Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1628. doi: 10.1107/S1600536809022867

N-(2-Methyl­phen­yl)-6-(1H-pyrazol-1-yl)pyridazin-3-amine

Abdul Qayyum Ather a, M Nawaz Tahir b,*, Misbahul Ain Khan c, Muhammad Makshoof Athar d
PMCID: PMC2969459  PMID: 21582895

Abstract

The title compound, C14H13N5, crystallizes with two crystallographically independent mol­ecules in the unit cell. The two mol­ecules form dimers through inter­molecular N—H⋯N and C—H⋯N hydrogen bonds. The hydrogen-bonding motifs are R 2 2(8) for both the N—H⋯N and C—H⋯N inter­actions. The pyrazole and pyrimidine rings form dihedral angles of 6.2 (3) and 8.3 (3)° with each other and the dihedral angles between the pyrazole and benzene rings are 54.9 (2) and 58.6 (2)°. The benzene rings of neighbouring dimers also exhibit C—H⋯π inter­actions.

Related literature

A docking study of pyrazololylpyridazine has shown inhibitory action against glycogen synthase kinase 3, see: Xiao et al. (2006); For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-65-o1628-scheme1.jpg

Experimental

Crystal data

  • C14H13N5

  • M r = 251.29

  • Monoclinic, Inline graphic

  • a = 16.548 (5) Å

  • b = 19.639 (4) Å

  • c = 8.015 (5) Å

  • β = 99.619 (5)°

  • V = 2568.1 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.982, T max = 0.988

  • 13833 measured reflections

  • 3209 independent reflections

  • 1716 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.167

  • S = 1.02

  • 3209 reflections

  • 303 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022867/zl2217sup1.cif

e-65-o1628-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022867/zl2217Isup2.hkl

e-65-o1628-Isup2.hkl (154.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N7i 0.86 2.26 3.086 (5) 162
N6—H6A⋯N2ii 0.86 2.26 3.065 (6) 156
C7—H7C⋯N8i 0.96 2.53 3.482 (8) 175
C21—H21C⋯N3ii 0.96 2.59 3.519 (10) 163
C6—H6⋯Cg1 0.93 2.80 3.529 (6) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of benzene ring (C15–C20).

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore and for technical support, respectively.

supplementary crystallographic information

Comment

Pyrazolylpyridazine derivatives are potential anticholestromic and antihypertensive agents. A docking study of pyrazololylpyridazine has shown inhibitory action against glycogen synthase kinase 3 (Xiao et al., 2006). In continuation of our work on the synthesis and reactions of azolylpyridazines, we have isolated crystals of the title compound, (Fig. 1).

The title compound contains pyrazole, pyridazine and benzene rings. In the asymmetric unit there are two molecules which differ from one another crystallographically.

In one molecule (containing C1—C14), the pyrazole ring is oriented at dihedral angles of 6.16 (30)° and 54.91 (21)° with the pyridazine and benzene rings, respectively. In the second molecule, the pyrazole ring exhibits dihedral angles of 8.26 (34)° and 58.57 (20)° with the pyridazine and benzene rings, respectively. Through intermolecular N–H···N and C–H···N hydrogen bonds the two molecules form dimers with hydrogen bonding ring motifs of R22(8) (Bernstein et al., 1995). C—H···π interactions between the benzene rings are also observed in the structure of the title compound (Table 1, Cg1 is the centroid of benzene ring (C15—C20)).

Experimental

3-Chloro-6-(1H-pyrazol-1-yl)pyridazine (1.68 g, 9.33 mmol) and 2-toluidine (1 g, 9.34 mmol) were refluxed in dimethylformamide (DMF) for 2 h. The reaction mixture was concentrated under vacuum and poured in cold water. The precipitates obtained were filtered, washed with distilled water and dried to give 51.28% yield. The product obtained was purified by column chromatography and recrystallized in benzene.

Refinement

In the absence of significant anomalous scattering effects, Friedel pairs were merged. The atoms of one of the benzene rings were refined with equal anisotropic thermal parameters.

H-atoms were positioned geometrically, with N—H = 0.86 Å, C—H = 0.93 and 0.96 Å for aromatic rings and metyl H-atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing diagram of the title compound (PLATON: Spek, 2009) showing the dimers and ring motifs. Hydrogen bonds are symbolized by dashed lines.

Crystal data

C14H13N5 F(000) = 1056
Mr = 251.29 Dx = 1.300 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 2920 reflections
a = 16.548 (5) Å θ = 2.1–28.4°
b = 19.639 (4) Å µ = 0.08 mm1
c = 8.015 (5) Å T = 296 K
β = 99.619 (5)° Prismatic, white
V = 2568.1 (19) Å3 0.24 × 0.20 × 0.18 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 3209 independent reflections
Radiation source: fine-focus sealed tube 1716 reflections with I > 2σ(I)
graphite Rint = 0.042
Detector resolution: 7.40 pixels mm-1 θmax = 28.4°, θmin = 2.1°
ω scans h = −22→22
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −24→26
Tmin = 0.982, Tmax = 0.988 l = −8→10
13833 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.056P)2 + 2.2381P] where P = (Fo2 + 2Fc2)/3
3209 reflections (Δ/σ)max < 0.001
303 parameters Δρmax = 0.40 e Å3
2 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3430 (2) 0.3434 (2) 0.7950 (6) 0.0617 (12)
H1 0.3887 0.3649 0.8034 0.074*
N2 0.4170 (2) 0.2448 (2) 0.8037 (6) 0.0629 (12)
N3 0.4249 (2) 0.1762 (2) 0.8272 (6) 0.0640 (12)
N4 0.3754 (3) 0.0702 (2) 0.8745 (6) 0.0615 (12)
N5 0.3154 (3) 0.0302 (3) 0.9209 (8) 0.0904 (18)
N6 0.0751 (3) 0.1921 (2) 0.2213 (6) 0.0609 (12)
H6A 0.0288 0.2129 0.2121 0.073*
N7 0.0075 (2) 0.0924 (2) 0.2451 (5) 0.0562 (11)
N8 0.0015 (2) 0.0239 (2) 0.2363 (6) 0.0544 (10)
N9 0.0521 (2) −0.08308 (18) 0.1990 (5) 0.0522 (10)
N10 0.1036 (3) −0.1245 (2) 0.1338 (6) 0.0680 (13)
C1 0.2696 (3) 0.3825 (2) 0.7595 (6) 0.0499 (11)
C2 0.2655 (3) 0.4452 (2) 0.8362 (6) 0.0567 (13)
C3 0.1903 (4) 0.4801 (3) 0.7933 (8) 0.0714 (16)
H3 0.1850 0.5229 0.8401 0.086*
C4 0.1249 (4) 0.4537 (3) 0.6860 (9) 0.0779 (17)
H4 0.0762 0.4781 0.6631 0.093*
C5 0.1306 (3) 0.3920 (3) 0.6125 (8) 0.0714 (15)
H5 0.0863 0.3739 0.5390 0.086*
C6 0.2032 (3) 0.3570 (3) 0.6494 (7) 0.0556 (12)
H6 0.2078 0.3149 0.5988 0.067*
C7 0.3362 (4) 0.4739 (3) 0.9540 (8) 0.0779 (18)
H7A 0.3461 0.4469 1.0552 0.117*
H7B 0.3241 0.5199 0.9823 0.117*
H7C 0.3840 0.4735 0.9008 0.117*
C8 0.3467 (3) 0.2744 (2) 0.8169 (6) 0.0521 (12)
C9 0.2804 (3) 0.2371 (3) 0.8593 (7) 0.0613 (14)
H9 0.2325 0.2590 0.8752 0.074*
C10 0.2878 (3) 0.1693 (3) 0.8763 (7) 0.0599 (14)
H10 0.2443 0.1425 0.8979 0.072*
C11 0.3625 (3) 0.1409 (3) 0.8603 (7) 0.0556 (12)
C12 0.4397 (4) 0.0335 (3) 0.8451 (9) 0.0790 (17)
H12 0.4871 0.0504 0.8118 0.095*
C13 0.4230 (5) −0.0330 (3) 0.8729 (11) 0.098 (2)
H13 0.4560 −0.0707 0.8636 0.117*
C14 0.3461 (5) −0.0318 (4) 0.9180 (11) 0.105 (3)
H14 0.3187 −0.0707 0.9437 0.126*
C15 0.1471 (2) 0.23170 (19) 0.2472 (5) 0.0810 (8)
C16 0.1493 (2) 0.2952 (2) 0.1713 (5) 0.0810 (8)
C17 0.2214 (2) 0.33286 (16) 0.1961 (5) 0.0810 (8)
H17 0.2229 0.3753 0.1453 0.097*
C18 0.2913 (2) 0.30707 (19) 0.2966 (6) 0.0810 (8)
H18 0.3395 0.3323 0.3131 0.097*
C19 0.2891 (2) 0.2436 (2) 0.3724 (5) 0.0810 (8)
H19 0.3358 0.2263 0.4397 0.097*
C20 0.2170 (2) 0.20591 (16) 0.3477 (5) 0.0810 (8)
H20 0.2155 0.1634 0.3984 0.097*
C21 0.0748 (5) 0.3242 (3) 0.0633 (10) 0.104 (3)
H21A 0.0527 0.2915 −0.0212 0.156*
H21B 0.0894 0.3649 0.0093 0.156*
H21C 0.0344 0.3347 0.1326 0.156*
C22 0.0745 (3) 0.1232 (2) 0.2100 (6) 0.0515 (12)
C23 0.1379 (3) 0.0856 (3) 0.1572 (7) 0.0599 (13)
H23 0.1829 0.1076 0.1264 0.072*
C24 0.1322 (3) 0.0166 (3) 0.1517 (6) 0.0551 (13)
H24 0.1734 −0.0102 0.1202 0.066*
C25 0.0619 (3) −0.0118 (2) 0.1954 (6) 0.0466 (11)
C26 −0.0083 (4) −0.1183 (3) 0.2518 (9) 0.084 (2)
H26 −0.0511 −0.1002 0.2995 0.101*
C27 0.0043 (4) −0.1848 (3) 0.2232 (10) 0.085 (2)
H27 −0.0270 −0.2218 0.2470 0.102*
C28 0.0737 (4) −0.1854 (3) 0.1509 (9) 0.0819 (19)
H28 0.0973 −0.2250 0.1173 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.045 (2) 0.044 (2) 0.096 (3) −0.0036 (19) 0.011 (2) −0.006 (2)
N2 0.045 (2) 0.044 (2) 0.100 (4) −0.0009 (18) 0.010 (2) −0.001 (2)
N3 0.046 (2) 0.048 (3) 0.098 (3) −0.001 (2) 0.011 (2) 0.003 (2)
N4 0.050 (2) 0.050 (3) 0.082 (3) −0.005 (2) 0.002 (2) 0.005 (2)
N5 0.067 (3) 0.064 (4) 0.136 (5) −0.015 (3) 0.005 (3) 0.024 (3)
N6 0.054 (2) 0.038 (2) 0.091 (3) 0.001 (2) 0.013 (2) −0.002 (2)
N7 0.047 (2) 0.043 (3) 0.079 (3) 0.0015 (19) 0.015 (2) −0.006 (2)
N8 0.042 (2) 0.041 (2) 0.081 (3) −0.0020 (18) 0.014 (2) −0.005 (2)
N9 0.050 (2) 0.040 (2) 0.067 (3) 0.0012 (19) 0.010 (2) −0.003 (2)
N10 0.068 (3) 0.044 (3) 0.097 (4) 0.006 (2) 0.027 (3) −0.007 (2)
C1 0.052 (3) 0.039 (3) 0.062 (3) 0.000 (2) 0.020 (2) 0.002 (2)
C2 0.074 (3) 0.042 (3) 0.063 (3) −0.005 (3) 0.037 (3) 0.001 (2)
C3 0.099 (5) 0.046 (3) 0.079 (4) 0.013 (3) 0.043 (4) 0.000 (3)
C4 0.069 (4) 0.078 (4) 0.090 (5) 0.023 (3) 0.024 (3) 0.017 (4)
C5 0.060 (3) 0.069 (4) 0.087 (4) 0.003 (3) 0.018 (3) 0.005 (3)
C6 0.056 (3) 0.044 (3) 0.069 (3) 0.004 (2) 0.018 (2) −0.001 (2)
C7 0.096 (4) 0.064 (4) 0.080 (4) −0.021 (3) 0.032 (3) −0.016 (3)
C8 0.048 (3) 0.047 (3) 0.059 (3) −0.006 (2) 0.004 (2) 0.001 (2)
C9 0.057 (3) 0.056 (3) 0.076 (4) 0.009 (3) 0.027 (3) 0.008 (3)
C10 0.052 (3) 0.062 (3) 0.068 (4) −0.008 (3) 0.016 (3) 0.010 (3)
C11 0.052 (3) 0.047 (3) 0.068 (3) −0.005 (2) 0.010 (2) 0.006 (2)
C12 0.069 (4) 0.059 (4) 0.108 (5) 0.004 (3) 0.011 (3) −0.008 (3)
C13 0.094 (5) 0.060 (4) 0.126 (6) 0.008 (4) −0.018 (4) 0.007 (4)
C14 0.083 (5) 0.053 (4) 0.166 (8) −0.017 (4) −0.019 (5) 0.033 (4)
C15 0.0806 (16) 0.0625 (15) 0.112 (2) −0.0139 (12) 0.0506 (16) −0.0222 (14)
C16 0.0806 (16) 0.0625 (15) 0.112 (2) −0.0139 (12) 0.0506 (16) −0.0222 (14)
C17 0.0806 (16) 0.0625 (15) 0.112 (2) −0.0139 (12) 0.0506 (16) −0.0222 (14)
C18 0.0806 (16) 0.0625 (15) 0.112 (2) −0.0139 (12) 0.0506 (16) −0.0222 (14)
C19 0.0806 (16) 0.0625 (15) 0.112 (2) −0.0139 (12) 0.0506 (16) −0.0222 (14)
C20 0.0806 (16) 0.0625 (15) 0.112 (2) −0.0139 (12) 0.0506 (16) −0.0222 (14)
C21 0.154 (7) 0.066 (4) 0.103 (6) 0.021 (5) 0.053 (5) 0.023 (4)
C22 0.048 (3) 0.047 (3) 0.061 (3) −0.006 (2) 0.013 (2) 0.001 (2)
C23 0.055 (3) 0.054 (3) 0.077 (4) −0.005 (3) 0.028 (3) 0.002 (3)
C24 0.047 (3) 0.052 (3) 0.071 (3) 0.003 (2) 0.022 (2) −0.008 (3)
C25 0.042 (2) 0.046 (3) 0.051 (3) 0.003 (2) 0.007 (2) −0.005 (2)
C26 0.070 (4) 0.052 (4) 0.139 (6) 0.005 (3) 0.044 (4) 0.011 (3)
C27 0.079 (4) 0.043 (3) 0.136 (6) −0.003 (3) 0.025 (4) 0.001 (3)
C28 0.077 (4) 0.046 (4) 0.123 (6) 0.008 (3) 0.017 (4) −0.011 (3)

Geometric parameters (Å, °)

N1—C8 1.366 (6) C8—C9 1.406 (7)
N1—C1 1.426 (6) C9—C10 1.342 (7)
N1—H1 0.8600 C9—H9 0.9300
N2—C8 1.321 (6) C10—C11 1.383 (7)
N2—N3 1.364 (6) C10—H10 0.9300
N3—C11 1.306 (6) C12—C13 1.362 (8)
N4—C12 1.338 (7) C12—H12 0.9300
N4—N5 1.366 (6) C13—C14 1.380 (11)
N4—C11 1.406 (6) C13—H13 0.9300
N5—C14 1.321 (9) C14—H14 0.9300
N6—C22 1.356 (6) C15—C16 1.3900
N6—C15 1.407 (5) C15—C20 1.3900
N6—H6A 0.8600 C16—C17 1.3900
N7—C22 1.335 (6) C16—C21 1.495 (8)
N7—N8 1.349 (5) C17—C18 1.3900
N8—C25 1.306 (6) C17—H17 0.9300
N9—C26 1.341 (7) C18—C19 1.3900
N9—N10 1.345 (6) C18—H18 0.9300
N9—C25 1.411 (5) C19—C20 1.3900
N10—C28 1.310 (7) C19—H19 0.9300
C1—C6 1.383 (7) C20—H20 0.9300
C1—C2 1.383 (6) C21—H21A 0.9600
C2—C3 1.412 (8) C21—H21B 0.9600
C2—C7 1.485 (8) C21—H21C 0.9600
C3—C4 1.367 (9) C22—C23 1.404 (7)
C3—H3 0.9300 C23—C24 1.358 (7)
C4—C5 1.356 (8) C23—H23 0.9300
C4—H4 0.9300 C24—C25 1.387 (7)
C5—C6 1.372 (7) C24—H24 0.9300
C5—H5 0.9300 C26—C27 1.347 (8)
C6—H6 0.9300 C26—H26 0.9300
C7—H7A 0.9600 C27—C28 1.371 (9)
C7—H7B 0.9600 C27—H27 0.9300
C7—H7C 0.9600 C28—H28 0.9300
C8—N1—C1 125.3 (4) N4—C12—C13 107.4 (6)
C8—N1—H1 117.3 N4—C12—H12 126.3
C1—N1—H1 117.3 C13—C12—H12 126.3
C8—N2—N3 119.3 (4) C12—C13—C14 104.4 (6)
C11—N3—N2 119.5 (4) C12—C13—H13 127.8
C12—N4—N5 112.0 (5) C14—C13—H13 127.8
C12—N4—C11 129.1 (5) N5—C14—C13 113.3 (6)
N5—N4—C11 118.9 (5) N5—C14—H14 123.4
C14—N5—N4 103.1 (6) C13—C14—H14 123.4
C22—N6—C15 123.9 (4) C16—C15—C20 120.0
C22—N6—H6A 118.1 C16—C15—N6 120.9 (3)
C15—N6—H6A 118.1 C20—C15—N6 119.0 (3)
C22—N7—N8 119.8 (4) C17—C16—C15 120.0
C25—N8—N7 119.7 (4) C17—C16—C21 119.0 (4)
C26—N9—N10 111.4 (4) C15—C16—C21 121.0 (4)
C26—N9—C25 127.8 (4) C16—C17—C18 120.0
N10—N9—C25 120.7 (4) C16—C17—H17 120.0
C28—N10—N9 103.7 (5) C18—C17—H17 120.0
C6—C1—C2 120.9 (5) C17—C18—C19 120.0
C6—C1—N1 119.5 (4) C17—C18—H18 120.0
C2—C1—N1 119.6 (4) C19—C18—H18 120.0
C1—C2—C3 115.5 (5) C20—C19—C18 120.0
C1—C2—C7 121.9 (5) C20—C19—H19 120.0
C3—C2—C7 122.6 (5) C18—C19—H19 120.0
C4—C3—C2 122.8 (5) C19—C20—C15 120.0
C4—C3—H3 118.6 C19—C20—H20 120.0
C2—C3—H3 118.6 C15—C20—H20 120.0
C5—C4—C3 120.5 (6) C16—C21—H21A 109.5
C5—C4—H4 119.7 C16—C21—H21B 109.5
C3—C4—H4 119.7 H21A—C21—H21B 109.5
C4—C5—C6 118.3 (6) C16—C21—H21C 109.5
C4—C5—H5 120.8 H21A—C21—H21C 109.5
C6—C5—H5 120.8 H21B—C21—H21C 109.5
C5—C6—C1 122.0 (5) N7—C22—N6 115.8 (4)
C5—C6—H6 119.0 N7—C22—C23 120.9 (4)
C1—C6—H6 119.0 N6—C22—C23 123.2 (5)
C2—C7—H7A 109.5 C24—C23—C22 118.9 (5)
C2—C7—H7B 109.5 C24—C23—H23 120.5
H7A—C7—H7B 109.5 C22—C23—H23 120.5
C2—C7—H7C 109.5 C23—C24—C25 116.7 (5)
H7A—C7—H7C 109.5 C23—C24—H24 121.7
H7B—C7—H7C 109.5 C25—C24—H24 121.7
N2—C8—N1 116.6 (4) N8—C25—C24 123.8 (4)
N2—C8—C9 121.5 (5) N8—C25—N9 115.6 (4)
N1—C8—C9 121.8 (5) C24—C25—N9 120.6 (4)
C10—C9—C8 118.7 (5) N9—C26—C27 107.6 (6)
C10—C9—H9 120.7 N9—C26—H26 126.2
C8—C9—H9 120.7 C27—C26—H26 126.2
C9—C10—C11 117.3 (5) C26—C27—C28 104.1 (6)
C9—C10—H10 121.4 C26—C27—H27 127.9
C11—C10—H10 121.4 C28—C27—H27 127.9
N3—C11—C10 123.6 (5) N10—C28—C27 113.2 (6)
N3—C11—N4 115.2 (5) N10—C28—H28 123.4
C10—C11—N4 121.1 (5) C27—C28—H28 123.4
C8—N2—N3—C11 0.8 (8) N4—C12—C13—C14 0.4 (8)
C12—N4—N5—C14 −0.1 (7) N4—N5—C14—C13 0.4 (8)
C11—N4—N5—C14 178.6 (5) C12—C13—C14—N5 −0.5 (9)
C22—N7—N8—C25 0.8 (7) C22—N6—C15—C16 144.5 (4)
C26—N9—N10—C28 −1.0 (7) C22—N6—C15—C20 −34.3 (6)
C25—N9—N10—C28 −176.7 (5) C20—C15—C16—C17 0.0
C8—N1—C1—C6 −39.5 (7) N6—C15—C16—C17 −178.8 (4)
C8—N1—C1—C2 140.1 (5) C20—C15—C16—C21 −179.7 (5)
C6—C1—C2—C3 −0.3 (7) N6—C15—C16—C21 1.5 (5)
N1—C1—C2—C3 −179.9 (4) C15—C16—C17—C18 0.0
C6—C1—C2—C7 −179.6 (5) C21—C16—C17—C18 179.7 (5)
N1—C1—C2—C7 0.8 (7) C16—C17—C18—C19 0.0
C1—C2—C3—C4 1.2 (8) C17—C18—C19—C20 0.0
C7—C2—C3—C4 −179.5 (6) C18—C19—C20—C15 0.0
C2—C3—C4—C5 −1.2 (9) C16—C15—C20—C19 0.0
C3—C4—C5—C6 0.3 (9) N6—C15—C20—C19 178.8 (4)
C4—C5—C6—C1 0.6 (8) N8—N7—C22—N6 179.7 (4)
C2—C1—C6—C5 −0.6 (8) N8—N7—C22—C23 2.7 (7)
N1—C1—C6—C5 179.0 (5) C15—N6—C22—N7 157.2 (4)
N3—N2—C8—N1 178.9 (4) C15—N6—C22—C23 −25.8 (8)
N3—N2—C8—C9 1.8 (8) N7—C22—C23—C24 −3.9 (8)
C1—N1—C8—N2 162.4 (5) N6—C22—C23—C24 179.3 (5)
C1—N1—C8—C9 −20.5 (8) C22—C23—C24—C25 1.6 (8)
N2—C8—C9—C10 −4.1 (8) N7—N8—C25—C24 −3.1 (8)
N1—C8—C9—C10 179.0 (5) N7—N8—C25—N9 176.5 (4)
C8—C9—C10—C11 3.6 (8) C23—C24—C25—N8 1.8 (8)
N2—N3—C11—C10 −1.2 (8) C23—C24—C25—N9 −177.7 (5)
N2—N3—C11—N4 177.1 (5) C26—N9—C25—N8 −5.7 (8)
C9—C10—C11—N3 −1.2 (8) N10—N9—C25—N8 169.3 (5)
C9—C10—C11—N4 −179.3 (5) C26—N9—C25—C24 173.9 (6)
C12—N4—C11—N3 −6.2 (9) N10—N9—C25—C24 −11.1 (7)
N5—N4—C11—N3 175.3 (5) N10—N9—C26—C27 1.0 (8)
C12—N4—C11—C10 172.1 (6) C25—N9—C26—C27 176.3 (5)
N5—N4—C11—C10 −6.3 (8) N9—C26—C27—C28 −0.5 (8)
N5—N4—C12—C13 −0.2 (8) N9—N10—C28—C27 0.6 (7)
C11—N4—C12—C13 −178.7 (6) C26—C27—C28—N10 −0.1 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N7i 0.86 2.26 3.086 (5) 162
N6—H6A···N2ii 0.86 2.26 3.065 (6) 156
C7—H7C···N8i 0.96 2.53 3.482 (8) 175
C21—H21C···N3ii 0.96 2.59 3.519 (10) 163
C6—H6···Cg1 0.93 2.80 3.529 (6) 136

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2217).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Xiao, J., Guo, Z., Guo, Y., Chu, F. & Sun, P. (2006). Protein Eng. Des. Select 19, 47–54. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022867/zl2217sup1.cif

e-65-o1628-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022867/zl2217Isup2.hkl

e-65-o1628-Isup2.hkl (154.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES