Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):m807. doi: 10.1107/S1600536809023204

Tetra­aqua­bis(4,4′-bipyridine)zinc(II) bis­(trans-4-hydroxy­cinnamate)

Ling Chen a,*
PMCID: PMC2969468  PMID: 21582731

Abstract

The title complex, [Zn(C10H8N2)2(H2O)4](C9H7O3)2, was obtained by the hydro­thermal reaction of zinc sulfate with mixed 4-hydroxy­lcinnamic acid (H2 L) and 4,4′-bipyridine (4,4′-bipy) ligands. The complex consists of a centrosymmetric [Zn(4,4′-bipy)2(H2O)4]2+ cation with the metal centre in a distorted ZnN2O4 coordination, and of two HL anions. Extensive O—H⋯O and O—H⋯N hydrogen-bonding inter­actions between the constituents lead to the formation of a three-dimensional network.

Related literature

The main strategy used in the design and synthesis of novel coordination architectures is the building-block approach, see: Han et al. (2005); Wen et al. (2005); Yaghi et al. (1998). For the isostructural nickel analog, see: Zhou et al. (2006).graphic file with name e-65-0m807-scheme1.jpg

Experimental

Crystal data

  • [Zn(C10H8N2)2(H2O)4](C9H7O3)2

  • M r = 776.09

  • Triclinic, Inline graphic

  • a = 7.0884 (4) Å

  • b = 7.3966 (4) Å

  • c = 17.2518 (10) Å

  • α = 86.972 (3)°

  • β = 83.872 (3)°

  • γ = 81.937 (3)°

  • V = 889.80 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 296 K

  • 0.38 × 0.19 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.84, T max = 0.93

  • 12766 measured reflections

  • 4058 independent reflections

  • 3831 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.080

  • S = 1.03

  • 4058 reflections

  • 256 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023204/at2810sup1.cif

e-65-0m807-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023204/at2810Isup2.hkl

e-65-0m807-Isup2.hkl (198.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3 0.818 (15) 1.948 (16) 2.7549 (15) 169 (2)
O1W—H1WB⋯O3i 0.835 (14) 1.875 (15) 2.7069 (14) 174 (2)
O1—H1⋯N1ii 0.824 (17) 1.97 (2) 2.714 (2) 150 (3)
O2W—H2WA⋯O2iii 0.834 (14) 1.869 (15) 2.6833 (14) 165.0 (19)
O2W—H2WB⋯O2iv 0.823 (14) 1.919 (15) 2.7307 (15) 168.3 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

The main strategy widely used in design and synthesis of novel coordination architectures is the building-block approach (Yaghi et al., 1998; Han et al., 2005; Wen et al., 2005). 4-Hydroxylcinnamic acid (H2L) is considered as suitable multidentate ligand is based on the following considerations: (a) It has multiple coordination sites, carboxylate group and phenolic hydroxyl group, that may generate structures of higher dimensions. (b) Hydroxyl group can also introduce hydrogen bond in the framework construction. Here, we combined H2L and auxiliary ligand 4,4-bipy as a mixed ligand system to react metal ions. A new Zn(II) complex, [Zn(4,4'-bipy)2(H2O)4].2HL, (I), was obtained unexpected. In this complex, HL ligand is non-coordinated and acts as a dissociative anion.

The X-ray diffraction study shows that the asymmetric unit of (I) is composed of half a Zn atom, one 4,4'-bipy ligand, two coordinated water molecules and one HL ligand. As shown in Fig.1, the ZnII center is six-coordinated by four water molecules and two N atoms of 4,4'-bipy, and displays a slightly distorted [ZnO4N2] octahedral coordination geometry. Four water molecules form a relatively normal equatorial plane of the octahedron, and the Zn1 atom is located in this plane, while two N atoms occupy the axial positions, with an N—Zn—N angle of 180 °. The bond lengths of Zn—Owater are 2.0878 (10) and 2.0881 (10) Å, Zn—N is 2.1728 (12) Å, respectively.

There are extensive hydrogen-bonding interactions involving the HL oxygen atoms, coordinated water molecules and uncoordinated 4,4'-bipy N atoms. A three-dimensional network is formed by these hydrogen-bonding interactions, as shown in Fig. 2. Complex (I) is isostructural with its nickel analog (Zhou et al., 2006).

Experimental

A mixture of 4-hydroxylcinnamic acid (0.1642 g, 1 mmol), ZnSO4.7H2O (0.1438 g, 0.5 mmol), Na2CO3 (0.053 g, 0.5 mmol) and H2O (15 mL) was sealed in a 25 ml stainless-steel reactor with a Telflon liner and was heated at 433 K for 3 d. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving colourless single crystals suitable for X-ray analysis in yield 30% (based on Zn).

Refinement

The Carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H = 0.93 Å Uiso(H) = 1.2Ueq(C)]. The water and hydroxyl H atoms were located from different maps, and refined with O—H and H—H distances retrained to 0.85 (2) Å and 1.35 (2) Å, and Uiso(H) values of 1.5Ueq(Owater, hydroxyl).

Figures

Fig. 1.

Fig. 1.

The cation and anion in (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (A) - x,1 - y,1 - z.]

Fig. 2.

Fig. 2.

The crystal packing of (I). The dashed lines indicate hydrogen-bonding interactions. H atoms have been omitted for clarity.

Crystal data

[Zn(C10H8N2)2(H2O)4](C9H7O3)2 Z = 1
Mr = 776.09 F(000) = 404
Triclinic, P1 Dx = 1.448 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0884 (4) Å Cell parameters from 7604 reflections
b = 7.3966 (4) Å θ = 2.4–27.6°
c = 17.2518 (10) Å µ = 0.76 mm1
α = 86.972 (3)° T = 296 K
β = 83.872 (3)° Block, colourless
γ = 81.937 (3)° 0.38 × 0.19 × 0.10 mm
V = 889.80 (9) Å3

Data collection

Bruker APEXII area-detector diffractometer 4058 independent reflections
Radiation source: fine-focus sealed tube 3831 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→9
Tmin = 0.84, Tmax = 0.93 k = −9→9
12766 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2285P] where P = (Fo2 + 2Fc2)/3
4058 reflections (Δ/σ)max < 0.001
256 parameters Δρmax = 0.25 e Å3
7 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.0000 0.5000 0.5000 0.02490 (8)
N1 0.7033 (3) 0.7037 (3) 0.02925 (11) 0.0716 (6)
N2 0.15006 (17) 0.51181 (16) 0.38363 (7) 0.0286 (2)
O1W 0.04162 (15) 0.21489 (14) 0.50894 (7) 0.0353 (2)
H1WA 0.103 (3) 0.148 (3) 0.4760 (11) 0.053*
H1WB −0.050 (2) 0.165 (3) 0.5304 (11) 0.053*
O1 1.2210 (3) 0.2418 (3) 0.12712 (9) 0.0791 (5)
H1 1.211 (4) 0.235 (4) 0.0803 (11) 0.095*
O2W 0.25236 (14) 0.50834 (15) 0.55126 (6) 0.0321 (2)
H2WA 0.302 (3) 0.600 (2) 0.5343 (12) 0.048*
H2WB 0.336 (3) 0.419 (2) 0.5482 (12) 0.048*
O2 0.44862 (15) −0.23700 (15) 0.47767 (7) 0.0375 (2)
O3 0.24175 (14) −0.04752 (14) 0.41292 (6) 0.0343 (2)
C1 0.8995 (2) 0.1118 (2) 0.28991 (9) 0.0364 (3)
H1A 0.8960 0.1062 0.3440 0.044*
C2 1.0548 (2) 0.1715 (2) 0.24627 (10) 0.0418 (4)
H2A 1.1535 0.2067 0.2709 0.050*
C3 1.0634 (3) 0.1792 (3) 0.16569 (10) 0.0469 (4)
C4 0.9163 (3) 0.1275 (3) 0.13005 (10) 0.0563 (5)
H4A 0.9223 0.1306 0.0759 0.068*
C5 0.7585 (3) 0.0705 (3) 0.17450 (10) 0.0472 (4)
H5A 0.6582 0.0391 0.1496 0.057*
C6 0.7480 (2) 0.0596 (2) 0.25546 (9) 0.0319 (3)
C7 0.5805 (2) −0.0009 (2) 0.30247 (9) 0.0329 (3)
H7A 0.4696 −0.0010 0.2781 0.039*
C8 0.5768 (2) −0.0550 (2) 0.37683 (9) 0.0320 (3)
H8A 0.6881 −0.0547 0.4009 0.038*
C9 0.40854 (19) −0.11645 (18) 0.42536 (8) 0.0274 (3)
C10 0.5155 (4) 0.7408 (5) 0.03681 (14) 0.0983 (11)
H10A 0.4563 0.7952 −0.0058 0.118*
C11 0.4004 (3) 0.7038 (5) 0.10411 (13) 0.0830 (9)
H11A 0.2681 0.7326 0.1056 0.100*
C12 0.4808 (2) 0.6252 (2) 0.16828 (9) 0.0402 (4)
C13 0.6782 (3) 0.5875 (3) 0.16090 (13) 0.0649 (6)
H13A 0.7417 0.5348 0.2027 0.078*
C14 0.7814 (3) 0.6288 (4) 0.09087 (15) 0.0740 (7)
H14A 0.9141 0.6018 0.0874 0.089*
C15 0.3318 (2) 0.4346 (2) 0.36835 (9) 0.0320 (3)
H15A 0.3863 0.3548 0.4058 0.038*
C16 0.4417 (2) 0.4678 (2) 0.29975 (9) 0.0358 (3)
H16A 0.5680 0.4122 0.2920 0.043*
C17 0.3643 (2) 0.5841 (2) 0.24213 (9) 0.0326 (3)
C18 0.1735 (2) 0.6606 (2) 0.25723 (9) 0.0384 (3)
H18A 0.1142 0.7375 0.2200 0.046*
C19 0.0736 (2) 0.6215 (2) 0.32754 (9) 0.0364 (3)
H19A −0.0535 0.6740 0.3366 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02173 (12) 0.02703 (12) 0.02486 (13) −0.00473 (8) 0.00350 (8) 0.00093 (8)
N1 0.0743 (13) 0.0967 (15) 0.0436 (10) −0.0347 (11) 0.0228 (9) 0.0019 (10)
N2 0.0265 (6) 0.0313 (6) 0.0265 (6) −0.0037 (4) 0.0028 (4) −0.0002 (5)
O1W 0.0317 (5) 0.0268 (5) 0.0448 (6) −0.0058 (4) 0.0115 (5) −0.0023 (4)
O1 0.0665 (10) 0.1314 (16) 0.0453 (8) −0.0548 (10) 0.0178 (7) 0.0054 (9)
O2W 0.0242 (5) 0.0359 (5) 0.0356 (6) −0.0068 (4) 0.0003 (4) 0.0042 (4)
O2 0.0299 (5) 0.0385 (6) 0.0417 (6) −0.0061 (4) 0.0016 (4) 0.0127 (5)
O3 0.0243 (5) 0.0373 (5) 0.0387 (6) −0.0017 (4) 0.0041 (4) 0.0032 (4)
C1 0.0344 (8) 0.0457 (8) 0.0285 (7) −0.0089 (6) 0.0010 (6) 0.0044 (6)
C2 0.0339 (8) 0.0531 (10) 0.0391 (9) −0.0137 (7) 0.0016 (7) 0.0024 (7)
C3 0.0435 (9) 0.0587 (11) 0.0373 (9) −0.0166 (8) 0.0113 (7) 0.0042 (8)
C4 0.0643 (12) 0.0818 (14) 0.0253 (8) −0.0288 (11) 0.0065 (8) 0.0044 (8)
C5 0.0474 (10) 0.0654 (11) 0.0323 (8) −0.0232 (8) −0.0028 (7) 0.0032 (8)
C6 0.0305 (7) 0.0342 (7) 0.0294 (7) −0.0051 (6) 0.0034 (6) 0.0040 (6)
C7 0.0274 (7) 0.0353 (7) 0.0353 (8) −0.0061 (6) 0.0009 (6) 0.0026 (6)
C8 0.0234 (6) 0.0355 (7) 0.0359 (8) −0.0055 (5) 0.0020 (6) 0.0047 (6)
C9 0.0255 (6) 0.0265 (6) 0.0291 (7) −0.0044 (5) 0.0038 (5) −0.0013 (5)
C10 0.0731 (17) 0.179 (3) 0.0418 (12) −0.0355 (19) 0.0030 (11) 0.0382 (17)
C11 0.0505 (12) 0.153 (3) 0.0425 (12) −0.0225 (14) 0.0033 (9) 0.0329 (14)
C12 0.0440 (9) 0.0449 (9) 0.0303 (8) −0.0132 (7) 0.0112 (7) −0.0007 (6)
C13 0.0474 (11) 0.0872 (16) 0.0521 (12) −0.0041 (10) 0.0168 (9) 0.0156 (11)
C14 0.0547 (12) 0.0988 (18) 0.0613 (14) −0.0142 (12) 0.0271 (11) 0.0082 (13)
C15 0.0299 (7) 0.0346 (7) 0.0291 (7) −0.0009 (6) 0.0016 (6) 0.0024 (6)
C16 0.0273 (7) 0.0430 (8) 0.0337 (8) 0.0004 (6) 0.0056 (6) −0.0009 (6)
C17 0.0340 (7) 0.0351 (7) 0.0275 (7) −0.0075 (6) 0.0068 (6) −0.0015 (6)
C18 0.0377 (8) 0.0445 (8) 0.0289 (7) 0.0018 (6) 0.0020 (6) 0.0073 (6)
C19 0.0291 (7) 0.0449 (8) 0.0311 (8) 0.0029 (6) 0.0032 (6) 0.0035 (6)

Geometric parameters (Å, °)

Zn1—O1W 2.0878 (10) C4—H4A 0.9300
Zn1—O1Wi 2.0878 (10) C5—C6 1.389 (2)
Zn1—O2W 2.0881 (10) C5—H5A 0.9300
Zn1—O2Wi 2.0881 (10) C6—C7 1.4740 (19)
Zn1—N2i 2.1728 (12) C7—C8 1.322 (2)
Zn1—N2 2.1728 (12) C7—H7A 0.9300
N1—C14 1.312 (3) C8—C9 1.4931 (18)
N1—C10 1.314 (3) C8—H8A 0.9300
N2—C15 1.3388 (18) C10—C11 1.384 (3)
N2—C19 1.3396 (19) C10—H10A 0.9300
O1W—H1WA 0.818 (15) C11—C12 1.365 (3)
O1W—H1WB 0.835 (14) C11—H11A 0.9300
O1—C3 1.364 (2) C12—C13 1.381 (3)
O1—H1 0.824 (17) C12—C17 1.484 (2)
O2W—H2WA 0.834 (14) C13—C14 1.386 (3)
O2W—H2WB 0.823 (14) C13—H13A 0.9300
O2—C9 1.2605 (17) C14—H14A 0.9300
O3—C9 1.2559 (17) C15—C16 1.376 (2)
C1—C2 1.377 (2) C15—H15A 0.9300
C1—C6 1.390 (2) C16—C17 1.387 (2)
C1—H1A 0.9300 C16—H16A 0.9300
C2—C3 1.383 (2) C17—C18 1.394 (2)
C2—H2A 0.9300 C18—C19 1.376 (2)
C3—C4 1.373 (3) C18—H18A 0.9300
C4—C5 1.390 (2) C19—H19A 0.9300
O1W—Zn1—O1Wi 180.0 C5—C6—C7 120.99 (14)
O1W—Zn1—O2W 90.44 (4) C1—C6—C7 121.73 (14)
O1Wi—Zn1—O2W 89.56 (4) C8—C7—C6 124.58 (14)
O1W—Zn1—O2Wi 89.56 (4) C8—C7—H7A 117.7
O1Wi—Zn1—O2Wi 90.44 (4) C6—C7—H7A 117.7
O2W—Zn1—O2Wi 180.0 C7—C8—C9 125.33 (14)
O1W—Zn1—N2i 86.05 (4) C7—C8—H8A 117.3
O1Wi—Zn1—N2i 93.95 (4) C9—C8—H8A 117.3
O2W—Zn1—N2i 88.47 (4) O3—C9—O2 124.73 (12)
O2Wi—Zn1—N2i 91.53 (4) O3—C9—C8 120.02 (13)
O1W—Zn1—N2 93.95 (4) O2—C9—C8 115.24 (12)
O1Wi—Zn1—N2 86.05 (4) N1—C10—C11 124.1 (2)
O2W—Zn1—N2 91.53 (4) N1—C10—H10A 117.9
O2Wi—Zn1—N2 88.47 (4) C11—C10—H10A 117.9
N2i—Zn1—N2 180.0 C12—C11—C10 120.1 (2)
C14—N1—C10 116.03 (18) C12—C11—H11A 120.0
C15—N2—C19 117.08 (12) C10—C11—H11A 120.0
C15—N2—Zn1 121.81 (10) C11—C12—C13 116.05 (17)
C19—N2—Zn1 120.28 (9) C11—C12—C17 122.30 (16)
Zn1—O1W—H1WA 124.9 (15) C13—C12—C17 121.65 (17)
Zn1—O1W—H1WB 116.7 (14) C12—C13—C14 119.7 (2)
H1WA—O1W—H1WB 109.5 (18) C12—C13—H13A 120.2
C3—O1—H1 106 (2) C14—C13—H13A 120.2
Zn1—O2W—H2WA 110.0 (14) N1—C14—C13 124.0 (2)
Zn1—O2W—H2WB 118.7 (14) N1—C14—H14A 118.0
H2WA—O2W—H2WB 108.1 (17) C13—C14—H14A 118.0
C2—C1—C6 121.95 (15) N2—C15—C16 123.05 (14)
C2—C1—H1A 119.0 N2—C15—H15A 118.5
C6—C1—H1A 119.0 C16—C15—H15A 118.5
C1—C2—C3 119.85 (16) C15—C16—C17 120.05 (13)
C1—C2—H2A 120.1 C15—C16—H16A 120.0
C3—C2—H2A 120.1 C17—C16—H16A 120.0
O1—C3—C4 124.55 (16) C16—C17—C18 116.86 (13)
O1—C3—C2 115.97 (17) C16—C17—C12 121.15 (14)
C4—C3—C2 119.48 (15) C18—C17—C12 121.99 (14)
C3—C4—C5 120.35 (16) C19—C18—C17 119.57 (14)
C3—C4—H4A 119.8 C19—C18—H18A 120.2
C5—C4—H4A 119.8 C17—C18—H18A 120.2
C6—C5—C4 121.10 (17) N2—C19—C18 123.35 (14)
C6—C5—H5A 119.5 N2—C19—H19A 118.3
C4—C5—H5A 119.5 C18—C19—H19A 118.3
C5—C6—C1 117.26 (14)
O1W—Zn1—N2—C15 −57.34 (12) C14—N1—C10—C11 −0.7 (5)
O1Wi—Zn1—N2—C15 122.66 (12) N1—C10—C11—C12 0.5 (6)
O2W—Zn1—N2—C15 33.20 (12) C10—C11—C12—C13 0.1 (4)
O2Wi—Zn1—N2—C15 −146.80 (12) C10—C11—C12—C17 179.5 (3)
O1W—Zn1—N2—C19 133.37 (12) C11—C12—C13—C14 −0.4 (4)
O1Wi—Zn1—N2—C19 −46.63 (12) C17—C12—C13—C14 −179.8 (2)
O2W—Zn1—N2—C19 −136.08 (12) C10—N1—C14—C13 0.4 (4)
O2Wi—Zn1—N2—C19 43.92 (12) C12—C13—C14—N1 0.2 (4)
C6—C1—C2—C3 −0.6 (3) C19—N2—C15—C16 2.1 (2)
C1—C2—C3—O1 179.30 (18) Zn1—N2—C15—C16 −167.54 (12)
C1—C2—C3—C4 0.2 (3) N2—C15—C16—C17 −0.9 (2)
O1—C3—C4—C5 −178.0 (2) C15—C16—C17—C18 −0.9 (2)
C2—C3—C4—C5 0.9 (3) C15—C16—C17—C12 178.75 (15)
C3—C4—C5—C6 −1.8 (3) C11—C12—C17—C16 164.8 (2)
C4—C5—C6—C1 1.4 (3) C13—C12—C17—C16 −15.9 (3)
C4—C5—C6—C7 180.00 (17) C11—C12—C17—C18 −15.6 (3)
C2—C1—C6—C5 −0.2 (2) C13—C12—C17—C18 163.7 (2)
C2—C1—C6—C7 −178.80 (15) C16—C17—C18—C19 1.3 (2)
C5—C6—C7—C8 163.73 (17) C12—C17—C18—C19 −178.31 (16)
C1—C6—C7—C8 −17.7 (2) C15—N2—C19—C18 −1.6 (2)
C6—C7—C8—C9 179.92 (14) Zn1—N2—C19—C18 168.18 (13)
C7—C8—C9—O3 −32.7 (2) C17—C18—C19—N2 −0.1 (3)
C7—C8—C9—O2 147.76 (16)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O3 0.82 (2) 1.95 (2) 2.7549 (15) 169 (2)
O1W—H1WB···O3ii 0.84 (1) 1.88 (2) 2.7069 (14) 174 (2)
O1—H1···N1iii 0.82 (2) 1.97 (2) 2.714 (2) 150 (3)
O2W—H2WA···O2iv 0.83 (1) 1.87 (2) 2.6833 (14) 165 (2)
O2W—H2WB···O2v 0.82 (1) 1.92 (2) 2.7307 (15) 168 (2)

Symmetry codes: (ii) −x, −y, −z+1; (iii) −x+2, −y+1, −z; (iv) x, y+1, z; (v) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2810).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Han, Z.-B., Cheng, X.-N. & Chen, X.-M. (2005). Cryst. Growth Des.5, 695–700.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wen, Y.-H., Zhang, J., Wang, X.-Q., Feng, Y.-L., Cheng, J.-K., Li, Z.-J. & Yao, Y.-G. (2005). New J. Chem 29, 995–997.
  6. Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.
  7. Zhou, Q.-X., Xu, Q.-F., Lu, J.-M. & Xia, X.-W. (2006). Chin. J. Struct. Chem.25, 1392–1396.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023204/at2810sup1.cif

e-65-0m807-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023204/at2810Isup2.hkl

e-65-0m807-Isup2.hkl (198.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES