Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 13;65(Pt 7):o1557–o1558. doi: 10.1107/S1600536809021655

4-(sec-Butyl­amino)-3-nitro­benzoic acid

Shivanagere Nagojappa Narendra Babu a, Aisyah Saad Abdul Rahim a,, Shafida Abd Hamid b, Chin Sing Yeap c,§, Hoong-Kun Fun c,*,
PMCID: PMC2969477  PMID: 21582841

Abstract

The asymmetric unit of title compound, C11H14N2O4, consists of two crystallographically independent mol­ecules (A and B). In each, intra­molecular N—H⋯O hydrogen bonds generate S(6) ring motifs. The mean plane of the nitro group forms dihedral angles of 4.5 (3) and 0.5 (3)° with the benzene ring in mol­ecules A and B, respectively. In mol­ecule A, there is disorder of the butyl­amino group which corresponds to an approximate 180° rotation about the N—C(H) bond, forming two sites with refined occupancies of 0.722 (6) and 0.278 (6). Mol­ecule B is similarly disordered but in addition there is further rotational disorder about the C(H)—C(H2) bond giving a ratio of occupancies for three components of 0.42:0.35:0.23. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link mol­ecules into centrosymmetric dimers generating R 2 2(8) ring motifs. The crystal structure is also stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For the synthesis of bioactive heterocycles using nitro benzoic acid derivatives as the starting materials, see: Burgey et al. (2006); Ishida et al. (2006); Semple et al. (2006); Narendra Babu et al. (2009). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o1557-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O4

  • M r = 238.24

  • Monoclinic, Inline graphic

  • a = 6.9722 (4) Å

  • b = 15.7250 (8) Å

  • c = 21.8111 (11) Å

  • β = 101.896 (3)°

  • V = 2340.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 110 K

  • 0.57 × 0.08 × 0.04 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.922, T max = 0.995

  • 23247 measured reflections

  • 4600 independent reflections

  • 3357 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.165

  • S = 1.08

  • 4600 reflections

  • 335 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021655/lh2837sup1.cif

e-65-o1557-sup1.cif (28KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021655/lh2837Isup2.hkl

e-65-o1557-Isup2.hkl (225.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯O2Ai 0.82 1.83 2.646 (3) 175
O1B—H1OB⋯O2Bii 0.82 1.80 2.618 (3) 172
N2A—H2NA⋯O4A 0.80 (3) 1.97 (3) 2.630 (4) 139 (3)
N2B—H2NB⋯O4B 0.88 (3) 1.90 (3) 2.627 (4) 139 (3)
C5A—H5AA⋯O3Aiii 0.93 2.44 3.316 (4) 157
C5B—H5BA⋯O3Biv 0.93 2.47 3.253 (4) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

SNNB, ASAR and SAH acknowledge Universiti Sains Malaysia (USM) for a University Research Grant for the synthetic chemistry work (No. 1001/PFARMASI/815026). SNNB thanks USM for a Postdoctoral Research Fellowship. HKF thanks USM for a Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks the Malaysian Government and USM for the award of the post of Research Officer under the Science Fund Grant (No. 305/PFIZIK/613312).

supplementary crystallographic information

Comment

The synthesis of bioactive heterocycles such as substituted benzimidazolones, benzimidazoles and 1-substituted benzotriazole carboxylic acids, (Burgey et al., 2006; Ishida et al., 2006; Semple et al., 2006), can be achieved from nitro benzoic acid derivatives as the starting materials. As part of our ongoing synthesis programme, (Narendra Babu et al., 2009), we have synthesized the title compound as an intermediate and herein present its crystal structure.

The asymmetric unit of title compound (I), (Figs. 1 and 2), consists of two crystallographically independent molecule A and B. Intramolecular N2A—H2NA···O4A and N2B—H2NB···O4B hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The nitro group for molecule A is almost planar with the benzene ring whereas the nitro group for molecule B is essentially coplanar with benzene ring [dihedral angle, A = 4.5 (3)° and B = 0.5 (3)°].

In molecule A there is disorder of the butylamino group which corresponds to an approximate 180° rotation about the N-C(H) bond forming two sites with refined occupancies of 0.722 (6) and 0.278 (6). Molecule B is similarly disordered but in addition there is further rotational disorder about the C(H)-C(H2) bond giving a ratio of occupancies for three components of 0.42:0.35:0.23 (see Fig. 1).

In the crystal structure, intermolecular O—H···O hydrogen bonds (see Table 1) link molecules into centrosymmetric dimers (Fig. 3) to generate R22(8) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by weak intermolecular C—H···O interactions (Table 1).

Experimental

Ethyl 4-(sec-butylamino)-3-nitro-benzoate (0.2 g, 0.00075 mol) and KOH (0.084 g, 0.0015 mol) was refluxed in aqueous ethanol (5 ml) for 3 h. After completion of the reaction, ethanol was distilled off and the reaction mixture was diluted with water (5 ml). The aqueous layer was washed with dichloromethane (5 ml x 2) and acidified with concentrated hydrochloric acid to afford yellow solid. Recrystallisation of the crude product with hot ethyl acetate afforded yellow crystals.

Refinement

Atoms H2NA and H2NB were located in a difference Fourier map and refined freely. The H-atoms of the hydroxy groups were positioned using a rotating group model and constrained with a fixed distance of 0.82 Å. The H-atoms for C8A, C10A, C8B and C10B were positioned geometrically and refined as riding with the parent atom with Uiso(H) = 1.2 and 1.5 Ueq(C). The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C-H = 0.93–0.96 Å and Uiso(H) = 1.2 and 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The methyl group of molecule A is disordered over two positions with refined site-occupancy ratio of 0.722 (6) : 0.278 (6), whereas the methyl group of molecule B is treated as disordered over three positions with refined site-occupancy ratio of 0.413 (9) : 0.327 (8) : 0.237 (9) with SUMP command equal to 1.0 (1). For the final refinement, the site-occupancy ratio of molecule B is fixed to 0.42 : 0.35 : 0.23. The same Uij parameters were used for atom pairs C9D/C9A, C9A/C8B and C9A/C9C. The C9E–C10B bond was refined with C-C distance restraint of 1.40 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines. All disorder components are shown.

Fig. 2.

Fig. 2.

The major disorder component of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The crystal packing of the title compound, showing the centrosymmetric dimers. Intermolecular hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.

Crystal data

C11H14N2O4 F(000) = 1008
Mr = 238.24 Dx = 1.353 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5403 reflections
a = 6.9722 (4) Å θ = 2.3–26.2°
b = 15.7250 (8) Å µ = 0.10 mm1
c = 21.8111 (11) Å T = 110 K
β = 101.896 (3)° Needle, yellow
V = 2340.0 (2) Å3 0.57 × 0.08 × 0.04 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4600 independent reflections
Radiation source: fine-focus sealed tube 3357 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→8
Tmin = 0.922, Tmax = 0.995 k = −16→19
23247 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0456P)2 + 3.6565P] where P = (Fo2 + 2Fc2)/3
4600 reflections (Δ/σ)max < 0.001
335 parameters Δρmax = 0.56 e Å3
2 restraints Δρmin = −0.59 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 110.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1A 0.4975 (3) 0.90262 (13) 0.95499 (9) 0.0352 (5)
H1OA 0.4983 0.9220 0.9899 0.053*
O2A 0.5198 (3) 1.04071 (13) 0.93205 (9) 0.0347 (5)
O3A 0.5205 (3) 1.11848 (13) 0.71999 (10) 0.0404 (6)
O4A 0.5426 (4) 1.02816 (15) 0.64713 (10) 0.0477 (6)
N1A 0.5280 (4) 1.04472 (16) 0.70177 (12) 0.0325 (6)
N2A 0.5194 (4) 0.86394 (17) 0.66720 (12) 0.0310 (6)
C1A 0.5195 (4) 0.97566 (18) 0.74513 (13) 0.0272 (6)
C2A 0.5183 (4) 0.99913 (19) 0.80664 (13) 0.0276 (6)
H2AA 0.5215 1.0564 0.8174 0.033*
C3A 0.5126 (4) 0.93828 (18) 0.85192 (13) 0.0260 (6)
C4A 0.5080 (4) 0.85228 (19) 0.83378 (14) 0.0304 (7)
H4AA 0.5045 0.8104 0.8636 0.036*
C5A 0.5086 (4) 0.82863 (19) 0.77366 (13) 0.0310 (7)
H5AA 0.5044 0.7711 0.7636 0.037*
C6A 0.5155 (4) 0.88925 (18) 0.72596 (13) 0.0271 (6)
C7A 0.5153 (4) 0.77568 (19) 0.64471 (14) 0.0324 (7)
H7AA 0.5997 0.7415 0.6770 0.039*
C8A 0.6020 (5) 0.7739 (2) 0.58601 (14) 0.0415 (8)
H8AA 0.6047 0.7163 0.5716 0.050* 0.722 (6)
H8AB 0.7345 0.7944 0.5961 0.050* 0.722 (6)
H8AC 0.6047 0.7163 0.5716 0.062* 0.278 (6)
H8AD 0.7345 0.7944 0.5961 0.062* 0.278 (6)
H8AE 0.5210 0.8065 0.5534 0.062* 0.278 (6)
C9A 0.4827 (11) 0.8285 (4) 0.5329 (3) 0.0793 (11) 0.722 (6)
H9AA 0.5300 0.8193 0.4951 0.119* 0.722 (6)
H9AB 0.4967 0.8875 0.5443 0.119* 0.722 (6)
H9AC 0.3469 0.8127 0.5262 0.119* 0.722 (6)
C9C 0.186 (3) 0.7705 (12) 0.5685 (6) 0.0793 (11) 0.278 (6)
H9CA 0.0556 0.7473 0.5620 0.119* 0.278 (6)
H9CB 0.2478 0.7522 0.5354 0.119* 0.278 (6)
H9CC 0.1786 0.8315 0.5686 0.119* 0.278 (6)
C10A 0.3092 (5) 0.7385 (2) 0.63375 (15) 0.0407 (8)
H10A 0.2611 0.7413 0.6719 0.061* 0.722 (6)
H10B 0.2244 0.7706 0.6018 0.061* 0.722 (6)
H10C 0.3120 0.6803 0.6207 0.061* 0.722 (6)
H10D 0.2465 0.7554 0.6671 0.049* 0.278 (6)
H10E 0.3156 0.6775 0.6334 0.049* 0.278 (6)
C11A 0.5106 (4) 0.96526 (19) 0.91601 (13) 0.0279 (6)
O1B 0.9570 (3) 0.58178 (15) 0.55036 (10) 0.0404 (6)
H1OB 0.9671 0.5690 0.5147 0.061*
O2B 1.0142 (3) 0.44245 (15) 0.56615 (10) 0.0401 (6)
O3B 1.0282 (3) 0.32730 (14) 0.77010 (10) 0.0411 (6)
O4B 0.9980 (3) 0.40380 (15) 0.84984 (10) 0.0446 (6)
N1B 1.0041 (3) 0.39668 (17) 0.79356 (12) 0.0330 (6)
N2B 0.9466 (4) 0.5691 (2) 0.83945 (12) 0.0393 (7)
C1B 0.9824 (4) 0.47178 (18) 0.75471 (13) 0.0268 (6)
C2B 0.9906 (4) 0.46020 (19) 0.69198 (13) 0.0268 (6)
H2BA 1.0104 0.4060 0.6773 0.032*
C3B 0.9699 (4) 0.5281 (2) 0.65165 (13) 0.0289 (7)
C4B 0.9402 (4) 0.60957 (19) 0.67420 (13) 0.0308 (7)
H4BA 0.9256 0.6558 0.6471 0.037*
C5B 0.9326 (4) 0.6215 (2) 0.73584 (14) 0.0333 (7)
H5BA 0.9118 0.6761 0.7495 0.040*
C6B 0.9549 (4) 0.5542 (2) 0.77919 (13) 0.0298 (7)
C7B 0.9414 (5) 0.6537 (2) 0.86791 (16) 0.0504 (10)
H7BA 0.8414 0.6878 0.8405 0.061*
C8B 0.8803 (8) 0.6422 (3) 0.92986 (19) 0.0793 (11)
H8BA 0.9565 0.5983 0.9541 0.095* 0.42
H8BB 0.7449 0.6257 0.9225 0.095* 0.42
H8BC 0.7414 0.6519 0.9212 0.095* 0.35
H8BD 0.9383 0.6887 0.9556 0.095* 0.35
H8BE 0.7565 0.6132 0.9231 0.119* 0.23
H8BF 0.9767 0.6095 0.9580 0.119* 0.23
H8BG 0.8675 0.6972 0.9477 0.119* 0.23
C9B 0.9071 (12) 0.7303 (5) 0.9672 (4) 0.044 (2) 0.42
H9BA 0.8896 0.7213 1.0092 0.066* 0.42
H9BB 0.8114 0.7704 0.9465 0.066* 0.42
H9BC 1.0363 0.7522 0.9682 0.066* 0.42
C9D 0.914 (2) 0.5772 (9) 0.9672 (5) 0.0793 (11) 0.35
H9DA 0.8517 0.5277 0.9461 0.119* 0.35
H9DB 0.8613 0.5881 1.0038 0.119* 0.35
H9DC 1.0523 0.5678 0.9792 0.119* 0.35
C9E 1.092 (3) 0.7665 (8) 0.9122 (8) 0.081 (7) 0.23
H9EA 1.1756 0.8140 0.9085 0.121* 0.23
H9EB 1.1137 0.7487 0.9552 0.121* 0.23
H9EC 0.9577 0.7829 0.8983 0.121* 0.23
C10B 1.1359 (6) 0.6989 (3) 0.8750 (2) 0.0694 (13)
H10F 1.1684 0.7036 0.8345 0.104* 0.42
H10G 1.1268 0.7547 0.8920 0.104* 0.42
H10H 1.2360 0.6671 0.9024 0.104* 0.42
H10I 1.1684 0.7036 0.8345 0.104* 0.35
H10J 1.1268 0.7547 0.8920 0.104* 0.35
H10K 1.2360 0.6671 0.9024 0.104* 0.35
H10L 1.1610 0.7152 0.8350 0.083* 0.23
H10M 1.2428 0.6652 0.8971 0.083* 0.23
C11B 0.9816 (4) 0.5153 (2) 0.58518 (13) 0.0307 (7)
H2NA 0.523 (5) 0.903 (2) 0.6440 (15) 0.031 (9)*
H2NB 0.961 (5) 0.522 (2) 0.8616 (17) 0.053 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0455 (13) 0.0321 (12) 0.0299 (11) −0.0005 (10) 0.0117 (10) −0.0033 (9)
O2A 0.0423 (13) 0.0312 (12) 0.0315 (11) −0.0004 (10) 0.0095 (9) −0.0036 (9)
O3A 0.0496 (14) 0.0281 (12) 0.0448 (13) −0.0035 (10) 0.0130 (11) 0.0000 (10)
O4A 0.0692 (17) 0.0418 (14) 0.0355 (13) −0.0061 (12) 0.0187 (12) −0.0002 (10)
N1A 0.0310 (14) 0.0316 (15) 0.0359 (15) −0.0030 (11) 0.0088 (11) −0.0023 (11)
N2A 0.0318 (14) 0.0326 (15) 0.0279 (14) 0.0001 (11) 0.0048 (11) 0.0012 (12)
C1A 0.0183 (13) 0.0321 (16) 0.0307 (15) 0.0016 (12) 0.0037 (11) 0.0047 (12)
C2A 0.0180 (13) 0.0289 (15) 0.0349 (16) 0.0000 (11) 0.0033 (12) −0.0042 (13)
C3A 0.0195 (13) 0.0302 (16) 0.0287 (15) 0.0015 (11) 0.0056 (12) −0.0003 (12)
C4A 0.0260 (15) 0.0306 (16) 0.0344 (16) 0.0010 (12) 0.0058 (13) 0.0037 (13)
C5A 0.0329 (16) 0.0271 (16) 0.0325 (16) 0.0023 (13) 0.0052 (13) −0.0033 (13)
C6A 0.0185 (13) 0.0298 (16) 0.0318 (15) 0.0020 (12) 0.0024 (12) −0.0032 (13)
C7A 0.0341 (16) 0.0321 (17) 0.0294 (15) 0.0024 (13) 0.0027 (13) −0.0061 (13)
C8A 0.0405 (18) 0.050 (2) 0.0341 (17) −0.0005 (16) 0.0078 (14) −0.0102 (15)
C9A 0.112 (3) 0.091 (3) 0.0410 (17) 0.009 (2) 0.0301 (19) −0.0072 (17)
C9C 0.112 (3) 0.091 (3) 0.0410 (17) 0.009 (2) 0.0301 (19) −0.0072 (17)
C10A 0.0396 (18) 0.0367 (18) 0.0433 (19) −0.0024 (15) 0.0032 (15) −0.0039 (15)
C11A 0.0189 (14) 0.0338 (17) 0.0301 (16) −0.0009 (12) 0.0032 (12) −0.0022 (13)
O1B 0.0443 (13) 0.0517 (14) 0.0261 (11) 0.0019 (11) 0.0093 (10) 0.0018 (10)
O2B 0.0418 (13) 0.0476 (14) 0.0312 (12) −0.0007 (11) 0.0078 (10) −0.0070 (10)
O3B 0.0414 (13) 0.0321 (13) 0.0478 (14) 0.0005 (10) 0.0043 (11) 0.0024 (11)
O4B 0.0488 (14) 0.0551 (15) 0.0301 (12) 0.0012 (12) 0.0087 (10) 0.0109 (11)
N1B 0.0239 (13) 0.0383 (16) 0.0358 (14) −0.0015 (11) 0.0041 (11) 0.0050 (12)
N2B 0.0423 (16) 0.0478 (18) 0.0271 (14) 0.0093 (13) 0.0054 (12) −0.0035 (13)
C1B 0.0183 (13) 0.0331 (16) 0.0287 (15) 0.0008 (12) 0.0042 (11) 0.0007 (12)
C2B 0.0164 (13) 0.0342 (16) 0.0299 (15) −0.0011 (12) 0.0048 (11) −0.0045 (13)
C3B 0.0163 (13) 0.0415 (18) 0.0279 (15) −0.0023 (12) 0.0026 (11) −0.0041 (13)
C4B 0.0279 (15) 0.0340 (17) 0.0297 (15) −0.0002 (13) 0.0039 (12) 0.0048 (13)
C5B 0.0280 (15) 0.0353 (17) 0.0354 (17) 0.0059 (13) 0.0035 (13) −0.0045 (14)
C6B 0.0215 (14) 0.0421 (18) 0.0247 (15) 0.0039 (13) 0.0020 (12) 0.0011 (13)
C7B 0.054 (2) 0.061 (2) 0.0341 (18) 0.0158 (19) 0.0043 (16) −0.0147 (17)
C8B 0.112 (3) 0.091 (3) 0.0410 (17) 0.009 (2) 0.0301 (19) −0.0072 (17)
C9B 0.047 (5) 0.047 (5) 0.042 (4) 0.010 (4) 0.020 (4) −0.008 (4)
C9D 0.112 (3) 0.091 (3) 0.0410 (17) 0.009 (2) 0.0301 (19) −0.0072 (17)
C9E 0.113 (17) 0.041 (10) 0.080 (14) −0.033 (11) 0.000 (12) 0.013 (10)
C10B 0.059 (3) 0.065 (3) 0.071 (3) 0.012 (2) −0.018 (2) −0.036 (2)
C11B 0.0210 (14) 0.0426 (19) 0.0275 (15) −0.0022 (13) 0.0031 (12) −0.0003 (14)

Geometric parameters (Å, °)

O1A—C11A 1.317 (3) N2B—H2NB 0.88 (4)
O1A—H1OA 0.8200 C1B—C2B 1.393 (4)
O2A—C11A 1.235 (3) C1B—C6B 1.429 (4)
O3A—N1A 1.231 (3) C2B—C3B 1.372 (4)
O4A—N1A 1.244 (3) C2B—H2BA 0.9300
N1A—C1A 1.449 (4) C3B—C4B 1.403 (4)
N2A—C6A 1.348 (4) C3B—C11B 1.483 (4)
N2A—C7A 1.470 (4) C4B—C5B 1.369 (4)
N2A—H2NA 0.80 (3) C4B—H4BA 0.9300
C1A—C2A 1.393 (4) C5B—C6B 1.406 (4)
C1A—C6A 1.420 (4) C5B—H5BA 0.9300
C2A—C3A 1.382 (4) C7B—C8B 1.509 (5)
C2A—H2AA 0.9300 C7B—C10B 1.511 (6)
C3A—C4A 1.408 (4) C7B—H7BA 0.9800
C3A—C11A 1.464 (4) C8B—C9D 1.297 (14)
C4A—C5A 1.364 (4) C8B—C9B 1.599 (9)
C4A—H4AA 0.9300 C8B—H8BA 0.9601
C5A—C6A 1.419 (4) C8B—H8BB 0.9600
C5A—H5AA 0.9300 C8B—H8BC 0.9600
C7A—C10A 1.524 (4) C8B—H8BD 0.9600
C7A—C8A 1.525 (4) C8B—H8BE 0.9600
C7A—H7AA 0.9800 C8B—H8BF 0.9601
C8A—C9A 1.541 (7) C8B—H8BG 0.9600
C8A—H8AA 0.9601 C9B—H8BD 0.7494
C8A—H8AB 0.9599 C9B—H8BG 0.6932
C8A—H8AC 0.9601 C9B—H9BA 0.9600
C8A—H8AD 0.9599 C9B—H9BB 0.9600
C8A—H8AE 0.9600 C9B—H9BC 0.9600
C9A—H8AE 0.5846 C9D—H8BA 0.5627
C9A—H9AA 0.9600 C9D—H8BB 1.5624
C9A—H9AB 0.9600 C9D—H8BE 1.4173
C9A—H9AC 0.9600 C9D—H8BF 0.7266
C9C—C10A 1.586 (16) C9D—H9DA 0.9600
C9C—H9CA 0.9600 C9D—H9DB 0.9600
C9C—H9CB 0.9600 C9D—H9DC 0.9600
C9C—H9CC 0.9600 C9E—C10B 1.408 (9)
C9C—H10B 0.7203 C9E—H9EA 0.9600
C10A—H10A 0.9601 C9E—H9EB 0.9600
C10A—H10B 0.9599 C9E—H9EC 0.9600
C10A—H10C 0.9600 C9E—H10G 0.5739
C10A—H10D 0.9601 C9E—H10J 0.5739
C10A—H10E 0.9600 C10B—H10F 0.9600
O1B—C11B 1.283 (4) C10B—H10G 0.9599
O1B—H1OB 0.8200 C10B—H10H 0.9599
O2B—C11B 1.254 (4) C10B—H10I 0.9600
O3B—N1B 1.231 (3) C10B—H10J 0.9599
O4B—N1B 1.242 (3) C10B—H10K 0.9599
N1B—C1B 1.443 (4) C10B—H10L 0.9600
N2B—C6B 1.348 (4) C10B—H10M 0.9601
N2B—C7B 1.472 (4)
C11A—O1A—H1OA 109.5 C5B—C6B—C1B 115.8 (3)
O3A—N1A—O4A 121.6 (3) N2B—C7B—C8B 107.8 (3)
O3A—N1A—C1A 119.0 (2) N2B—C7B—C10B 111.7 (3)
O4A—N1A—C1A 119.4 (2) C8B—C7B—C10B 112.2 (3)
C6A—N2A—C7A 126.4 (3) N2B—C7B—H7BA 108.4
C6A—N2A—H2NA 113 (2) C8B—C7B—H7BA 108.4
C7A—N2A—H2NA 121 (2) C10B—C7B—H7BA 108.4
C2A—C1A—C6A 122.2 (3) C9D—C8B—C7B 127.5 (7)
C2A—C1A—N1A 116.0 (3) C9D—C8B—C9B 112.1 (7)
C6A—C1A—N1A 121.7 (3) C7B—C8B—C9B 109.1 (5)
C3A—C2A—C1A 120.8 (3) C7B—C8B—H8BA 110.6
C3A—C2A—H2AA 119.6 C9B—C8B—H8BA 110.4
C1A—C2A—H2AA 119.6 C9D—C8B—H8BB 86.3
C2A—C3A—C4A 117.8 (3) C7B—C8B—H8BB 109.4
C2A—C3A—C11A 119.3 (3) C9B—C8B—H8BB 109.1
C4A—C3A—C11A 122.9 (3) H8BA—C8B—H8BB 108.2
C5A—C4A—C3A 121.9 (3) C9D—C8B—H8BC 107.0
C5A—C4A—H4AA 119.1 C7B—C8B—H8BC 105.3
C3A—C4A—H4AA 119.1 C9B—C8B—H8BC 88.3
C4A—C5A—C6A 121.9 (3) H8BA—C8B—H8BC 130.2
C4A—C5A—H5AA 119.0 C9D—C8B—H8BD 103.5
C6A—C5A—H5AA 119.0 C7B—C8B—H8BD 105.7
N2A—C6A—C5A 120.6 (3) H8BA—C8B—H8BD 96.2
N2A—C6A—C1A 124.0 (3) H8BB—C8B—H8BD 125.8
C5A—C6A—C1A 115.4 (3) H8BC—C8B—H8BD 106.3
N2A—C7A—C10A 111.5 (2) C9D—C8B—H8BE 76.2
N2A—C7A—C8A 108.3 (3) C7B—C8B—H8BE 109.3
C10A—C7A—C8A 112.7 (3) C9B—C8B—H8BE 119.7
N2A—C7A—H7AA 108.1 H8BA—C8B—H8BE 97.0
C10A—C7A—H7AA 108.1 H8BD—C8B—H8BE 135.1
C8A—C7A—H7AA 108.1 C7B—C8B—H8BF 110.3
C7A—C8A—C9A 112.0 (3) C9B—C8B—H8BF 98.3
C7A—C8A—H8AA 109.2 H8BB—C8B—H8BF 119.8
C9A—C8A—H8AA 108.9 H8BC—C8B—H8BF 139.1
C7A—C8A—H8AB 109.3 H8BD—C8B—H8BF 83.0
C9A—C8A—H8AB 109.3 H8BE—C8B—H8BF 109.5
H8AA—C8A—H8AB 108.0 C9D—C8B—H8BG 118.4
C7A—C8A—H8AC 109.2 C7B—C8B—H8BG 108.8
C9A—C8A—H8AC 108.9 H8BA—C8B—H8BG 120.8
H8AB—C8A—H8AC 108.0 H8BB—C8B—H8BG 98.1
C7A—C8A—H8AD 109.3 H8BC—C8B—H8BG 76.2
C9A—C8A—H8AD 109.3 H8BE—C8B—H8BG 109.5
H8AA—C8A—H8AD 108.0 H8BF—C8B—H8BG 109.5
H8AC—C8A—H8AD 108.0 C8B—C9B—H9BA 109.5
C7A—C8A—H8AE 109.7 H8BD—C9B—H9BA 107.2
H8AA—C8A—H8AE 108.1 C8B—C9B—H9BB 109.5
H8AB—C8A—H8AE 112.5 H8BD—C9B—H9BB 129.6
H8AC—C8A—H8AE 108.1 C8B—C9B—H9BC 109.5
H8AD—C8A—H8AE 112.5 H8BD—C9B—H9BC 89.1
C8A—C9A—H9AA 109.5 H8BA—C9D—H8BB 78.9
H8AE—C9A—H9AA 112.5 H8BA—C9D—H8BE 80.7
C8A—C9A—H9AB 109.5 C8B—C9D—H8BF 46.9
H8AE—C9A—H9AB 111.6 H8BB—C9D—H8BF 84.7
C8A—C9A—H9AC 109.5 H8BE—C9D—H8BF 87.8
H8AE—C9A—H9AC 104.2 C8B—C9D—H9DA 109.5
C10A—C9C—H9CA 109.5 C8B—C9D—H9DB 109.5
C10A—C9C—H9CB 109.5 H9DA—C9D—H9DB 109.5
H9CA—C9C—H9CB 109.5 C8B—C9D—H9DC 109.5
C10A—C9C—H9CC 109.5 H9DA—C9D—H9DC 109.5
H9CA—C9C—H9CC 109.5 H9DB—C9D—H9DC 109.5
H9CB—C9C—H9CC 109.5 C10B—C9E—H9EA 109.5
H9CA—C9C—H10B 107.3 C10B—C9E—H9EB 109.5
H9CB—C9C—H10B 128.6 C10B—C9E—H9EC 109.5
H9CC—C9C—H10B 90.2 H9EA—C9E—H10G 80.3
C7A—C10A—C9C 109.8 (7) H9EB—C9E—H10G 130.4
C7A—C10A—H10A 109.5 H9EC—C9E—H10G 112.4
C9C—C10A—H10A 122.8 H9EA—C9E—H10J 80.3
C7A—C10A—H10B 109.3 H9EB—C9E—H10J 130.4
H10A—C10A—H10B 109.5 H9EC—C9E—H10J 112.4
C7A—C10A—H10C 109.6 C9E—C10B—C7B 96.8 (9)
C9C—C10A—H10C 94.4 C9E—C10B—H10F 126.4
H10A—C10A—H10C 109.5 C7B—C10B—H10F 108.6
H10B—C10A—H10C 109.5 C7B—C10B—H10G 109.9
C7A—C10A—H10D 109.7 H10F—C10B—H10G 109.5
C9C—C10A—H10D 110.1 C9E—C10B—H10H 104.5
H10B—C10A—H10D 95.6 C7B—C10B—H10H 109.9
H10C—C10A—H10D 122.0 H10F—C10B—H10H 109.5
C7A—C10A—H10E 109.9 H10G—C10B—H10H 109.5
C9C—C10A—H10E 109.1 C9E—C10B—H10I 126.4
H10A—C10A—H10E 94.5 C7B—C10B—H10I 108.6
H10B—C10A—H10E 122.9 H10G—C10B—H10I 109.5
H10D—C10A—H10E 108.2 H10H—C10B—H10I 109.5
O2A—C11A—O1A 122.8 (3) C7B—C10B—H10J 109.9
O2A—C11A—C3A 122.6 (3) H10F—C10B—H10J 109.5
O1A—C11A—C3A 114.5 (3) H10H—C10B—H10J 109.5
C11B—O1B—H1OB 109.5 H10I—C10B—H10J 109.5
O3B—N1B—O4B 121.7 (3) C9E—C10B—H10K 104.5
O3B—N1B—C1B 119.2 (2) C7B—C10B—H10K 109.9
O4B—N1B—C1B 119.1 (3) H10F—C10B—H10K 109.5
C6B—N2B—C7B 125.3 (3) H10G—C10B—H10K 109.5
C6B—N2B—H2NB 111 (2) H10I—C10B—H10K 109.5
C7B—N2B—H2NB 123 (2) H10J—C10B—H10K 109.5
C2B—C1B—C6B 121.4 (3) C9E—C10B—H10L 115.1
C2B—C1B—N1B 116.7 (3) C7B—C10B—H10L 111.1
C6B—C1B—N1B 121.9 (3) H10G—C10B—H10L 98.5
C3B—C2B—C1B 120.5 (3) H10H—C10B—H10L 117.3
C3B—C2B—H2BA 119.7 H10J—C10B—H10L 98.5
C1B—C2B—H2BA 119.7 H10K—C10B—H10L 117.3
C2B—C3B—C4B 119.3 (3) C9E—C10B—H10M 111.4
C2B—C3B—C11B 120.1 (3) C7B—C10B—H10M 112.3
C4B—C3B—C11B 120.6 (3) H10F—C10B—H10M 101.5
C5B—C4B—C3B 120.5 (3) H10G—C10B—H10M 114.7
C5B—C4B—H4BA 119.7 H10I—C10B—H10M 101.5
C3B—C4B—H4BA 119.7 H10J—C10B—H10M 114.7
C4B—C5B—C6B 122.4 (3) H10L—C10B—H10M 109.6
C4B—C5B—H5BA 118.8 O2B—C11B—O1B 124.0 (3)
C6B—C5B—H5BA 118.8 O2B—C11B—C3B 119.9 (3)
N2B—C6B—C5B 120.3 (3) O1B—C11B—C3B 116.1 (3)
N2B—C6B—C1B 123.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1A—H1OA···O2Ai 0.82 1.83 2.646 (3) 175
O1B—H1OB···O2Bii 0.82 1.80 2.618 (3) 172
N2A—H2NA···O4A 0.80 (3) 1.97 (3) 2.630 (4) 139 (3)
N2B—H2NB···O4B 0.88 (3) 1.90 (3) 2.627 (4) 139 (3)
C5A—H5AA···O3Aiii 0.93 2.44 3.316 (4) 157
C5B—H5BA···O3Biv 0.93 2.47 3.253 (4) 142

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+2, −y+1, −z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2837).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burgey, C. S., Stump, C. A., Nguyen, D. N., Deng, J. Z., Quigley, A. G., Norton, B. R., Bell, I. M., Mosser, S. D., Salvatore, C. A., Rutledge, R. Z., Kane, S. A., Koblan, K. S., Vacca, J. P., Graham, S. L. & Williams, T. M. (2006). Bioorg. Med. Chem. Lett.16, 5052–5056. [DOI] [PubMed]
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Ishida, T., Suzuki, T., Hirashima, S., Mizutani, K., Yoshida, A., Ando, I., Ikeda, S., Adachi, T. & Hashimoto, H. (2006). Bioorg. Med. Chem. Lett.16, 1859–1863. [DOI] [PubMed]
  6. Narendra Babu, S. N., Abdul Rahim, A. S., Osman, H., Jebas, S. R. & Fun, H.-K. (2009). Acta Cryst. E65, o1122–o1123. [DOI] [PMC free article] [PubMed]
  7. Semple, G., Skinner, P. J., Cherrier, M. C., Webb, P. J., Sage, C. R., Tamura, S. Y., Chen, R., Richman, J. G. & Connolly, D. T. (2006). J. Med. Chem.49, 1227–1230. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021655/lh2837sup1.cif

e-65-o1557-sup1.cif (28KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021655/lh2837Isup2.hkl

e-65-o1557-Isup2.hkl (225.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES