 (8)
C2 0.0214 (10) 0.0226 (10) 0.0193 (11) 0.0027 (9) 0.0009 (8) 0.0047 (8)
C3 0.0193 (9) 0.0232 (9) 0.0255 (11) −0.0005 (9) 0.0070 (9) 0.0083 (8)
C4 0.0156 (9) 0.0156 (8) 0.0305 (12) −0.0028 (8) 0.0000 (8) 0.0023 (8)
C5 0.0157 (9) 0.0123 (8) 0.0221 (11) 0.0024 (8) −0.0027 (8) 0.0005 (7)
C6 0.0129 (8) 0.0116 (8) 0.0203 (10) 0.0030 (7) 0.0014 (7) 0.0009 (7)
C7 0.0188 (9) 0.0112 (8) 0.0150 (10) 0.0024 (7) −0.0008 (8) 0.0005 (8)
C8 0.0163 (9) 0.0161 (9) 0.0182 (11) 0.0025 (7) −0.0013 (8) 0.0034 (8)
C9 0.0160 (8) 0.0161 (9) 0.0195 (11) 0.0034 (7) 0.0020 (8) −0.0002 (8)
O10 0.0188 (6) 0.0280 (7) 0.0176 (8) −0.0035 (6) −0.0014 (6) 0.0022 (6)
C11 0.0140 (8) 0.0150 (8) 0.0172 (10) 0.0021 (7) 0.0000 (8) 0.0005 (8)
C12 0.0180 (9) 0.0168 (9) 0.0146 (10) 0.0039 (8) 0.0026 (7) 0.0019 (7)
C13 0.0212 (9) 0.0170 (9) 0.0135 (10) 0.0022 (8) −0.0034 (8) −0.0031 (7)
C14 0.0169 (8) 0.0193 (9) 0.0149 (9) 0.0017 (9) −0.0016 (8) 0.0009 (7)
C15 0.0170 (9) 0.0185 (9) 0.0163 (10) 0.0003 (8) 0.0022 (8) 0.0040 (8)
C16 0.0166 (9) 0.0121 (8) 0.0228 (12) 0.0005 (8) −0.0013 (7) 0.0013 (8)
O17 0.0214 (7) 0.0264 (7) 0.0195 (8) −0.0088 (6) −0.0016 (6) 0.0005 (6)
C18 0.0202 (10) 0.0218 (9) 0.0256 (11) −0.0072 (8) 0.0001 (8) 0.0037 (8)

Geometric parameters (Å, °)

Cl1—C1 1.7484 (19) C9—C11 1.494 (3)
Cl5—C5 1.747 (2) C11—C14 1.396 (3)
C1—C2 1.392 (3) C11—C12 1.409 (3)
C1—C6 1.410 (3) C12—C13 1.384 (3)
C2—C3 1.387 (3) C12—H12 0.95
C2—H2 0.95 C13—C16 1.397 (3)
C3—C4 1.389 (3) C13—H13 0.95
C3—H3 0.95 C14—C15 1.391 (3)
C4—C5 1.388 (3) C14—H14 0.95
C4—H4 0.95 C15—C16 1.395 (3)
C5—C6 1.410 (3) C15—H15 0.95
C6—C7 1.473 (3) C16—O17 1.368 (2)
C7—C8 1.342 (2) O17—C18 1.442 (2)
C7—H7 0.95 C18—H18A 0.98
C8—C9 1.485 (3) C18—H18B 0.98
C8—H8 0.95 C18—H18C 0.98
C9—O10 1.231 (2)
C2—C1—C6 122.56 (18) C8—C9—C11 118.26 (17)
C2—C1—Cl1 115.81 (16) C14—C11—C12 118.64 (16)
C6—C1—Cl1 121.59 (15) C14—C11—C9 118.51 (18)
C3—C2—C1 119.9 (2) C12—C11—C9 122.73 (17)
C3—C2—H2 120 C13—C12—C11 120.46 (17)
C1—C2—H2 120 C13—C12—H12 119.8
C2—C3—C4 119.84 (18) C11—C12—H12 119.8
C2—C3—H3 120.1 C12—C13—C16 120.05 (18)
C4—C3—H3 120.1 C12—C13—H13 120
C5—C4—C3 119.26 (17) C16—C13—H13 120
C5—C4—H4 120.4 C15—C14—C11 121.28 (18)
C3—C4—H4 120.4 C15—C14—H14 119.4
C4—C5—C6 123.41 (19) C11—C14—H14 119.4
C4—C5—Cl5 117.23 (14) C14—C15—C16 119.28 (18)
C6—C5—Cl5 119.36 (15) C14—C15—H15 120.4
C1—C6—C5 114.98 (18) C16—C15—H15 120.4
C1—C6—C7 125.42 (17) O17—C16—C15 123.72 (18)
C5—C6—C7 119.37 (18) O17—C16—C13 116.00 (18)
C8—C7—C6 128.68 (19) C15—C16—C13 120.27 (17)
C8—C7—H7 115.7 C16—O17—C18 117.23 (15)
C6—C7—H7 115.7 O17—C18—H18A 109.5
C7—C8—C9 119.76 (19) O17—C18—H18B 109.5
C7—C8—H8 120.1 H18A—C18—H18B 109.5
C9—C8—H8 120.1 O17—C18—H18C 109.5
O10—C9—C8 121.29 (17) H18A—C18—H18C 109.5
O10—C9—C11 120.44 (17) H18B—C18—H18C 109.5
C6—C1—C2—C3 1.5 (3) C7—C8—C9—C11 159.67 (16)
Cl1—C1—C2—C3 179.21 (14) O10—C9—C11—C14 −12.1 (3)
C1—C2—C3—C4 −0.1 (3) C8—C9—C11—C14 169.21 (16)
C2—C3—C4—C5 −1.3 (3) O10—C9—C11—C12 163.91 (17)
C3—C4—C5—C6 1.4 (3) C8—C9—C11—C12 −14.8 (2)
C3—C4—C5—Cl5 −179.22 (14) C14—C11—C12—C13 −0.6 (2)
C2—C1—C6—C5 −1.4 (3) C9—C11—C12—C13 −176.57 (16)
Cl1—C1—C6—C5 −178.94 (13) C11—C12—C13—C16 −0.2 (3)
C2—C1—C6—C7 173.05 (17) C12—C11—C14—C15 1.0 (2)
Cl1—C1—C6—C7 −4.5 (3) C9—C11—C14—C15 177.10 (16)
C4—C5—C6—C1 −0.1 (2) C11—C14—C15—C16 −0.5 (3)
Cl5—C5—C6—C1 −179.47 (13) C14—C15—C16—O17 178.75 (16)
C4—C5—C6—C7 −174.87 (16) C14—C15—C16—C13 −0.3 (3)
Cl5—C5—C6—C7 5.8 (2) C12—C13—C16—O17 −178.48 (15)
C1—C6—C7—C8 35.1 (3) C12—C13—C16—C15 0.6 (3)
C5—C6—C7—C8 −150.75 (19) C15—C16—O17—C18 2.6 (2)
C6—C7—C8—C9 −175.13 (17) C13—C16—O17—C18 −178.31 (16)
C7—C8—C9—O10 −19.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···Cg1i 0.95 2.84 3.727 157
C7—H7···Cg2i 0.95 2.85 3.360 115

Symmetry codes: (i) x+1/2, −y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2141).

References

  1. Barford, L., Kemp, K., Hansen, M. & Kharazmi, A. (2002). Int. Immunopharm.2, 545–550. [DOI] [PubMed]
  2. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2001). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  6. Butcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3660. [DOI] [PMC free article] [PubMed]
  7. Ducki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGown, A. T. & Rennison, D. (1998). Bioorg. Med. Chem. Lett.8, 1051–1055. [DOI] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  10. Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1349–o1350.
  11. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  12. Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.
  13. Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res.15, 39–46. [DOI] [PubMed]
  14. Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.
  15. Lawrence, N. J., Rennison, D., McGown, A. T., Ducki, S., Gul, L. A., Hadfield, J. A. & Khan, N. (2001). J. Comb. Chem.3, 421–426. [DOI] [PubMed]
  16. Li, R., Kenyon, G. L., Cohen, F. E., Chen, X., Gong, B., Dominguez, J. N., Davidson, E., Nuzum, E. O., Rosenthal, P. J. & McKerrow, J. H. J. (1995). Med. Chem.38, 5031–5033. [DOI] [PubMed]
  17. Liu, M., Wilairat, P., Cropft, S. L., Tan, A. L. C. & Go, M. L. (2003). Bioorg. Med. Chem.11, 2729–2733. [DOI] [PubMed]
  18. Nerya, O., Musa, R., Khatib, S., Tamir, S. & Jacob, O. (2006). Phytochemistry, 65, 1389–1393. [DOI] [PubMed]
  19. Nielsen, S. F., Larsen, M., Boesen, T., Schοnning, K. & Kromann, H. (2005). J. Med. Chem.48, 2667–2677. [DOI] [PubMed]
  20. Rojas, J., Paya, M., Dominguez, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett.12, 1951–1953. [DOI] [PubMed]
  21. Sarker, S. D. & Nahar, L. (2004). Curr. Med. Chem.11, 1479–1500. [DOI] [PubMed]
  22. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  23. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  24. Yang, Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett.10, 699–701. [DOI] [PubMed]
  25. Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini & Bolte, M. (2007). Acta Cryst. E63, o428–o429.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020145/bq2141sup1.cif

e-65-o1472-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020145/bq2141Isup2.hkl

e-65-o1472-Isup2.hkl (154.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES