Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 10;65(Pt 7):o1545. doi: 10.1107/S1600536809020765

N-(9H-Fluoren-9-yl­idene)-4-methyl­aniline

Su-Zhen Bai a, Xin-Hua Lou b,*, Hong-Mei Li c, Hui Shi a
PMCID: PMC2969441  PMID: 21582831

Abstract

In the title compound, C20H15N, the fluorene unit is essentially planar [r.m.s. deviation 0.0334 Å] and the benzene ring bound to the imine N atom bears a methyl group which is nearly coplanar [dihedral angle 0.5 (1)°]. The dihedral angle between the substituent benzene ring and the 9H-fluoren-9-imine unit is 71.1 (3)°. Inter­molecular π–π inter­actions between the benzene rings of adjacent fluorene units [centroid–centroid distance 3.8081 (13) Å] are present in the crystal structure, resulting in a one-dimensional supra­molecular architecture.

Related literature

For the properties of Schiff bases, see: Xu et al. (2007); Tanaka et al. (2006). For the properties of fluorene derivatives, see: Saragi et al. (2004). For related structures, see: Glagovich et al. (2004); Peters et al. (1998); Pierre et al. (1997).graphic file with name e-65-o1545-scheme1.jpg

Experimental

Crystal data

  • C20H15N

  • M r = 269.33

  • Monoclinic, Inline graphic

  • a = 5.6423 (10) Å

  • b = 12.187 (2) Å

  • c = 21.310 (4) Å

  • β = 94.441 (2)°

  • V = 1460.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 294 K

  • 0.35 × 0.17 × 0.09 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.976, T max = 0.994

  • 10793 measured reflections

  • 2711 independent reflections

  • 1779 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.115

  • S = 1.01

  • 2711 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020765/si2179sup1.cif

e-65-o1545-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020765/si2179Isup2.hkl

e-65-o1545-Isup2.hkl (133.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the High-Level Personnel to Start Research Fund of Pingdingshan University (No. 2006044).

supplementary crystallographic information

Comment

Schiff bases have received much attention during the past decades because of their strong coordination capability and diverse biological activities (Xu et al., 2007; Tanaka et al., 2006). In addition, fluorene derivatives have found many applications in chemistry, especially in the optoelectronic area (Saragi et al., 2004). In view of these important properties, the crystal structure of the title compond has been determined.

In the title compound (Fig.1), the C12—N1—C14 angle of 120.76 (15)° and the N1—C12 bond distance of 1.278 (2)Å are in close agreement with the similar Nfluorenylideneaniline (Glagovich et al., 2004; Peters et al., 1998; Pierre et al., 1997). The fluorene unit is essentially planar and the benzene ring bound to the imine N atom bears a methyl that is nearly coplanar. The dihedral angle between the substituent benzene ring and the 9H-fluoren-9-imine unit is 108.9 (3)°. Intermolecular π···π interactions between the benzene rings of adjacent fluorene units [centroid-centroid distance is 3.8081 (13) Å, the average perpendicular distance is 3.469 Å, the dihedral angle between the rings is 3.7°, symmetry code = -1 + x, y, z] are present in the crystal structure, resulting in a one-dimensional supramolecular architecture (Fig. 2).

Experimental

The title compound was obtained from the condensation reaction of 9-fluorenone and 4-methylaniline as described in literature (Glagovich et al., 2004) and recrystallized from ethanol solution at room temperature to give the desired product as yellow crystals suitable for single-crystal X-ray diffraction.

Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uiso(H)=1.2Ueq(C) (1.5Ueq for methyl H).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at the 30% probability level. H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

Partial view of the crystal packing showing the formation of the chain motif of molecules formed by the intermolecular π···π interactions. H atoms are omitted for clarity.

Crystal data

C20H15N F(000) = 568
Mr = 269.33 Dx = 1.225 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 5.6423 (10) Å Cell parameters from 1911 reflections
b = 12.187 (2) Å θ = 2.5–22.3°
c = 21.310 (4) Å µ = 0.07 mm1
β = 94.441 (2)° T = 294 K
V = 1460.9 (5) Å3 Block, yellow
Z = 4 0.35 × 0.17 × 0.09 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2711 independent reflections
Radiation source: fine-focus sealed tube 1779 reflections with I > 2σ(I)
graphite Rint = 0.042
phi and ω scans θmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→6
Tmin = 0.976, Tmax = 0.994 k = −14→14
10793 measured reflections l = −25→25

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.052P)2 + 0.1725P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2711 reflections Δρmax = 0.13 e Å3
192 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0105 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0001 (3) 0.30235 (15) 0.13059 (9) 0.0507 (5)
H1 −0.0938 0.3086 0.0929 0.061*
C2 −0.0545 (4) 0.36053 (16) 0.18339 (10) 0.0582 (5)
H2 −0.1869 0.4062 0.1810 0.070*
C3 0.0836 (4) 0.35188 (16) 0.23918 (10) 0.0604 (5)
H3 0.0452 0.3931 0.2737 0.072*
C4 0.2787 (3) 0.28289 (15) 0.24478 (9) 0.0544 (5)
H4 0.3701 0.2762 0.2828 0.065*
C5 0.3348 (3) 0.22414 (13) 0.19248 (8) 0.0435 (4)
C6 0.5230 (3) 0.14217 (13) 0.18583 (8) 0.0433 (4)
C7 0.7076 (3) 0.10822 (14) 0.22712 (9) 0.0508 (5)
H7 0.7270 0.1372 0.2676 0.061*
C8 0.8643 (3) 0.03010 (15) 0.20743 (9) 0.0549 (5)
H8 0.9901 0.0065 0.2349 0.066*
C9 0.8350 (3) −0.01288 (16) 0.14735 (9) 0.0557 (5)
H9 0.9409 −0.0657 0.1350 0.067*
C10 0.6513 (3) 0.02124 (14) 0.10530 (9) 0.0506 (5)
H10 0.6328 −0.0077 0.0648 0.061*
C11 0.4954 (3) 0.09953 (13) 0.12487 (8) 0.0432 (4)
C12 0.2980 (3) 0.15766 (13) 0.08907 (8) 0.0440 (4)
C13 0.1986 (3) 0.23442 (13) 0.13519 (8) 0.0428 (4)
C14 0.0834 (3) 0.21043 (15) −0.00479 (8) 0.0481 (5)
C15 −0.1301 (3) 0.17101 (16) −0.03143 (9) 0.0544 (5)
H15 −0.1735 0.0986 −0.0246 0.065*
C16 −0.2793 (4) 0.23849 (16) −0.06821 (9) 0.0598 (5)
H16 −0.4241 0.2110 −0.0852 0.072*
C17 −0.2197 (4) 0.34635 (17) −0.08065 (9) 0.0579 (5)
C18 −0.0037 (4) 0.38372 (16) −0.05457 (9) 0.0612 (5)
H18 0.0417 0.4554 −0.0625 0.073*
C19 0.1475 (4) 0.31784 (16) −0.01699 (9) 0.0592 (5)
H19 0.2921 0.3454 0.0001 0.071*
C20 −0.3829 (4) 0.4195 (2) −0.12150 (12) 0.0880 (8)
H20A −0.3234 0.4263 −0.1623 0.132*
H20B −0.3899 0.4907 −0.1024 0.132*
H20C −0.5393 0.3880 −0.1257 0.132*
N1 0.2459 (3) 0.14086 (12) 0.03045 (7) 0.0521 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0542 (11) 0.0462 (10) 0.0518 (11) 0.0015 (9) 0.0048 (9) 0.0011 (9)
C2 0.0594 (12) 0.0508 (11) 0.0659 (14) 0.0066 (9) 0.0144 (11) −0.0045 (10)
C3 0.0717 (14) 0.0513 (12) 0.0600 (13) 0.0007 (10) 0.0164 (11) −0.0119 (10)
C4 0.0629 (12) 0.0494 (11) 0.0507 (11) −0.0054 (9) 0.0037 (9) −0.0071 (9)
C5 0.0486 (10) 0.0379 (9) 0.0443 (10) −0.0061 (8) 0.0062 (8) −0.0038 (8)
C6 0.0477 (10) 0.0395 (9) 0.0429 (10) −0.0065 (8) 0.0040 (8) 0.0014 (8)
C7 0.0565 (11) 0.0494 (11) 0.0457 (11) −0.0039 (9) −0.0005 (9) 0.0003 (9)
C8 0.0497 (11) 0.0555 (12) 0.0587 (13) 0.0015 (9) −0.0008 (10) 0.0083 (10)
C9 0.0585 (12) 0.0521 (11) 0.0578 (13) 0.0085 (9) 0.0123 (10) 0.0071 (10)
C10 0.0630 (12) 0.0441 (10) 0.0455 (11) 0.0034 (9) 0.0102 (9) 0.0023 (8)
C11 0.0497 (10) 0.0365 (9) 0.0438 (10) −0.0017 (8) 0.0053 (8) 0.0022 (8)
C12 0.0509 (11) 0.0381 (9) 0.0434 (11) −0.0027 (8) 0.0064 (8) 0.0007 (8)
C13 0.0494 (10) 0.0350 (9) 0.0446 (10) −0.0043 (8) 0.0075 (8) −0.0004 (8)
C14 0.0591 (12) 0.0486 (10) 0.0366 (10) 0.0046 (9) 0.0029 (9) −0.0027 (8)
C15 0.0632 (12) 0.0498 (11) 0.0502 (11) −0.0031 (10) 0.0038 (10) 0.0021 (9)
C16 0.0562 (12) 0.0647 (13) 0.0572 (12) −0.0059 (10) −0.0030 (10) 0.0009 (10)
C17 0.0627 (13) 0.0626 (13) 0.0478 (11) 0.0034 (10) 0.0006 (10) 0.0082 (10)
C18 0.0700 (14) 0.0521 (12) 0.0610 (13) −0.0019 (10) 0.0020 (11) 0.0089 (10)
C19 0.0609 (12) 0.0554 (12) 0.0597 (13) −0.0027 (10) −0.0046 (10) 0.0022 (10)
C20 0.0844 (17) 0.0904 (18) 0.0862 (18) 0.0081 (14) −0.0126 (14) 0.0261 (14)
N1 0.0638 (10) 0.0489 (9) 0.0431 (9) 0.0066 (8) 0.0002 (8) −0.0012 (7)

Geometric parameters (Å, °)

C1—C2 1.385 (3) C10—H10 0.9300
C1—C13 1.390 (2) C11—C12 1.481 (2)
C1—H1 0.9300 C12—N1 1.278 (2)
C2—C3 1.374 (3) C12—C13 1.497 (2)
C2—H2 0.9300 C14—C15 1.378 (2)
C3—C4 1.383 (3) C14—C19 1.388 (3)
C3—H3 0.9300 C14—N1 1.420 (2)
C4—C5 1.382 (2) C15—C16 1.378 (3)
C4—H4 0.9300 C15—H15 0.9300
C5—C13 1.397 (2) C16—C17 1.387 (3)
C5—C6 1.473 (2) C16—H16 0.9300
C6—C7 1.374 (2) C17—C18 1.377 (3)
C6—C11 1.397 (2) C17—C20 1.509 (3)
C7—C8 1.386 (3) C18—C19 1.381 (3)
C7—H7 0.9300 C18—H18 0.9300
C8—C9 1.381 (3) C19—H19 0.9300
C8—H8 0.9300 C20—H20A 0.9600
C9—C10 1.381 (2) C20—H20B 0.9600
C9—H9 0.9300 C20—H20C 0.9600
C10—C11 1.384 (2)
C2—C1—C13 118.45 (18) C6—C11—C12 109.05 (15)
C2—C1—H1 120.8 N1—C12—C11 122.27 (16)
C13—C1—H1 120.8 N1—C12—C13 132.28 (16)
C3—C2—C1 121.13 (18) C11—C12—C13 105.42 (14)
C3—C2—H2 119.4 C1—C13—C5 120.05 (16)
C1—C2—H2 119.4 C1—C13—C12 131.81 (16)
C2—C3—C4 121.03 (18) C5—C13—C12 108.00 (15)
C2—C3—H3 119.5 C15—C14—C19 118.94 (17)
C4—C3—H3 119.5 C15—C14—N1 121.18 (17)
C5—C4—C3 118.41 (18) C19—C14—N1 119.68 (17)
C5—C4—H4 120.8 C16—C15—C14 120.18 (18)
C3—C4—H4 120.8 C16—C15—H15 119.9
C4—C5—C13 120.91 (17) C14—C15—H15 119.9
C4—C5—C6 129.85 (17) C15—C16—C17 121.85 (19)
C13—C5—C6 109.18 (15) C15—C16—H16 119.1
C7—C6—C11 120.53 (16) C17—C16—H16 119.1
C7—C6—C5 131.23 (16) C18—C17—C16 117.14 (18)
C11—C6—C5 108.22 (15) C18—C17—C20 121.3 (2)
C6—C7—C8 118.85 (18) C16—C17—C20 121.6 (2)
C6—C7—H7 120.6 C17—C18—C19 121.97 (19)
C8—C7—H7 120.6 C17—C18—H18 119.0
C9—C8—C7 120.51 (18) C19—C18—H18 119.0
C9—C8—H8 119.7 C18—C19—C14 119.90 (18)
C7—C8—H8 119.7 C18—C19—H19 120.1
C10—C9—C8 121.14 (18) C14—C19—H19 120.1
C10—C9—H9 119.4 C17—C20—H20A 109.5
C8—C9—H9 119.4 C17—C20—H20B 109.5
C9—C10—C11 118.36 (17) H20A—C20—H20B 109.5
C9—C10—H10 120.8 C17—C20—H20C 109.5
C11—C10—H10 120.8 H20A—C20—H20C 109.5
C10—C11—C6 120.60 (17) H20B—C20—H20C 109.5
C10—C11—C12 130.17 (16) C12—N1—C14 120.76 (15)
C13—C1—C2—C3 0.1 (3) C2—C1—C13—C5 1.4 (3)
C1—C2—C3—C4 −1.4 (3) C2—C1—C13—C12 176.50 (17)
C2—C3—C4—C5 1.2 (3) C4—C5—C13—C1 −1.6 (3)
C3—C4—C5—C13 0.3 (3) C6—C5—C13—C1 176.08 (15)
C3—C4—C5—C6 −176.88 (17) C4—C5—C13—C12 −177.78 (15)
C4—C5—C6—C7 −6.8 (3) C6—C5—C13—C12 −0.07 (18)
C13—C5—C6—C7 175.76 (17) N1—C12—C13—C1 8.8 (3)
C4—C5—C6—C11 175.26 (18) C11—C12—C13—C1 −173.40 (17)
C13—C5—C6—C11 −2.18 (18) N1—C12—C13—C5 −175.62 (18)
C11—C6—C7—C8 −0.7 (3) C11—C12—C13—C5 2.14 (17)
C5—C6—C7—C8 −178.41 (17) C19—C14—C15—C16 −1.7 (3)
C6—C7—C8—C9 −0.1 (3) N1—C14—C15—C16 −176.54 (17)
C7—C8—C9—C10 0.6 (3) C14—C15—C16—C17 1.2 (3)
C8—C9—C10—C11 −0.3 (3) C15—C16—C17—C18 0.0 (3)
C9—C10—C11—C6 −0.4 (3) C15—C16—C17—C20 179.4 (2)
C9—C10—C11—C12 174.14 (17) C16—C17—C18—C19 −0.7 (3)
C7—C6—C11—C10 1.0 (3) C20—C17—C18—C19 179.9 (2)
C5—C6—C11—C10 179.15 (15) C17—C18—C19—C14 0.2 (3)
C7—C6—C11—C12 −174.66 (15) C15—C14—C19—C18 1.0 (3)
C5—C6—C11—C12 3.53 (18) N1—C14—C19—C18 175.92 (17)
C10—C11—C12—N1 −0.5 (3) C11—C12—N1—C14 −169.33 (16)
C6—C11—C12—N1 174.52 (16) C13—C12—N1—C14 8.1 (3)
C10—C11—C12—C13 −178.57 (17) C15—C14—N1—C12 −115.92 (19)
C6—C11—C12—C13 −3.52 (18) C19—C14—N1—C12 69.2 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2179).

References

  1. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Glagovich, N., Reed, E., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004). Acta Cryst. E60, o623–o625.
  3. Peters, K., Peters, E. M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct.213, 607-608.
  4. Pierre, F., Moinet, C. & Toupet, L. (1997). J. Organomet. Chem.527, 51-64.
  5. Saragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett.84, 2334-2336.
  6. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tanaka, T., Yasuda, Y. & Hayashi, M. (2006). J. Org. Chem71, 7091-7093. [DOI] [PubMed]
  9. Xu, C., Mao, H. Y., Shen, X. Q., Zhang, H. Y., Liu, H. L., Wu, Q. A., Hou, H. W. & Zhu, Y. (2007). J. Coord. Chem.60, 193-200.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020765/si2179sup1.cif

e-65-o1545-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020765/si2179Isup2.hkl

e-65-o1545-Isup2.hkl (133.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES