Abstract
In the title salt, C5H8N3 +·C7H4NO4 −, the pyridine N atom of the 2,3-diaminopyridine molecule is protonated. The protonated N atom and one of the two 2-amino groups are hydrogen bonded to the 4-nitrobenzoate anion through a pair of N—H⋯O hydrogen bonds, forming an R 2 2(8) ring motif. The carboxylate mean plane of the 4-nitrobenzoate anion is twisted by 3.77 (5)° from the attached ring and the nitro group is similarly twisted by 2.28 (10)°. In the crystal, the molecules are linked by N—H⋯O and C—H⋯O interactions into sheets parallel to (100).
Related literature
For substituted pyridines, see: Pozharski et al. (1997 ▶); Katritzky et al. (1996 ▶); Jeffrey & Saenger (1991 ▶); Jeffrey (1997 ▶); Scheiner (1997 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 ▶).
Experimental
Crystal data
C5H8N3 +·C7H4NO4 −
M r = 276.26
Monoclinic,
a = 8.0827 (2) Å
b = 6.7365 (1) Å
c = 11.4489 (3) Å
β = 101.967 (1)°
V = 609.83 (2) Å3
Z = 2
Mo Kα radiation
μ = 0.12 mm−1
T = 100 K
0.25 × 0.17 × 0.10 mm
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.972, T max = 0.988
11659 measured reflections
2808 independent reflections
2155 reflections with I > 2σ(I)
R int = 0.045
Refinement
R[F 2 > 2σ(F 2)] = 0.052
wR(F 2) = 0.116
S = 1.04
2808 reflections
229 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.43 e Å−3
Δρmin = −0.30 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTLsoftware used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902100X/tk2462sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680902100X/tk2462Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1N1⋯O4 | 0.99 (3) | 1.70 (3) | 2.671 (2) | 167 (3) |
| N2—H1N2⋯O3 | 0.89 (3) | 2.01 (3) | 2.901 (2) | 178 (5) |
| N2—H2N2⋯O3i | 0.86 (2) | 2.06 (2) | 2.903 (2) | 171 (2) |
| N3—H1N3⋯O3i | 0.85 (3) | 2.14 (3) | 2.951 (3) | 159 (2) |
| N3—H2N3⋯O2ii | 0.82 (3) | 2.34 (3) | 3.140 (2) | 165 (3) |
| C10—H10A⋯O1ii | 0.98 (3) | 2.53 (3) | 3.507 (2) | 177 (2) |
| C11—H11A⋯O4iii | 0.99 (2) | 2.56 (2) | 3.216 (3) | 124 (2) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
HKF and KBS thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
supplementary crystallographic information
Comment
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title salt (I) is presented here.
The asymmetric unit of (I), Fig. 1, contains a protonated 2,3-diaminopyridinium cation and a 4-nitrobenzoate anion. In the 2,3-diaminopyridinium cation, a wide angle (123.62 (17)°) is subtended at the protonated N1 atom. The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.005 (2)Å for atom C1. The carboxylate group is twisted slightly from the ring; the dihedral angle between C1—C6 and O3/O4/C7/C6 planes is 5.41 (10)°. The nitro group is also slightly twisted away from its attached benzene ring by 2.28 (10)°.
In the crystal packing, Fig. 2, the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O3 and O4) via a pair of N—H···O hydrogen bonds forming a ring motif, R22(8) (Bernstein et al., 1995). The 2-amino groups (N2 and N3) are involved in N—H···O3 hydrogen bonding interactions to form a R12(7) ring motif. One of the amino group hydrogen atoms, H2N3, and the ring hydrogen atom, H10A, are connected to the 4-nitro group oxygen atoms (O1 and O2) to form an R22(8) ring motif (Table 1 and Fig. 2). These molecules are linked by these interactions into sheets parallel to (100). The crystal structure is further stabilized by a π-π stacking interactions between the aminopyridine- and carboxylate-rings with centroid-to-centroid distances of 3.8343 (10) Å.
Experimental
Hot methanol solutions (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and 4-nitrobenzoic acid (42 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of (I) appeared from the mother liquor after a few days.
Refinement
All the H atoms were located from the difference Fourier map [N–H = 0.82 (3)–0.99 (3)Å and C–H = 0.91 (2)–0.99 (2) Å] and allowed to refine freely. In the absence of significant anomalous scattering effects, 2144 Friedel pairs were merged.
Figures
Fig. 1.
The molecular structures of the ions in (I), illustrating the primary mode of association between them, showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate the hydrogen bonding.
Fig. 2.
The crystal packing of (I). Dashed lines indicate the hydrogen bondings.
Crystal data
| C5H8N3+·C7H4NO4− | F(000) = 288 |
| Mr = 276.26 | Dx = 1.504 Mg m−3 |
| Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2yb | Cell parameters from 2526 reflections |
| a = 8.0827 (2) Å | θ = 2.8–31.7° |
| b = 6.7365 (1) Å | µ = 0.12 mm−1 |
| c = 11.4489 (3) Å | T = 100 K |
| β = 101.967 (1)° | Block, brown |
| V = 609.83 (2) Å3 | 0.25 × 0.17 × 0.10 mm |
| Z = 2 |
Data collection
| Bruker SMART APEXII CCD area-detector diffractometer | 2808 independent reflections |
| Radiation source: fine-focus sealed tube | 2155 reflections with I > 2σ(I) |
| graphite | Rint = 0.045 |
| φ and ω scans | θmax = 34.9°, θmin = 2.6° |
| Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −12→12 |
| Tmin = 0.972, Tmax = 0.988 | k = −10→10 |
| 11659 measured reflections | l = −17→18 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0571P)2 + 0.026P] where P = (Fo2 + 2Fc2)/3 |
| 2808 reflections | (Δ/σ)max < 0.001 |
| 229 parameters | Δρmax = 0.43 e Å−3 |
| 1 restraint | Δρmin = −0.30 e Å−3 |
Special details
| Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | −0.0506 (2) | −0.7085 (2) | 0.85306 (17) | 0.0306 (4) | |
| O2 | −0.04637 (19) | −0.7831 (2) | 0.66897 (16) | 0.0269 (4) | |
| O3 | 0.35100 (19) | 0.1109 (2) | 0.60686 (14) | 0.0223 (3) | |
| O4 | 0.35695 (19) | 0.1713 (2) | 0.79972 (14) | 0.0210 (3) | |
| N4 | −0.0141 (2) | −0.6717 (3) | 0.75606 (18) | 0.0213 (4) | |
| C1 | 0.1816 (2) | −0.1740 (3) | 0.82546 (19) | 0.0178 (4) | |
| C2 | 0.1021 (2) | −0.3532 (3) | 0.8391 (2) | 0.0183 (4) | |
| C3 | 0.0723 (2) | −0.4824 (3) | 0.7432 (2) | 0.0178 (4) | |
| C4 | 0.1172 (2) | −0.4421 (3) | 0.6355 (2) | 0.0196 (4) | |
| C5 | 0.1973 (2) | −0.2624 (3) | 0.6234 (2) | 0.0180 (4) | |
| C6 | 0.2309 (2) | −0.1287 (3) | 0.71862 (19) | 0.0162 (4) | |
| C7 | 0.3201 (2) | 0.0666 (3) | 0.70675 (18) | 0.0169 (4) | |
| N1 | 0.5459 (2) | 0.4983 (2) | 0.80784 (16) | 0.0179 (3) | |
| N2 | 0.5600 (2) | 0.4619 (3) | 0.60992 (18) | 0.0213 (4) | |
| N3 | 0.7324 (2) | 0.8308 (3) | 0.62077 (18) | 0.0212 (4) | |
| C8 | 0.5959 (2) | 0.5681 (3) | 0.71027 (19) | 0.0166 (4) | |
| C9 | 0.6873 (2) | 0.7522 (3) | 0.72040 (19) | 0.0168 (4) | |
| C10 | 0.7217 (2) | 0.8451 (3) | 0.8301 (2) | 0.0197 (4) | |
| C11 | 0.6717 (2) | 0.7629 (3) | 0.9295 (2) | 0.0213 (4) | |
| C12 | 0.5820 (2) | 0.5895 (3) | 0.91644 (19) | 0.0199 (4) | |
| H1A | 0.201 (3) | −0.084 (4) | 0.887 (2) | 0.020 (6)* | |
| H2A | 0.068 (3) | −0.384 (4) | 0.914 (2) | 0.020 (6)* | |
| H4A | 0.089 (3) | −0.535 (5) | 0.569 (2) | 0.033 (7)* | |
| H5A | 0.232 (3) | −0.233 (4) | 0.547 (2) | 0.021 (6)* | |
| H10A | 0.782 (3) | 0.972 (5) | 0.834 (2) | 0.029 (7)* | |
| H11A | 0.711 (3) | 0.821 (4) | 1.010 (2) | 0.027 (7)* | |
| H12A | 0.540 (3) | 0.527 (4) | 0.978 (2) | 0.021 (6)* | |
| H1N1 | 0.478 (3) | 0.375 (5) | 0.793 (3) | 0.038 (8)* | |
| H1N2 | 0.497 (4) | 0.353 (5) | 0.608 (3) | 0.038 (8)* | |
| H2N2 | 0.579 (3) | 0.496 (4) | 0.542 (2) | 0.017 (6)* | |
| H1N3 | 0.735 (3) | 0.759 (5) | 0.560 (2) | 0.025 (7)* | |
| H2N3 | 0.806 (4) | 0.917 (5) | 0.635 (3) | 0.037 (8)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0374 (9) | 0.0213 (8) | 0.0368 (10) | −0.0086 (6) | 0.0162 (8) | 0.0038 (7) |
| O2 | 0.0274 (7) | 0.0170 (7) | 0.0348 (10) | −0.0058 (6) | 0.0027 (7) | −0.0027 (7) |
| O3 | 0.0293 (7) | 0.0175 (6) | 0.0226 (8) | −0.0035 (5) | 0.0109 (6) | 0.0002 (6) |
| O4 | 0.0281 (7) | 0.0164 (6) | 0.0199 (8) | −0.0056 (5) | 0.0083 (6) | −0.0023 (6) |
| N4 | 0.0165 (7) | 0.0146 (7) | 0.0320 (10) | −0.0015 (6) | 0.0030 (7) | 0.0026 (8) |
| C1 | 0.0213 (8) | 0.0139 (8) | 0.0187 (10) | −0.0012 (7) | 0.0053 (7) | −0.0008 (8) |
| C2 | 0.0185 (8) | 0.0155 (8) | 0.0215 (10) | −0.0007 (6) | 0.0054 (7) | 0.0030 (8) |
| C3 | 0.0166 (8) | 0.0116 (7) | 0.0255 (11) | −0.0015 (6) | 0.0053 (7) | 0.0010 (7) |
| C4 | 0.0216 (8) | 0.0132 (8) | 0.0249 (11) | −0.0008 (6) | 0.0067 (8) | −0.0015 (8) |
| C5 | 0.0205 (8) | 0.0146 (8) | 0.0196 (10) | −0.0010 (7) | 0.0056 (7) | −0.0018 (8) |
| C6 | 0.0176 (8) | 0.0111 (8) | 0.0201 (10) | 0.0012 (6) | 0.0043 (7) | 0.0032 (7) |
| C7 | 0.0180 (8) | 0.0128 (8) | 0.0208 (10) | 0.0003 (6) | 0.0058 (7) | 0.0008 (8) |
| N1 | 0.0188 (7) | 0.0161 (7) | 0.0191 (9) | −0.0021 (6) | 0.0048 (6) | 0.0004 (7) |
| N2 | 0.0300 (9) | 0.0176 (8) | 0.0182 (9) | −0.0056 (6) | 0.0094 (7) | −0.0014 (7) |
| N3 | 0.0273 (8) | 0.0178 (7) | 0.0201 (9) | −0.0061 (7) | 0.0089 (7) | −0.0003 (8) |
| C8 | 0.0158 (7) | 0.0136 (8) | 0.0208 (10) | −0.0012 (6) | 0.0046 (7) | 0.0007 (8) |
| C9 | 0.0157 (7) | 0.0161 (8) | 0.0189 (9) | 0.0003 (6) | 0.0042 (6) | 0.0023 (8) |
| C10 | 0.0199 (8) | 0.0168 (8) | 0.0228 (11) | −0.0021 (7) | 0.0055 (7) | −0.0018 (8) |
| C11 | 0.0210 (8) | 0.0225 (9) | 0.0206 (11) | −0.0001 (7) | 0.0051 (7) | −0.0028 (8) |
| C12 | 0.0201 (8) | 0.0223 (9) | 0.0176 (10) | −0.0010 (7) | 0.0045 (7) | 0.0004 (8) |
Geometric parameters (Å, °)
| O1—N4 | 1.232 (2) | N1—C8 | 1.349 (3) |
| O2—N4 | 1.232 (2) | N1—C12 | 1.363 (3) |
| O3—C7 | 1.256 (2) | N1—H1N1 | 0.99 (3) |
| O4—C7 | 1.260 (2) | N2—C8 | 1.333 (3) |
| N4—C3 | 1.476 (2) | N2—H1N2 | 0.89 (3) |
| C1—C2 | 1.391 (3) | N2—H2N2 | 0.85 (3) |
| C1—C6 | 1.397 (3) | N3—C9 | 1.373 (3) |
| C1—H1A | 0.92 (3) | N3—H1N3 | 0.85 (3) |
| C2—C3 | 1.383 (3) | N3—H2N3 | 0.82 (3) |
| C2—H2A | 0.98 (3) | C8—C9 | 1.435 (3) |
| C3—C4 | 1.382 (3) | C9—C10 | 1.379 (3) |
| C4—C5 | 1.394 (3) | C10—C11 | 1.399 (3) |
| C4—H4A | 0.98 (3) | C10—H10A | 0.98 (3) |
| C5—C6 | 1.396 (3) | C11—C12 | 1.367 (3) |
| C5—H5A | 0.99 (3) | C11—H11A | 0.99 (3) |
| C6—C7 | 1.520 (3) | C12—H12A | 0.94 (3) |
| O2—N4—O1 | 123.84 (17) | C8—N1—C12 | 123.62 (17) |
| O2—N4—C3 | 118.06 (18) | C8—N1—H1N1 | 113.8 (17) |
| O1—N4—C3 | 118.10 (18) | C12—N1—H1N1 | 122.6 (17) |
| C2—C1—C6 | 120.69 (19) | C8—N2—H1N2 | 119.0 (19) |
| C2—C1—H1A | 119.4 (17) | C8—N2—H2N2 | 126.1 (17) |
| C6—C1—H1A | 119.9 (17) | H1N2—N2—H2N2 | 114 (2) |
| C3—C2—C1 | 117.7 (2) | C9—N3—H1N3 | 121 (2) |
| C3—C2—H2A | 122.2 (16) | C9—N3—H2N3 | 114 (2) |
| C1—C2—H2A | 120.1 (16) | H1N3—N3—H2N3 | 115 (3) |
| C4—C3—C2 | 123.38 (18) | N2—C8—N1 | 118.49 (17) |
| C4—C3—N4 | 118.44 (18) | N2—C8—C9 | 123.34 (19) |
| C2—C3—N4 | 118.18 (18) | N1—C8—C9 | 118.16 (18) |
| C3—C4—C5 | 118.21 (19) | N3—C9—C10 | 122.90 (18) |
| C3—C4—H4A | 120.7 (17) | N3—C9—C8 | 119.10 (19) |
| C5—C4—H4A | 121.1 (17) | C10—C9—C8 | 117.97 (18) |
| C4—C5—C6 | 120.13 (19) | C9—C10—C11 | 121.58 (18) |
| C4—C5—H5A | 118.6 (16) | C9—C10—H10A | 116.5 (16) |
| C6—C5—H5A | 121.2 (16) | C11—C10—H10A | 121.9 (16) |
| C5—C6—C1 | 119.87 (17) | C12—C11—C10 | 119.1 (2) |
| C5—C6—C7 | 120.51 (17) | C12—C11—H11A | 120.1 (16) |
| C1—C6—C7 | 119.62 (17) | C10—C11—H11A | 120.5 (16) |
| O3—C7—O4 | 125.37 (18) | N1—C12—C11 | 119.6 (2) |
| O3—C7—C6 | 118.35 (18) | N1—C12—H12A | 115.8 (16) |
| O4—C7—C6 | 116.28 (17) | C11—C12—H12A | 124.6 (16) |
| C6—C1—C2—C3 | −0.8 (3) | C1—C6—C7—O3 | −174.40 (17) |
| C1—C2—C3—C4 | −0.1 (3) | C5—C6—C7—O4 | −174.72 (17) |
| C1—C2—C3—N4 | −179.16 (16) | C1—C6—C7—O4 | 5.6 (2) |
| O2—N4—C3—C4 | −1.9 (3) | C12—N1—C8—N2 | 177.00 (18) |
| O1—N4—C3—C4 | 178.55 (18) | C12—N1—C8—C9 | −2.2 (3) |
| O2—N4—C3—C2 | 177.21 (18) | N2—C8—C9—N3 | 3.9 (3) |
| O1—N4—C3—C2 | −2.3 (3) | N1—C8—C9—N3 | −176.90 (17) |
| C2—C3—C4—C5 | 0.4 (3) | N2—C8—C9—C10 | −177.88 (18) |
| N4—C3—C4—C5 | 179.44 (17) | N1—C8—C9—C10 | 1.3 (2) |
| C3—C4—C5—C6 | 0.2 (3) | N3—C9—C10—C11 | 178.94 (19) |
| C4—C5—C6—C1 | −1.0 (3) | C8—C9—C10—C11 | 0.8 (3) |
| C4—C5—C6—C7 | 179.32 (16) | C9—C10—C11—C12 | −2.1 (3) |
| C2—C1—C6—C5 | 1.3 (3) | C8—N1—C12—C11 | 0.9 (3) |
| C2—C1—C6—C7 | −179.02 (17) | C10—C11—C12—N1 | 1.3 (3) |
| C5—C6—C7—O3 | 5.3 (3) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1N1···O4 | 0.99 (3) | 1.70 (3) | 2.671 (2) | 167 (3) |
| N2—H1N2···O3 | 0.89 (3) | 2.01 (3) | 2.901 (2) | 178 (5) |
| N2—H2N2···O3i | 0.86 (2) | 2.06 (2) | 2.903 (2) | 171 (2) |
| N3—H1N3···O3i | 0.85 (3) | 2.14 (3) | 2.951 (3) | 159 (2) |
| N3—H2N3···O2ii | 0.82 (3) | 2.34 (3) | 3.140 (2) | 165 (3) |
| C10—H10A···O1ii | 0.98 (3) | 2.53 (3) | 3.507 (2) | 176.9 (16) |
| C11—H11A···O4iii | 0.99 (2) | 2.56 (2) | 3.216 (3) | 123.5 (19) |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x+1, y+2, z; (iii) −x+1, y+1/2, −z+2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2462).
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
- Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding Oxford University Press.
- Jeffrey, G. A. & Saenger, W. (1991). In Hydrogen Bonding in Biological Structures Berlin: Springer.
- Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
- Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society New York: Wiley.
- Scheiner, S. (1997). In Hydrogen Bonding, A Theoretical Perspective Oxford University Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902100X/tk2462sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680902100X/tk2462Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


