Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1637–o1638. doi: 10.1107/S160053680902265X

4-Chloro-N-(2,6-dichloro­phen­yl)benzamide

Miroslav Tokarčík a, B Thimme Gowda b, Jozef Kožíšek a, B P Sowmya b, Hartmut Fuess c,*
PMCID: PMC2969447  PMID: 21582902

Abstract

The title compound, C13H8Cl3NO, crystallizes with four mol­ecules in the asymmetric unit. In the mol­ecular structure, the conformations of the central amide –CONH group show a wide range of dihedral angles with respect to the attached aromatic rings (benzoyl and anilino). The dihedral angles between the amide group and the benzoyl ring are 8.1 (3), 4.3 (3), 27.8 (1) and 32.7 (2)° in the four mol­ecules. The amide group is twisted out of the plane of the anilino ring, as shown by the dihedral angles of 85.4 (1), 74.3 (1), 88.1 (1) and 77.6 (1)° in the four mol­ecules. The aromatic rings are oriented at dihedral angles of 86.6 (1), 78.0 (1), 60.3 (1) and 69.8 (1)° in the four mol­ecules. The crystal structure is stabilized via inter­molecular N—H⋯O hydrogen bonds, aromatic aromatic inter­actions, short Cl⋯Cl contacts and C—H⋯Cl hydrogen bonds. Inter­molecular hydrogen bonds connect the mol­ecules into two distinct chains running along the c axis of the crystal. One mol­ecule forms an inversion dimer in which the main inter­actions are π–π stacking [centroid–centroid distances = 3.749 (1) and 3.760 (1) Å] and a short Cl⋯Cl contact of 3.408 (1) Å.

Related literature

For the biological activity of benzamide and benzanilide derivatives, see: Glaser (2007); Pasha et al. (2008); Brunhofer et al. (2008); Calderone et al. (2006); Stauffer et al. (2000); Lindgren et al. (2001). For anion recognition, see: Kang et al. (2006); Sun et al. (2009). For theoretical study of inter­nal rotations, see: Nishikawa et al. (2005). For related structures, see: Bowes et al. (2003); Gowda et al. (2003); Saeed et al. (2008).graphic file with name e-65-o1637-scheme1.jpg

Experimental

Crystal data

  • C13H8Cl3NO

  • M r = 300.55

  • Monoclinic, Inline graphic

  • a = 16.9411 (3) Å

  • b = 16.3246 (2) Å

  • c = 19.5505 (3) Å

  • β = 95.3678 (13)°

  • V = 5383.11 (14) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 295 K

  • 0.51 × 0.11 × 0.09 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2008), based on Clark & Reid (1995)] T min = 0.754, T max = 0.944

  • 180094 measured reflections

  • 10264 independent reflections

  • 5984 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.107

  • S = 0.98

  • 10278 reflections

  • 670 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902265X/zl2218sup1.cif

e-65-o1637-sup1.cif (35.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902265X/zl2218Isup2.hkl

e-65-o1637-Isup2.hkl (492.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1N⋯O1Di 0.855 (16) 2.066 (17) 2.882 (2) 159 (2)
N1B—H2N⋯O1Cii 0.816 (15) 2.117 (17) 2.880 (2) 156 (2)
N1C—H3N⋯O1B 0.842 (15) 2.054 (16) 2.875 (2) 165 (2)
N1D—H4N⋯O1Aiii 0.844 (16) 1.942 (19) 2.728 (2) 154 (2)
C7A—H7A⋯O1Di 0.93 2.59 3.489 (3) 164
C10C—H10C⋯Cl2Biv 0.93 2.82 3.599 (3) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

Various biological activities of benzamide and benzanilide derivatives have been reported in the literature: benzamide based histone deacetylase inhibitors (Glaser 2007), N-phenylbenzamides as antimicrobial agents (Pasha et al., 2008), benzanilides with spasmolytic activity (Brunhofer et al., 2008), benzanilide derivatives as effective potassium channel openers (Calderone et al., 2006), N-phenyl benzamides as estrogen receptor ligands (Stauffer et al., 2000), N-substituted benzamides with immuno-modulatory activity (Lindgren et al., 2001). In supramolecular chemistry, aromatic amides are widely used for anion recognition (Kang et al., 2006). Sun et al. (2009) reported nitrophenylbenzamide based chemosensors toward cyanide in aqueous environment. Nishikawa et al. (2005) performed DFT-calculations of barriers to internal rotations in aromatic polyamides, including benzanilide.

The title compound, C13H8Cl3NO, (Fig.1), has four unique molecules in the asymmetric unit (further marked as A, B, C and D). In the molecular structure, the conformations of the central amide group CONH with respect to the attached aromatic rings (benzoyl C2/C7, anilino C8/C13) show a wide range of dihedral angle values, which is an indication that the energy of intermolecular interactions is comparable to the barriers of internal rotations. The dihedral angle between the amide group and the benzoyl ring is 8.1 (3), 4.3 (3), 27.8 (1) and 32.7 (2)° in the molecules A, B, C and D, respectively. The amide group is heavily twisted out of the plane of the anilino ring, with dihedral angles of 85.4 (1), 74.3 (1), 88.1 (1), 77.6 (1)° for the molecules A, B, C and D, respectively. This conformation can be attributed to the steric effect of the bulky chloro groups in ortho positions. We recall that the corresponding dihedral angle in the parent molecule benzanilide is ca 31° (Bowes, et al., 2003). The aromatic rings (benzoyl and anilino) are oriented at dihedral angles of 86.6 (1), 78.0 (1), 60.3 (1) and 69.8 (1)° in the molecules A, B, C and D, respectively. In benzanilide, the aromatic rings make a dihedral angle of ca 61°. The bond lengths and bond angles lie within the ranges expected for similar compounds. The endocyclic bond angles in both aromatic rings are sligtly distorted from the ideal value of 120°, reflecting the chloro-substitution effect on the benzene rings. The orientation of an amide group with respect to aromatic rings strongly depends on the local crystal field, which is manifested by significant differences in the torsion angles describing the conformations in the molecules A, B, C and D.

The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds, aromatic aromatic interactions, short Cl···Cl contacts and weak C—H···Cl hydrogen bonds. Intermolecular N—H···O hydrogen bonds connect the molecules into two distinct chains running along the c axis of the crystal (Fig. 2). The first chain is linked by hydrogen bonds arising between amidic N, O atoms of the molecules A and D. The second chain is linked by hydrogen bonds arising between amidic N, O atoms of the molecules B and C. The chains are coupled via stacking interactions. The two most important π - π stacking formations, which we found using the PLATON software (Spek, 2009), are: The stacking between the benzoyl rings of the molecule C at the positions (x,y,z) and (1 - x,1 - y,1 - z). The interplanar distance is 3.538 Å, offset 1.241 Å and ring-centroids separation 3.749 Å. The second stacking is between the anilino rings of the molecule C at the positions (x, y, z) and (1 - x, -y, 1 - z). The interplanar distance is 3.411 Å, offset 1.582 Å and ring-centroids separation 3.760 Å. The molecule C forms an interesting inversion dimer (Fig. 3), with a head-to-tail arrangement. The dimer is stabilized by π - π interaction, a short Cl···Cl contact of 3.408 (1) Å, and possibly dipolar interaction between carbonyl group dipoles. A non-conventional C—H···Cl hydrogen bond (C10c—H10c···Cl2b) adds to the mosaic of interactions in the crystal structure of the title compound. The H10c···Cl2b distance of 2.82 Å is 0.13 Å shorter than the the sum of van der Waals radii for H and Cl.

Experimental

The title compound was prepared according to the method of Gowda et al. (2003). Single crystals used in X-ray diffraction studies were obtained by slow evaporation of its ethanolic solution at room temperature. The purity of the compound was checked by determining its melting point (172–173 °C). The compound was characterized via IR and NMR spectroscopy. IR (KBr, cm-1): 3271.0 m (N–H stretch), 1654.8 s (C=O stretch), 1299.9 m (C–N stretch). [s = strong band, m = medium band]. 1H NMR (CDCl3, 300 MHz, p.p.m.): 7.67 (H–N), 7.40 d (H-3,7), 7.23 d (H-11), 7.88 d (H-3,7), 7.46 d (H-4,6). 13C NMR (CDCl3, 75.5 MHz, p.p.m.): 164.8 (C=O), 132.0 (C-2), 128.9 (C-3,7), 129.1 (C-4,6), 133.7 (C-5), 138.7 (C-8), 131.6 (C-9,13), 128.8 (C-10,12), 128.6 (C-11).

Refinement

Most of hydrogen atoms were placed in calculated positions with C–H distances in the range 0.93–0.96 Å and constrained to ride on their parent atoms. Amide H atoms were seen in difference maps and were refined with the N–H distances restrained to 0.85 (2) Å. Hydrogen atoms H10, H11 and H12 in the molecule D were refined with C–H distance restrained to 0.94 (3) Å with the aim to remove a Hirschfeld test alert. The U values of 8 carbon atoms and 2 chlorine atoms were subject to a rigid bond restraint (DELU command), i.e. the components of the displacement parameters in the direction of the bond were restrained to be equal within an effective standard deviation (e.s.d. = 0.007 for atoms C2a, C3a, C8c, C9c, C13c, Cl3c, C10d, C11d and e.s.d. = 0.004 for atoms C13d and Cl3d). The Uiso(H) values were set at 1.2Ueq(C-aromatic,N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing the formation of the hydrogen-bonded chains running along the c axis. Symmetry codes: (i) x - 1, -y + 1/2, z - 1/2, (ii) x, -y + 1/2, z - 1/2, (iii) x + 1, y, z. H atoms not involved in hydrogen bonding are omitted.

Fig. 3.

Fig. 3.

The inversion dimer of the molecule C. The main interaction is π-stacking of benzoyl rings, marked via their centroids Cg1, Cg1(v). Symmetry code: (v) 1 - x, 1 - y, 1 - z. Ring-centroid separation and short Cl···Cl contacts are shown as dashed lines.

Crystal data

C13H8Cl3NO F(000) = 2432
Mr = 300.55 Dx = 1.483 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 40513 reflections
a = 16.9411 (3) Å θ = 3.0–29.6°
b = 16.3246 (2) Å µ = 0.67 mm1
c = 19.5505 (3) Å T = 295 K
β = 95.3678 (13)° Needle, colourless
V = 5383.11 (14) Å3 0.51 × 0.11 × 0.09 mm
Z = 16

Data collection

Oxford Diffraction Xcalibur diffractometer Rint = 0.053
graphite θmax = 25.8°, θmin = 2.3°
ω scans with κ offsets h = −20→20
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2008), based on Clark & Reid (1995)] k = −19→19
Tmin = 0.754, Tmax = 0.944 l = −23→23
180094 measured reflections 3 standard reflections every 120 min
10264 independent reflections intensity decay: 0.5%
5984 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0583P)2] where P = (Fo2 + 2Fc2)/3
10278 reflections (Δ/σ)max < 0.001
670 parameters Δρmax = 0.33 e Å3
15 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A −0.01521 (12) 0.24995 (13) 0.20152 (9) 0.0679 (6)
H1N −0.0020 (14) 0.2564 (15) 0.1607 (9) 0.081*
O1A 0.00098 (11) 0.27519 (12) 0.31328 (7) 0.0872 (6)
Cl1A 0.34739 (5) 0.42659 (5) 0.23734 (4) 0.1008 (3)
Cl2A −0.02618 (5) 0.06753 (5) 0.21458 (4) 0.1059 (3)
Cl3A −0.14461 (5) 0.37320 (5) 0.19803 (4) 0.1009 (3)
C1A 0.02724 (13) 0.27901 (14) 0.25719 (10) 0.0578 (6)
C2A 0.10565 (13) 0.31648 (13) 0.24908 (9) 0.0517 (5)
C3A 0.15350 (15) 0.33685 (15) 0.30778 (11) 0.0658 (6)
H3A 0.1354 0.3275 0.3505 0.079*
C4A 0.22717 (16) 0.37056 (15) 0.30429 (12) 0.0711 (7)
H4A 0.2586 0.3838 0.3443 0.085*
C5A 0.25378 (14) 0.38453 (14) 0.24193 (12) 0.0643 (6)
C6A 0.20812 (16) 0.36548 (17) 0.18329 (12) 0.0800 (8)
H6A 0.2264 0.3757 0.1407 0.096*
C7A 0.13480 (15) 0.33111 (16) 0.18723 (11) 0.0735 (7)
H7A 0.1041 0.3174 0.1469 0.088*
C8A −0.09215 (14) 0.21751 (17) 0.20417 (10) 0.0627 (6)
C9A −0.10499 (15) 0.13470 (18) 0.20852 (11) 0.0702 (7)
C10A −0.18105 (19) 0.10314 (19) 0.20735 (12) 0.0800 (8)
H10A −0.1888 0.047 0.2109 0.096*
C11A −0.24487 (17) 0.1553 (2) 0.20087 (12) 0.0820 (8)
H11A −0.296 0.1342 0.1987 0.098*
C12A −0.23399 (16) 0.2376 (2) 0.19764 (11) 0.0807 (8)
H12A −0.2775 0.2726 0.1939 0.097*
C13A −0.15816 (16) 0.26914 (17) 0.19990 (10) 0.0712 (7)
N1B 0.54004 (11) 0.25961 (12) 0.28954 (8) 0.0578 (5)
H2N 0.5318 (13) 0.2534 (14) 0.2481 (8) 0.069*
O1B 0.49853 (9) 0.25248 (11) 0.39413 (7) 0.0762 (5)
Cl1B 0.17328 (5) 0.09853 (6) 0.22580 (6) 0.1275 (3)
Cl2B 0.65068 (5) 0.13398 (5) 0.35411 (4) 0.1043 (3)
Cl3B 0.56847 (5) 0.43598 (5) 0.26545 (4) 0.1017 (3)
C1B 0.48504 (13) 0.24196 (13) 0.33249 (10) 0.0517 (5)
C2B 0.40793 (12) 0.20796 (12) 0.30239 (10) 0.0484 (5)
C3B 0.35060 (15) 0.19335 (15) 0.34661 (12) 0.0658 (6)
H3B 0.3606 0.2064 0.3929 0.079*
C4B 0.27899 (16) 0.15970 (16) 0.32283 (16) 0.0787 (7)
H4B 0.2407 0.1497 0.353 0.094*
C5B 0.26417 (15) 0.14095 (15) 0.25493 (17) 0.0753 (7)
C6B 0.31894 (17) 0.15589 (18) 0.21067 (14) 0.0841 (8)
H6B 0.308 0.1438 0.1643 0.101*
C7B 0.39097 (15) 0.18910 (15) 0.23434 (11) 0.0700 (7)
H7B 0.4287 0.1989 0.2037 0.084*
C8B 0.61598 (13) 0.28835 (14) 0.31361 (9) 0.0520 (5)
C9B 0.67220 (15) 0.23618 (16) 0.34592 (11) 0.0665 (6)
C10B 0.74665 (17) 0.2637 (2) 0.36897 (13) 0.0840 (8)
H10B 0.7835 0.2283 0.3912 0.101*
C11B 0.76574 (18) 0.3435 (2) 0.35883 (14) 0.0883 (9)
H11B 0.8162 0.3621 0.374 0.106*
C12B 0.71239 (18) 0.39649 (18) 0.32688 (13) 0.0803 (8)
H12B 0.7263 0.4507 0.3199 0.096*
C13B 0.63704 (14) 0.36865 (15) 0.30494 (10) 0.0630 (6)
N1C 0.54579 (11) 0.23320 (10) 0.53835 (8) 0.0508 (4)
H3N 0.5371 (12) 0.2468 (13) 0.4968 (8) 0.061*
O1C 0.56197 (9) 0.27476 (9) 0.64809 (7) 0.0632 (4)
Cl1C 0.62723 (4) 0.63315 (4) 0.49957 (4) 0.0881 (2)
Cl2C 0.38314 (4) 0.16952 (5) 0.55737 (4) 0.0940 (2)
Cl3C 0.69772 (5) 0.14330 (5) 0.54692 (4) 0.1055 (3)
C1C 0.56049 (11) 0.29103 (13) 0.58689 (10) 0.0459 (5)
C2C 0.57685 (11) 0.37500 (12) 0.56292 (9) 0.0441 (5)
C3C 0.56156 (13) 0.44075 (14) 0.60366 (10) 0.0588 (6)
H3C 0.5406 0.4316 0.6453 0.071*
C4C 0.57648 (14) 0.51957 (15) 0.58425 (12) 0.0656 (6)
H4C 0.5645 0.5633 0.6119 0.079*
C5C 0.60899 (12) 0.53327 (13) 0.52411 (11) 0.0554 (6)
C6C 0.62633 (14) 0.46970 (14) 0.48319 (11) 0.0638 (6)
H6C 0.6492 0.4795 0.4426 0.077*
C7C 0.60982 (13) 0.39061 (13) 0.50214 (10) 0.0566 (6)
H7C 0.621 0.3473 0.4737 0.068*
C8C 0.54059 (15) 0.14968 (13) 0.55637 (9) 0.0543 (6)
C9C 0.46937 (16) 0.11342 (14) 0.56777 (11) 0.0653 (6)
C10C 0.4646 (2) 0.03189 (16) 0.58582 (12) 0.0832 (8)
H10C 0.416 0.0085 0.593 0.1*
C11C 0.5325 (3) −0.01375 (18) 0.59289 (13) 0.0975 (10)
H11C 0.5298 −0.0685 0.6057 0.117*
C12C 0.6042 (2) 0.01942 (19) 0.58145 (13) 0.0915 (9)
H12C 0.6499 −0.0125 0.5859 0.11*
C13C 0.60779 (16) 0.10095 (15) 0.56319 (11) 0.0683 (6)
N1D 1.00625 (13) 0.21879 (12) 0.44495 (8) 0.0716 (6)
H4N 0.9902 (15) 0.2400 (14) 0.4068 (10) 0.086*
O1D 0.98706 (12) 0.21685 (11) 0.55695 (7) 0.0870 (6)
Cl1D 0.82750 (6) 0.58103 (5) 0.47748 (5) 0.1224 (3)
Cl2D 1.17656 (5) 0.21164 (5) 0.49982 (4) 0.1061 (3)
Cl3D 0.90147 (6) 0.08528 (6) 0.38692 (4) 0.1133 (3)
C1D 0.98079 (14) 0.25205 (15) 0.50152 (10) 0.0637 (6)
C2D 0.94263 (13) 0.33420 (15) 0.49198 (10) 0.0574 (6)
C3D 0.88233 (16) 0.35364 (17) 0.53201 (11) 0.0741 (7)
H3D 0.866 0.3153 0.5629 0.089*
C4D 0.84624 (16) 0.42912 (18) 0.52672 (12) 0.0783 (8)
H4D 0.8052 0.4417 0.5534 0.094*
C5D 0.87110 (15) 0.48473 (16) 0.48241 (14) 0.0705 (7)
C6D 0.93043 (15) 0.46719 (15) 0.44139 (12) 0.0681 (6)
H6D 0.9464 0.506 0.4107 0.082*
C7D 0.96600 (13) 0.39125 (15) 0.44644 (11) 0.0589 (6)
H7D 1.0061 0.3786 0.4188 0.071*
C8D 1.04163 (19) 0.14073 (17) 0.44522 (11) 0.0743 (8)
C9D 1.12048 (19) 0.12862 (17) 0.47012 (12) 0.0820 (8)
C10D 1.1547 (2) 0.0528 (2) 0.47083 (15) 0.0975 (10)
H10D 1.2093 (14) 0.046 (2) 0.4889 (15) 0.117*
C11D 1.1102 (3) −0.0126 (2) 0.44464 (17) 0.1084 (12)
H11D 1.1308 (19) −0.0659 (15) 0.4433 (16) 0.13*
C12D 1.0336 (3) −0.0034 (2) 0.41819 (16) 0.1030 (11)
H12D 0.9978 (18) −0.0453 (18) 0.4045 (16) 0.124*
C13D 0.99924 (19) 0.07337 (19) 0.41871 (12) 0.0846 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0625 (13) 0.1037 (16) 0.0392 (10) −0.0228 (11) 0.0139 (9) −0.0045 (10)
O1A 0.0911 (13) 0.1352 (16) 0.0365 (8) −0.0286 (11) 0.0115 (8) 0.0063 (9)
Cl1A 0.0782 (5) 0.1158 (6) 0.1075 (5) −0.0385 (4) 0.0039 (4) −0.0079 (4)
Cl2A 0.0891 (6) 0.1078 (6) 0.1235 (6) 0.0028 (4) 0.0240 (4) −0.0029 (5)
Cl3A 0.1086 (6) 0.0957 (6) 0.1020 (5) −0.0071 (4) 0.0295 (4) 0.0193 (4)
C1A 0.0626 (16) 0.0715 (16) 0.0393 (12) −0.0033 (12) 0.0053 (11) 0.0076 (10)
C2A 0.0569 (14) 0.0571 (14) 0.0402 (11) 0.0003 (11) 0.0006 (10) 0.0020 (9)
C3A 0.0697 (18) 0.0791 (17) 0.0480 (13) −0.0042 (14) 0.0024 (11) 0.0017 (11)
C4A 0.0731 (19) 0.0763 (18) 0.0609 (15) −0.0083 (14) −0.0096 (13) −0.0054 (12)
C5A 0.0612 (16) 0.0586 (15) 0.0724 (16) −0.0085 (12) 0.0024 (13) −0.0040 (12)
C6A 0.0740 (19) 0.108 (2) 0.0592 (15) −0.0269 (16) 0.0118 (13) −0.0024 (13)
C7A 0.0689 (17) 0.104 (2) 0.0466 (13) −0.0254 (15) 0.0023 (11) −0.0026 (12)
C8A 0.0577 (17) 0.095 (2) 0.0373 (11) −0.0174 (15) 0.0132 (10) 0.0008 (11)
C9A 0.0646 (18) 0.092 (2) 0.0552 (14) −0.0106 (15) 0.0143 (11) −0.0032 (13)
C10A 0.085 (2) 0.092 (2) 0.0653 (15) −0.0261 (19) 0.0156 (14) −0.0031 (13)
C11A 0.0604 (19) 0.122 (3) 0.0647 (16) −0.0252 (19) 0.0140 (13) 0.0002 (16)
C12A 0.0644 (19) 0.117 (3) 0.0627 (15) −0.0042 (17) 0.0148 (12) 0.0089 (15)
C13A 0.0693 (19) 0.098 (2) 0.0487 (13) −0.0138 (16) 0.0171 (11) 0.0058 (12)
N1B 0.0569 (12) 0.0811 (14) 0.0355 (9) −0.0187 (10) 0.0055 (9) −0.0068 (9)
O1B 0.0692 (11) 0.1225 (15) 0.0375 (9) −0.0120 (10) 0.0079 (7) −0.0091 (8)
Cl1B 0.0605 (5) 0.1105 (7) 0.2077 (10) −0.0205 (4) −0.0065 (5) −0.0284 (6)
Cl2B 0.1170 (7) 0.0748 (5) 0.1224 (6) 0.0019 (4) 0.0172 (5) 0.0197 (4)
Cl3B 0.1091 (6) 0.0838 (5) 0.1127 (5) 0.0075 (4) 0.0135 (5) 0.0211 (4)
C1B 0.0559 (14) 0.0576 (14) 0.0418 (12) 0.0010 (11) 0.0066 (10) −0.0015 (10)
C2B 0.0500 (13) 0.0466 (12) 0.0490 (12) 0.0026 (10) 0.0069 (10) 0.0033 (9)
C3B 0.0592 (17) 0.0748 (17) 0.0650 (14) 0.0039 (13) 0.0139 (12) 0.0040 (12)
C4B 0.0545 (18) 0.0732 (18) 0.112 (2) 0.0007 (14) 0.0272 (15) 0.0118 (16)
C5B 0.0510 (16) 0.0578 (16) 0.116 (2) −0.0005 (12) 0.0007 (16) −0.0101 (15)
C6B 0.0687 (19) 0.101 (2) 0.0806 (17) −0.0128 (16) −0.0032 (15) −0.0196 (15)
C7B 0.0613 (17) 0.0889 (19) 0.0600 (14) −0.0165 (14) 0.0065 (12) −0.0091 (12)
C8B 0.0546 (15) 0.0651 (16) 0.0367 (10) −0.0110 (12) 0.0069 (10) −0.0084 (10)
C9B 0.0646 (17) 0.0793 (17) 0.0552 (13) −0.0067 (14) 0.0043 (12) −0.0062 (12)
C10B 0.067 (2) 0.107 (2) 0.0757 (17) 0.0041 (17) −0.0062 (14) −0.0021 (15)
C11B 0.0616 (19) 0.123 (3) 0.0793 (18) −0.0240 (19) −0.0015 (14) −0.0253 (18)
C12B 0.085 (2) 0.0799 (19) 0.0788 (17) −0.0300 (17) 0.0223 (16) −0.0221 (15)
C13B 0.0664 (17) 0.0700 (17) 0.0537 (13) −0.0098 (13) 0.0116 (11) −0.0087 (11)
N1C 0.0691 (12) 0.0469 (11) 0.0359 (9) 0.0005 (9) 0.0015 (8) 0.0018 (8)
O1C 0.0834 (11) 0.0681 (10) 0.0381 (8) −0.0007 (8) 0.0063 (7) 0.0022 (7)
Cl1C 0.0757 (5) 0.0547 (4) 0.1344 (6) −0.0027 (3) 0.0129 (4) 0.0078 (4)
Cl2C 0.0776 (5) 0.0817 (5) 0.1262 (6) 0.0045 (4) 0.0272 (4) 0.0300 (4)
Cl3C 0.0733 (5) 0.1196 (7) 0.1222 (6) 0.0188 (5) 0.0019 (4) −0.0090 (5)
C1C 0.0435 (13) 0.0566 (14) 0.0376 (12) 0.0071 (10) 0.0036 (9) −0.0021 (10)
C2C 0.0412 (12) 0.0520 (13) 0.0379 (10) 0.0028 (9) −0.0020 (9) −0.0048 (9)
C3C 0.0686 (16) 0.0580 (16) 0.0507 (12) −0.0006 (12) 0.0103 (11) −0.0080 (11)
C4C 0.0674 (16) 0.0563 (16) 0.0736 (16) 0.0035 (12) 0.0087 (12) −0.0192 (12)
C5C 0.0429 (13) 0.0490 (14) 0.0728 (15) −0.0009 (10) −0.0029 (11) 0.0017 (11)
C6C 0.0750 (17) 0.0552 (16) 0.0639 (14) −0.0062 (13) 0.0208 (12) 0.0013 (12)
C7C 0.0664 (16) 0.0504 (14) 0.0546 (13) 0.0009 (11) 0.0143 (11) −0.0089 (10)
C8C 0.0742 (16) 0.0479 (14) 0.0405 (11) 0.0069 (12) 0.0031 (10) −0.0007 (9)
C9C 0.0870 (18) 0.0528 (15) 0.0570 (13) 0.0039 (13) 0.0107 (12) 0.0090 (11)
C10C 0.116 (2) 0.0564 (18) 0.0794 (17) −0.0065 (17) 0.0226 (16) 0.0112 (13)
C11C 0.166 (4) 0.0521 (18) 0.0757 (18) 0.017 (2) 0.018 (2) 0.0114 (13)
C12C 0.129 (3) 0.068 (2) 0.0773 (18) 0.040 (2) 0.0069 (18) 0.0011 (15)
C13C 0.0857 (18) 0.0654 (17) 0.0529 (13) 0.0140 (14) 0.0008 (12) −0.0059 (11)
N1D 0.1072 (17) 0.0729 (14) 0.0357 (10) 0.0363 (12) 0.0129 (10) 0.0074 (9)
O1D 0.1234 (16) 0.1011 (13) 0.0381 (8) 0.0518 (12) 0.0168 (8) 0.0132 (8)
Cl1D 0.1094 (7) 0.0829 (6) 0.1709 (8) 0.0390 (5) −0.0071 (6) −0.0135 (5)
Cl2D 0.1100 (6) 0.1067 (6) 0.1018 (5) 0.0202 (5) 0.0107 (4) 0.0049 (4)
Cl3D 0.1341 (8) 0.1160 (7) 0.0871 (5) 0.0134 (5) −0.0045 (5) −0.0027 (4)
C1D 0.0775 (17) 0.0775 (17) 0.0357 (12) 0.0244 (13) 0.0039 (11) −0.0003 (11)
C2D 0.0624 (15) 0.0749 (16) 0.0336 (10) 0.0183 (12) −0.0028 (10) −0.0047 (11)
C3D 0.0843 (19) 0.093 (2) 0.0461 (12) 0.0298 (16) 0.0099 (12) 0.0066 (12)
C4D 0.0760 (19) 0.102 (2) 0.0575 (14) 0.0329 (17) 0.0070 (13) −0.0023 (15)
C5D 0.0596 (17) 0.0672 (17) 0.0802 (17) 0.0184 (13) −0.0173 (14) −0.0169 (14)
C6D 0.0598 (16) 0.0634 (17) 0.0788 (16) −0.0047 (13) −0.0056 (13) −0.0020 (12)
C7D 0.0469 (14) 0.0691 (16) 0.0599 (13) 0.0048 (12) 0.0010 (10) −0.0093 (12)
C8D 0.116 (2) 0.0710 (19) 0.0386 (12) 0.0345 (18) 0.0239 (13) 0.0051 (12)
C9D 0.109 (2) 0.080 (2) 0.0606 (15) 0.0398 (18) 0.0284 (15) 0.0092 (13)
C10D 0.118 (3) 0.100 (3) 0.0791 (19) 0.048 (2) 0.0332 (18) 0.0100 (17)
C11D 0.160 (4) 0.083 (2) 0.088 (2) 0.058 (2) 0.042 (2) 0.0066 (18)
C12D 0.151 (4) 0.082 (3) 0.080 (2) 0.024 (2) 0.028 (2) −0.0053 (16)
C13D 0.120 (2) 0.086 (2) 0.0501 (14) 0.0349 (19) 0.0186 (14) 0.0024 (14)

Geometric parameters (Å, °)

N1A—C1A 1.334 (3) N1C—C1C 1.345 (2)
N1A—C8A 1.412 (3) N1C—C8C 1.413 (3)
N1A—H1N 0.855 (16) N1C—H3N 0.842 (15)
O1A—C1A 1.223 (2) O1C—C1C 1.224 (2)
Cl1A—C5A 1.738 (2) Cl1C—C5C 1.736 (2)
Cl2A—C9A 1.723 (3) Cl2C—C9C 1.720 (3)
Cl3A—C13A 1.715 (3) Cl3C—C13C 1.729 (3)
C1A—C2A 1.484 (3) C1C—C2C 1.483 (3)
C2A—C7A 1.369 (3) C2C—C3C 1.376 (3)
C2A—C3A 1.382 (3) C2C—C7C 1.383 (3)
C3A—C4A 1.371 (3) C3C—C4C 1.372 (3)
C3A—H3A 0.93 C3C—H3C 0.93
C4A—C5A 1.358 (3) C4C—C5C 1.363 (3)
C4A—H4A 0.93 C4C—H4C 0.93
C5A—C6A 1.358 (3) C5C—C6C 1.359 (3)
C6A—C7A 1.372 (3) C6C—C7C 1.379 (3)
C6A—H6A 0.93 C6C—H6C 0.93
C7A—H7A 0.93 C7C—H7C 0.93
C8A—C9A 1.373 (3) C8C—C9C 1.381 (3)
C8A—C13A 1.397 (4) C8C—C13C 1.385 (3)
C9A—C10A 1.386 (4) C9C—C10C 1.381 (3)
C10A—C11A 1.373 (4) C10C—C11C 1.366 (4)
C10A—H10A 0.93 C10C—H10C 0.93
C11A—C12A 1.358 (4) C11C—C12C 1.368 (4)
C11A—H11A 0.93 C11C—H11C 0.93
C12A—C13A 1.381 (4) C12C—C13C 1.381 (4)
C12A—H12A 0.93 C12C—H12C 0.93
N1B—C1B 1.343 (3) N1D—C1D 1.339 (3)
N1B—C8B 1.408 (3) N1D—C8D 1.408 (3)
N1B—H2N 0.816 (15) N1D—H4N 0.844 (16)
O1B—C1B 1.218 (2) O1D—C1D 1.222 (2)
Cl1B—C5B 1.735 (3) Cl1D—C5D 1.736 (2)
Cl2B—C9B 1.718 (3) Cl2D—C9D 1.724 (3)
Cl3B—C13B 1.728 (3) Cl3D—C13D 1.725 (3)
C1B—C2B 1.489 (3) C1D—C2D 1.493 (3)
C2B—C7B 1.370 (3) C2D—C7D 1.372 (3)
C2B—C3B 1.380 (3) C2D—C3D 1.381 (3)
C3B—C4B 1.373 (4) C3D—C4D 1.375 (3)
C3B—H3B 0.93 C3D—H3D 0.93
C4B—C5B 1.363 (4) C4D—C5D 1.349 (4)
C4B—H4B 0.93 C4D—H4D 0.93
C5B—C6B 1.349 (4) C5D—C6D 1.373 (3)
C6B—C7B 1.375 (3) C6D—C7D 1.378 (3)
C6B—H6B 0.93 C6D—H6D 0.93
C7B—H7B 0.93 C7D—H7D 0.93
C8B—C13B 1.373 (3) C8D—C13D 1.387 (4)
C8B—C9B 1.385 (3) C8D—C9D 1.392 (4)
C9B—C10B 1.375 (3) C9D—C10D 1.366 (4)
C10B—C11B 1.360 (4) C10D—C11D 1.378 (5)
C10B—H10B 0.93 C10D—H10D 0.96 (2)
C11B—C12B 1.361 (4) C11D—C12D 1.360 (5)
C11B—H11B 0.93 C11D—H11D 0.94 (2)
C12B—C13B 1.385 (3) C12D—C13D 1.382 (4)
C12B—H12B 0.93 C12D—H12D 0.94 (2)
C1A—N1A—C8A 122.16 (17) C1C—N1C—C8C 120.87 (16)
C1A—N1A—H1N 123.3 (17) C1C—N1C—H3N 119.9 (15)
C8A—N1A—H1N 113.8 (17) C8C—N1C—H3N 119.1 (15)
O1A—C1A—N1A 120.0 (2) O1C—C1C—N1C 121.53 (19)
O1A—C1A—C2A 121.40 (19) O1C—C1C—C2C 121.48 (17)
N1A—C1A—C2A 118.61 (18) N1C—C1C—C2C 116.97 (16)
C7A—C2A—C3A 117.3 (2) C3C—C2C—C7C 117.8 (2)
C7A—C2A—C1A 124.51 (19) C3C—C2C—C1C 119.17 (18)
C3A—C2A—C1A 118.14 (19) C7C—C2C—C1C 122.96 (18)
C4A—C3A—C2A 121.4 (2) C4C—C3C—C2C 121.5 (2)
C4A—C3A—H3A 119.3 C4C—C3C—H3C 119.3
C2A—C3A—H3A 119.3 C2C—C3C—H3C 119.3
C5A—C4A—C3A 119.5 (2) C5C—C4C—C3C 119.5 (2)
C5A—C4A—H4A 120.3 C5C—C4C—H4C 120.3
C3A—C4A—H4A 120.3 C3C—C4C—H4C 120.3
C6A—C5A—C4A 120.6 (2) C6C—C5C—C4C 120.6 (2)
C6A—C5A—Cl1A 119.8 (2) C6C—C5C—Cl1C 120.05 (18)
C4A—C5A—Cl1A 119.59 (19) C4C—C5C—Cl1C 119.30 (18)
C5A—C6A—C7A 119.6 (2) C5C—C6C—C7C 119.7 (2)
C5A—C6A—H6A 120.2 C5C—C6C—H6C 120.1
C7A—C6A—H6A 120.2 C7C—C6C—H6C 120.1
C2A—C7A—C6A 121.6 (2) C6C—C7C—C2C 120.78 (19)
C2A—C7A—H7A 119.2 C6C—C7C—H7C 119.6
C6A—C7A—H7A 119.2 C2C—C7C—H7C 119.6
C9A—C8A—C13A 117.9 (2) C9C—C8C—C13C 117.5 (2)
C9A—C8A—N1A 121.6 (2) C9C—C8C—N1C 122.0 (2)
C13A—C8A—N1A 120.5 (2) C13C—C8C—N1C 120.6 (2)
C8A—C9A—C10A 121.1 (3) C8C—C9C—C10C 121.8 (2)
C8A—C9A—Cl2A 120.3 (2) C8C—C9C—Cl2C 119.87 (17)
C10A—C9A—Cl2A 118.5 (2) C10C—C9C—Cl2C 118.3 (2)
C11A—C10A—C9A 119.6 (3) C11C—C10C—C9C 118.8 (3)
C11A—C10A—H10A 120.2 C11C—C10C—H10C 120.6
C9A—C10A—H10A 120.2 C9C—C10C—H10C 120.6
C12A—C11A—C10A 120.6 (3) C10C—C11C—C12C 121.3 (3)
C12A—C11A—H11A 119.7 C10C—C11C—H11C 119.3
C10A—C11A—H11A 119.7 C12C—C11C—H11C 119.3
C11A—C12A—C13A 119.8 (3) C11C—C12C—C13C 119.0 (3)
C11A—C12A—H12A 120.1 C11C—C12C—H12C 120.5
C13A—C12A—H12A 120.1 C13C—C12C—H12C 120.5
C12A—C13A—C8A 121.0 (3) C12C—C13C—C8C 121.5 (3)
C12A—C13A—Cl3A 119.6 (2) C12C—C13C—Cl3C 119.6 (2)
C8A—C13A—Cl3A 119.4 (2) C8C—C13C—Cl3C 118.9 (2)
C1B—N1B—C8B 121.88 (16) C1D—N1D—C8D 122.27 (18)
C1B—N1B—H2N 122.1 (16) C1D—N1D—H4N 117.4 (17)
C8B—N1B—H2N 116.1 (16) C8D—N1D—H4N 118.5 (17)
O1B—C1B—N1B 120.78 (19) O1D—C1D—N1D 122.2 (2)
O1B—C1B—C2B 121.35 (19) O1D—C1D—C2D 122.27 (19)
N1B—C1B—C2B 117.86 (17) N1D—C1D—C2D 115.48 (18)
C7B—C2B—C3B 118.3 (2) C7D—C2D—C3D 119.0 (2)
C7B—C2B—C1B 124.35 (19) C7D—C2D—C1D 122.9 (2)
C3B—C2B—C1B 117.37 (18) C3D—C2D—C1D 118.1 (2)
C4B—C3B—C2B 120.6 (2) C4D—C3D—C2D 120.7 (2)
C4B—C3B—H3B 119.7 C4D—C3D—H3D 119.6
C2B—C3B—H3B 119.7 C2D—C3D—H3D 119.6
C5B—C4B—C3B 119.8 (2) C5D—C4D—C3D 119.2 (2)
C5B—C4B—H4B 120.1 C5D—C4D—H4D 120.4
C3B—C4B—H4B 120.1 C3D—C4D—H4D 120.4
C6B—C5B—C4B 120.6 (2) C4D—C5D—C6D 121.6 (2)
C6B—C5B—Cl1B 120.3 (2) C4D—C5D—Cl1D 119.2 (2)
C4B—C5B—Cl1B 119.1 (2) C6D—C5D—Cl1D 119.2 (2)
C5B—C6B—C7B 119.8 (2) C5D—C6D—C7D 119.0 (2)
C5B—C6B—H6B 120.1 C5D—C6D—H6D 120.5
C7B—C6B—H6B 120.1 C7D—C6D—H6D 120.5
C2B—C7B—C6B 121.0 (2) C2D—C7D—C6D 120.4 (2)
C2B—C7B—H7B 119.5 C2D—C7D—H7D 119.8
C6B—C7B—H7B 119.5 C6D—C7D—H7D 119.8
C13B—C8B—C9B 117.9 (2) C13D—C8D—C9D 117.7 (2)
C13B—C8B—N1B 121.1 (2) C13D—C8D—N1D 120.7 (3)
C9B—C8B—N1B 121.0 (2) C9D—C8D—N1D 121.6 (3)
C10B—C9B—C8B 121.3 (2) C10D—C9D—C8D 121.6 (3)
C10B—C9B—Cl2B 118.9 (2) C10D—C9D—Cl2D 119.2 (3)
C8B—C9B—Cl2B 119.77 (19) C8D—C9D—Cl2D 119.1 (2)
C11B—C10B—C9B 119.3 (3) C9D—C10D—C11D 118.8 (3)
C11B—C10B—H10B 120.4 C9D—C10D—H10D 120 (2)
C9B—C10B—H10B 120.4 C11D—C10D—H10D 121 (2)
C10B—C11B—C12B 121.3 (3) C12D—C11D—C10D 121.6 (3)
C10B—C11B—H11B 119.4 C12D—C11D—H11D 116 (2)
C12B—C11B—H11B 119.4 C10D—C11D—H11D 123 (2)
C11B—C12B—C13B 119.1 (3) C11D—C12D—C13D 119.1 (3)
C11B—C12B—H12B 120.4 C11D—C12D—H12D 127 (2)
C13B—C12B—H12B 120.4 C13D—C12D—H12D 114 (2)
C8B—C13B—C12B 121.2 (2) C12D—C13D—C8D 121.2 (3)
C8B—C13B—Cl3B 119.39 (19) C12D—C13D—Cl3D 119.4 (3)
C12B—C13B—Cl3B 119.4 (2) C8D—C13D—Cl3D 119.4 (2)
C8A—N1A—C1A—O1A 2.8 (4) C8C—N1C—C1C—O1C −7.4 (3)
C8A—N1A—C1A—C2A −176.4 (2) C8C—N1C—C1C—C2C 171.07 (18)
O1A—C1A—C2A—C7A −172.4 (2) O1C—C1C—C2C—C3C −27.0 (3)
N1A—C1A—C2A—C7A 6.9 (4) N1C—C1C—C2C—C3C 154.53 (19)
O1A—C1A—C2A—C3A 8.9 (3) O1C—C1C—C2C—C7C 150.5 (2)
N1A—C1A—C2A—C3A −171.9 (2) N1C—C1C—C2C—C7C −28.0 (3)
C7A—C2A—C3A—C4A 0.2 (4) C7C—C2C—C3C—C4C 1.6 (3)
C1A—C2A—C3A—C4A 179.0 (2) C1C—C2C—C3C—C4C 179.2 (2)
C2A—C3A—C4A—C5A 0.2 (4) C2C—C3C—C4C—C5C −1.6 (3)
C3A—C4A—C5A—C6A 0.0 (4) C3C—C4C—C5C—C6C 0.3 (3)
C3A—C4A—C5A—Cl1A −179.6 (2) C3C—C4C—C5C—Cl1C 179.65 (17)
C4A—C5A—C6A—C7A −0.6 (4) C4C—C5C—C6C—C7C 1.0 (3)
Cl1A—C5A—C6A—C7A 179.0 (2) Cl1C—C5C—C6C—C7C −178.36 (17)
C3A—C2A—C7A—C6A −0.8 (4) C5C—C6C—C7C—C2C −1.0 (3)
C1A—C2A—C7A—C6A −179.5 (2) C3C—C2C—C7C—C6C −0.3 (3)
C5A—C6A—C7A—C2A 1.0 (4) C1C—C2C—C7C—C6C −177.8 (2)
C1A—N1A—C8A—C9A −97.7 (3) C1C—N1C—C8C—C9C 91.7 (2)
C1A—N1A—C8A—C13A 84.6 (3) C1C—N1C—C8C—C13C −88.3 (2)
C13A—C8A—C9A—C10A 1.3 (3) C13C—C8C—C9C—C10C 0.5 (3)
N1A—C8A—C9A—C10A −176.47 (19) N1C—C8C—C9C—C10C −179.56 (19)
C13A—C8A—C9A—Cl2A −179.50 (15) C13C—C8C—C9C—Cl2C −177.83 (15)
N1A—C8A—C9A—Cl2A 2.8 (3) N1C—C8C—C9C—Cl2C 2.1 (3)
C8A—C9A—C10A—C11A 0.8 (3) C8C—C9C—C10C—C11C 0.4 (4)
Cl2A—C9A—C10A—C11A −178.44 (18) Cl2C—C9C—C10C—C11C 178.7 (2)
C9A—C10A—C11A—C12A −1.9 (4) C9C—C10C—C11C—C12C −1.0 (4)
C10A—C11A—C12A—C13A 0.9 (4) C10C—C11C—C12C—C13C 0.8 (4)
C11A—C12A—C13A—C8A 1.2 (3) C11C—C12C—C13C—C8C 0.1 (4)
C11A—C12A—C13A—Cl3A −178.34 (18) C11C—C12C—C13C—Cl3C −178.7 (2)
C9A—C8A—C13A—C12A −2.3 (3) C9C—C8C—C13C—C12C −0.7 (3)
N1A—C8A—C13A—C12A 175.46 (19) N1C—C8C—C13C—C12C 179.31 (19)
C9A—C8A—C13A—Cl3A 177.28 (16) C9C—C8C—C13C—Cl3C 178.16 (16)
N1A—C8A—C13A—Cl3A −5.0 (3) N1C—C8C—C13C—Cl3C −1.8 (3)
C8B—N1B—C1B—O1B 2.0 (3) C8D—N1D—C1D—O1D 0.4 (4)
C8B—N1B—C1B—C2B −176.97 (19) C8D—N1D—C1D—C2D −178.3 (3)
O1B—C1B—C2B—C7B −175.1 (2) O1D—C1D—C2D—C7D 147.4 (2)
N1B—C1B—C2B—C7B 3.9 (3) N1D—C1D—C2D—C7D −33.9 (3)
O1B—C1B—C2B—C3B 3.7 (3) O1D—C1D—C2D—C3D −31.2 (3)
N1B—C1B—C2B—C3B −177.3 (2) N1D—C1D—C2D—C3D 147.5 (2)
C7B—C2B—C3B—C4B 0.9 (3) C7D—C2D—C3D—C4D −0.3 (3)
C1B—C2B—C3B—C4B −178.0 (2) C1D—C2D—C3D—C4D 178.4 (2)
C2B—C3B—C4B—C5B −0.3 (4) C2D—C3D—C4D—C5D −0.8 (4)
C3B—C4B—C5B—C6B −0.7 (4) C3D—C4D—C5D—C6D 1.4 (4)
C3B—C4B—C5B—Cl1B −180.0 (2) C3D—C4D—C5D—Cl1D −178.18 (19)
C4B—C5B—C6B—C7B 1.1 (4) C4D—C5D—C6D—C7D −0.9 (4)
Cl1B—C5B—C6B—C7B −179.6 (2) Cl1D—C5D—C6D—C7D 178.70 (16)
C3B—C2B—C7B—C6B −0.5 (4) C3D—C2D—C7D—C6D 0.8 (3)
C1B—C2B—C7B—C6B 178.3 (2) C1D—C2D—C7D—C6D −177.8 (2)
C5B—C6B—C7B—C2B −0.5 (4) C5D—C6D—C7D—C2D −0.3 (3)
C1B—N1B—C8B—C13B −107.0 (2) C1D—N1D—C8D—C13D 102.9 (3)
C1B—N1B—C8B—C9B 73.9 (3) C1D—N1D—C8D—C9D −78.9 (3)
C13B—C8B—C9B—C10B 0.3 (3) C13D—C8D—C9D—C10D −2.2 (4)
N1B—C8B—C9B—C10B 179.4 (2) N1D—C8D—C9D—C10D 179.6 (2)
C13B—C8B—C9B—Cl2B −176.64 (16) C13D—C8D—C9D—Cl2D 177.01 (17)
N1B—C8B—C9B—Cl2B 2.4 (3) N1D—C8D—C9D—Cl2D −1.2 (3)
C8B—C9B—C10B—C11B −1.0 (4) C8D—C9D—C10D—C11D 1.6 (4)
Cl2B—C9B—C10B—C11B 175.9 (2) Cl2D—C9D—C10D—C11D −177.6 (2)
C9B—C10B—C11B—C12B 0.6 (4) C9D—C10D—C11D—C12D 0.1 (5)
C10B—C11B—C12B—C13B 0.6 (4) C10D—C11D—C12D—C13D −1.1 (5)
C9B—C8B—C13B—C12B 0.9 (3) C11D—C12D—C13D—C8D 0.4 (4)
N1B—C8B—C13B—C12B −178.19 (19) C11D—C12D—C13D—Cl3D −178.7 (2)
C9B—C8B—C13B—Cl3B −179.54 (15) C9D—C8D—C13D—C12D 1.2 (4)
N1B—C8B—C13B—Cl3B 1.4 (3) N1D—C8D—C13D—C12D 179.4 (2)
C11B—C12B—C13B—C8B −1.4 (3) C9D—C8D—C13D—Cl3D −179.74 (17)
C11B—C12B—C13B—Cl3B 179.1 (2) N1D—C8D—C13D—Cl3D −1.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1N···O1Di 0.86 (2) 2.07 (2) 2.882 (2) 159 (2)
N1B—H2N···O1Cii 0.82 (2) 2.12 (2) 2.880 (2) 156 (2)
N1C—H3N···O1B 0.84 (2) 2.05 (2) 2.875 (2) 165 (2)
N1D—H4N···O1Aiii 0.84 (2) 1.94 (2) 2.728 (2) 154 (2)
C7A—H7A···O1Di 0.93 2.59 3.489 (3) 164
C10C—H10C···Cl2Biv 0.93 2.82 3.599 (3) 142

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x, −y+1/2, z−1/2; (iii) x+1, y, z; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2218).

References

  1. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  2. Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Brunhofer, G., Handler, N., Leisser, K., Studenik, C. R. & Erker, T. (2008). Bioorg. Med. Chem.16, 5974–5981. [DOI] [PubMed]
  4. Calderone, V., Coi, A., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem.41, 1421–1429. [DOI] [PubMed]
  5. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Glaser, K. B. (2007). Biochem. Pharmacol.74, 659–671. [DOI] [PubMed]
  9. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  10. Kang, S. O., Hossain, Md. A. & Bowman-James, K. (2006). Coord. Chem. Rev.250, 3038–3052.
  11. Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol.38, 267–277. [DOI] [PubMed]
  12. Nishikawa, J., Imase, T., Koike, M., Fukuda, K., Tokita, M., Watanabe, J. & Kawauchi, S. (2005). J. Mol. Struct.741, 221–228.
  13. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  14. Pasha, F. A., Muddassar, M., Lee, C. & Cho, S. J. (2008). Environ. Toxicol. Pharmacol.26, 128–135. [DOI] [PubMed]
  15. Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Stauffer, S. R., Sun, J., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2000). Bioorg. Med. Chem.8, 1293–1316. [DOI] [PubMed]
  19. Sun, Y., Wang, G. & Guo, W. (2009). Tetrahedron, 65, 3480–3485.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902265X/zl2218sup1.cif

e-65-o1637-sup1.cif (35.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902265X/zl2218Isup2.hkl

e-65-o1637-Isup2.hkl (492.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES