Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 17;65(Pt 7):o1608. doi: 10.1107/S1600536809022594

5-(4-Pentyl­phen­yl)-1,3,4-thia­diazol-2-amine

Yao Wang a, Rong Wan a,*, Feng Han a, Peng Wang a
PMCID: PMC2969462  PMID: 21582881

Abstract

The title compound, C13H17N3S, was synthesized by the reaction of 4-pentyl­benzoic acid and thio­semicarbazide. The dihedral angle between the thia­diazole and phenyl rings is 29.9 (2)°. An intra­molecular C—H⋯S inter­action is observed. In the crystal, inter­molecular N—H⋯N hydrogen bonding links the mol­ecules into centrosymmetric dimers.

Related literature

For general background to the biological activity of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o1608-scheme1.jpg

Experimental

Crystal data

  • C13H17N3S

  • M r = 247.36

  • Monoclinic, Inline graphic

  • a = 14.012 (3) Å

  • b = 9.1300 (18) Å

  • c = 10.938 (2) Å

  • β = 100.64 (3)°

  • V = 1375.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.958, T max = 0.989

  • 2596 measured reflections

  • 2492 independent reflections

  • 1405 reflections with I > 2σ(I)

  • R int = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.179

  • S = 1.00

  • 2492 reflections

  • 148 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022594/hg2519sup1.cif

e-65-o1608-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022594/hg2519Isup2.hkl

e-65-o1608-Isup2.hkl (122.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯S 0.93 2.81 3.177 (4) 104
N3—H3A⋯N2i 0.86 2.15 3.006 (4) 173

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). The structure of the title compound, (I), is shown in Fig. 1, in which the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The dihedral angle between the thiadiazole and phenyl ring is 29.90 (19)°. An intramolecular C—H···S interaction is observed (Fig. 1). There is intermolecular N—H···N hydrogen bond (Fig. 2), forming chains along the c axis. The intermolecular N—H···N hydrogen bond creates centrosymmetric dimers.

Experimental

4-Pentylbenzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 90°C for 6 h. After cooling, the crude product (I) precipitated and was filtered. Pure compound (I) was obtained by crystallization from ethanol(20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate C—H···S short contact distance.

Fig. 2.

Fig. 2.

Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H···N hydrogen bond.

Crystal data

C13H17N3S F(000) = 528
Mr = 247.36 Dx = 1.195 Mg m3
Monoclinic, P21/c Melting point: 563 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 14.012 (3) Å Cell parameters from 25 reflections
b = 9.1300 (18) Å θ = 8–12°
c = 10.938 (2) Å µ = 0.22 mm1
β = 100.64 (3)° T = 293 K
V = 1375.2 (5) Å3 Block, colorless
Z = 4 0.20 × 0.10 × 0.05 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1405 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.023
graphite θmax = 25.3°, θmin = 1.5°
ω/2θ scans h = −16→0
Absorption correction: ψ scan (North et al., 1968) k = 0→10
Tmin = 0.958, Tmax = 0.989 l = −12→13
2596 measured reflections 3 standard reflections every 200 reflections
2492 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.09P)2] where P = (Fo2 + 2Fc2)/3
2492 reflections (Δ/σ)max < 0.001
148 parameters Δρmax = 0.18 e Å3
1 restraint Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.10971 (8) 0.15085 (11) 0.16795 (8) 0.0627 (4)
N1 0.0965 (2) 0.1921 (3) −0.0647 (2) 0.0595 (9)
N2 0.0606 (2) 0.3197 (3) −0.0202 (2) 0.0596 (9)
N3 0.0292 (3) 0.4194 (3) 0.1651 (2) 0.0721 (10)
H3A 0.0054 0.4985 0.1290 0.087*
H3B 0.0321 0.4085 0.2438 0.087*
C1 0.4434 (5) −0.9308 (7) 0.1391 (6) 0.143
H1B 0.4664 −0.9713 0.2201 0.214*
H1C 0.4927 −0.9409 0.0892 0.214*
H1D 0.3860 −0.9820 0.1001 0.214*
C2 0.4207 (5) −0.7748 (8) 0.1509 (7) 0.165 (3)
H2B 0.4800 −0.7243 0.1875 0.198*
H2C 0.3761 −0.7660 0.2085 0.198*
C3 0.3778 (5) −0.6986 (7) 0.0342 (7) 0.142 (2)
H3C 0.3235 −0.7561 −0.0083 0.170*
H3D 0.4259 −0.6949 −0.0191 0.170*
C4 0.3422 (5) −0.5426 (6) 0.0510 (5) 0.135 (2)
H4A 0.3003 −0.5452 0.1123 0.162*
H4B 0.3981 −0.4828 0.0851 0.162*
C5 0.2901 (4) −0.4706 (5) −0.0597 (4) 0.0891 (14)
H5A 0.2378 −0.5344 −0.0983 0.107*
H5B 0.3340 −0.4591 −0.1180 0.107*
C6 0.2473 (3) −0.3212 (4) −0.0391 (4) 0.0714 (12)
C7 0.1937 (3) −0.3008 (4) 0.0533 (4) 0.0773 (13)
H7A 0.1831 −0.3795 0.1031 0.093*
C8 0.1557 (3) −0.1657 (4) 0.0731 (4) 0.0683 (11)
H8A 0.1218 −0.1544 0.1380 0.082*
C9 0.1665 (3) −0.0480 (4) 0.0002 (3) 0.0555 (9)
C10 0.2190 (3) −0.0673 (4) −0.0951 (3) 0.0708 (12)
H10A 0.2275 0.0106 −0.1467 0.085*
C11 0.2583 (3) −0.2025 (5) −0.1123 (4) 0.0742 (12)
H11A 0.2935 −0.2138 −0.1759 0.089*
C12 0.1252 (3) 0.0956 (4) 0.0207 (3) 0.0548 (9)
C13 0.0617 (3) 0.3139 (4) 0.0991 (3) 0.0552 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0965 (8) 0.0583 (6) 0.0329 (5) 0.0097 (6) 0.0112 (4) 0.0063 (4)
N1 0.084 (2) 0.059 (2) 0.0356 (14) 0.0052 (17) 0.0115 (14) 0.0018 (14)
N2 0.087 (2) 0.061 (2) 0.0311 (14) 0.0078 (17) 0.0113 (14) 0.0040 (13)
N3 0.125 (3) 0.060 (2) 0.0326 (15) 0.023 (2) 0.0179 (17) 0.0032 (14)
C1 0.143 0.143 0.143 0.000 0.024 0.000
C2 0.162 (7) 0.139 (6) 0.190 (8) 0.050 (5) 0.024 (6) 0.014 (6)
C3 0.138 (6) 0.117 (5) 0.170 (7) 0.033 (4) 0.024 (5) 0.002 (5)
C4 0.157 (6) 0.103 (4) 0.129 (5) 0.064 (4) −0.016 (4) −0.027 (4)
C5 0.112 (4) 0.073 (3) 0.080 (3) 0.014 (3) 0.013 (3) −0.015 (3)
C6 0.089 (3) 0.066 (3) 0.055 (2) 0.008 (2) 0.001 (2) −0.009 (2)
C7 0.110 (4) 0.059 (3) 0.067 (3) −0.003 (2) 0.025 (3) 0.002 (2)
C8 0.094 (3) 0.055 (2) 0.059 (2) 0.005 (2) 0.024 (2) 0.0064 (19)
C9 0.065 (2) 0.063 (2) 0.0365 (17) 0.002 (2) 0.0058 (16) −0.0017 (17)
C10 0.098 (3) 0.068 (3) 0.050 (2) 0.007 (2) 0.024 (2) 0.003 (2)
C11 0.095 (3) 0.078 (3) 0.051 (2) 0.015 (3) 0.017 (2) −0.004 (2)
C12 0.067 (2) 0.059 (2) 0.0358 (17) −0.0042 (19) 0.0041 (16) 0.0006 (16)
C13 0.075 (3) 0.054 (2) 0.0349 (17) 0.0020 (19) 0.0045 (16) 0.0047 (16)

Geometric parameters (Å, °)

S—C12 1.739 (3) C4—C5 1.451 (6)
S—C13 1.746 (3) C4—H4A 0.9700
N1—C12 1.293 (4) C4—H4B 0.9700
N1—N2 1.392 (4) C5—C6 1.524 (5)
N2—C13 1.304 (4) C5—H5A 0.9700
N3—C13 1.333 (4) C5—H5B 0.9700
N3—H3A 0.8600 C6—C11 1.373 (5)
N3—H3B 0.8600 C6—C7 1.378 (6)
C1—C2 1.471 (6) C7—C8 1.377 (5)
C1—H1B 0.9600 C7—H7A 0.9300
C1—H1C 0.9600 C8—C9 1.362 (5)
C1—H1D 0.9600 C8—H8A 0.9300
C2—C3 1.480 (8) C9—C10 1.393 (5)
C2—H2B 0.9700 C9—C12 1.467 (5)
C2—H2C 0.9700 C10—C11 1.379 (5)
C3—C4 1.531 (7) C10—H10A 0.9300
C3—H3C 0.9700 C11—H11A 0.9300
C3—H3D 0.9700
C12—S—C13 87.26 (17) C4—C5—C6 115.6 (4)
C12—N1—N2 113.7 (3) C4—C5—H5A 108.4
C13—N2—N1 112.3 (3) C6—C5—H5A 108.4
C13—N3—H3A 120.0 C4—C5—H5B 108.4
C13—N3—H3B 120.0 C6—C5—H5B 108.4
H3A—N3—H3B 120.0 H5A—C5—H5B 107.4
C2—C1—H1B 109.5 C11—C6—C7 117.2 (4)
C2—C1—H1C 109.5 C11—C6—C5 122.0 (4)
H1B—C1—H1C 109.5 C7—C6—C5 120.8 (4)
C2—C1—H1D 109.5 C8—C7—C6 121.0 (4)
H1B—C1—H1D 109.5 C8—C7—H7A 119.5
H1C—C1—H1D 109.5 C6—C7—H7A 119.5
C1—C2—C3 116.1 (6) C9—C8—C7 121.8 (4)
C1—C2—H2B 108.3 C9—C8—H8A 119.1
C3—C2—H2B 108.3 C7—C8—H8A 119.1
C1—C2—H2C 108.3 C8—C9—C10 118.0 (4)
C3—C2—H2C 108.3 C8—C9—C12 121.7 (3)
H2B—C2—H2C 107.4 C10—C9—C12 120.3 (3)
C2—C3—C4 115.0 (6) C11—C10—C9 119.7 (4)
C2—C3—H3C 108.5 C11—C10—H10A 120.2
C4—C3—H3C 108.5 C9—C10—H10A 120.2
C2—C3—H3D 108.5 C6—C11—C10 122.4 (4)
C4—C3—H3D 108.5 C6—C11—H11A 118.8
H3C—C3—H3D 107.5 C10—C11—H11A 118.8
C5—C4—C3 116.5 (5) N1—C12—C9 125.3 (3)
C5—C4—H4A 108.2 N1—C12—S 113.3 (3)
C3—C4—H4A 108.2 C9—C12—S 121.4 (3)
C5—C4—H4B 108.2 N2—C13—N3 124.8 (3)
C3—C4—H4B 108.2 N2—C13—S 113.4 (3)
H4A—C4—H4B 107.3 N3—C13—S 121.7 (2)
C12—N1—N2—C13 −1.4 (5) C5—C6—C11—C10 179.4 (4)
C1—C2—C3—C4 172.2 (6) C9—C10—C11—C6 0.4 (7)
C2—C3—C4—C5 −173.4 (6) N2—N1—C12—C9 −179.7 (3)
C3—C4—C5—C6 174.6 (5) N2—N1—C12—S 0.8 (4)
C4—C5—C6—C11 133.0 (5) C8—C9—C12—N1 −150.2 (4)
C4—C5—C6—C7 −48.4 (7) C10—C9—C12—N1 30.3 (6)
C11—C6—C7—C8 −2.0 (7) C8—C9—C12—S 29.2 (5)
C5—C6—C7—C8 179.4 (4) C10—C9—C12—S −150.3 (3)
C6—C7—C8—C9 2.2 (7) C13—S—C12—N1 −0.1 (3)
C7—C8—C9—C10 −1.0 (6) C13—S—C12—C9 −179.6 (3)
C7—C8—C9—C12 179.5 (4) N1—N2—C13—N3 −178.2 (4)
C8—C9—C10—C11 −0.2 (6) N1—N2—C13—S 1.3 (4)
C12—C9—C10—C11 179.3 (4) C12—S—C13—N2 −0.7 (3)
C7—C6—C11—C10 0.7 (7) C12—S—C13—N3 178.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···S 0.93 2.81 3.177 (4) 104
N3—H3A···N2i 0.86 2.15 3.006 (4) 173

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2519).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci.21, 195–201.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ.20, 1903–1905.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022594/hg2519sup1.cif

e-65-o1608-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022594/hg2519Isup2.hkl

e-65-o1608-Isup2.hkl (122.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES