Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):m836–m837. doi: 10.1107/S1600536809022764

Chloridobis(ethyl­enediamine-κ2 N,N′)(n-pentyl­amine-κN)cobalt(III) dichloride monhydrate

K Anbalagan a,*, M Tamilselvan a, S Nirmala b, L Sudha c
PMCID: PMC2969482  PMID: 21582753

Abstract

The title complex, [CoCl(C5H13N)(C2H8N2)2]Cl2·H2O, comprises one chloridobis(ethyl­enediamine)(n-pentyl­amine)cobalt(III) cation, two chloride counter-anions and a water mol­ecule. The CoIII atom of the complex is hexa­coordinated by five N and one Cl atoms. The five N atoms are from two chelating ethyl­enediamine and one n-pentyl­amine ligands. Neighbouring cations and anions are connected by N—H⋯Cl and N—H⋯O hydrogen bonds to each other and also to the water mol­ecule.

Related literature

For the potential applications of metal–chelate complexes, see: Tweedy (1964); Kralova et al. (2004); Parekh et al. (2005); Rajevel et al. (2008). For cobalt(III) complexes, see: Bailer & Clapp (1945); Bailer & Rollinson (1946). For a related structure, see: Ou et al. (2007).graphic file with name e-65-0m836-scheme1.jpg

Experimental

Crystal data

  • [CoCl(C5H13N)(C2H8N2)2]Cl2·H2O

  • M r = 390.67

  • Monoclinic, Inline graphic

  • a = 10.5214 (3) Å

  • b = 7.2294 (2) Å

  • c = 23.6225 (6) Å

  • β = 96.117 (2)°

  • V = 1786.58 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker Kappa-APEX2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.719, T max = 0.816

  • 23262 measured reflections

  • 5510 independent reflections

  • 4506 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.090

  • S = 1.10

  • 5510 reflections

  • 181 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022764/bq2142sup1.cif

e-65-0m836-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022764/bq2142Isup2.hkl

e-65-0m836-Isup2.hkl (264.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl3 0.90 2.39 3.2589 (14) 162
N1—H1D⋯O1 0.90 2.12 3.018 (3) 174
N3—H3C⋯Cl3 0.90 2.56 3.3641 (14) 150
N4—H4D⋯Cl3i 0.90 2.36 3.2597 (14) 179
N4—H4C⋯Cl2ii 0.90 2.51 3.3731 (15) 161
N5—H5C⋯Cl3iii 0.90 2.51 3.3605 (15) 158
N5—H5D⋯Cl3i 0.90 2.56 3.3784 (15) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

KA thanks the Department of Science and Technology, Goverment of India, for financial assistance and the Council of Scientific & Industrial Research–Human Resource Development Group, New Delhi, for support through a major research project.

supplementary crystallographic information

Comment

Metal-chelate complexes find potential applications in the research fields (Tweedy, 1964; Kralova et al., 2004) of antitumor activity, enzyme catalysis, functioning of micro organisms and in the respiration processes of biological systems (Parekh et al., 2005; Rajevel et al., 2008). Chelating ligand such as ethylenediamine has been widely used to prepare a number of cobalt(III) complexes (Bailer & Clapp, 1945; Bailer & Rollinson, 1946). A structural analogue of the cobalt(III)-alkyl amine complex, such as chloro(n-pentyl amine)bis(ethylenediamine)cobalt(III) chloride, [CoIII(en)2(nPentNH2) Cl]Cl2, is studied. Cobalt(III) complex consisting of n-PentNH2 ligand, is an interesting complex showing some novel reactivity. Hence, single-crystal X-ray study of the above compound has been carried out.

The molecular structure of the title compound is shown in Fig. 1. The title compound, Cis-[CoIII(en)2(nPentNH2)Cl]Cl2.H2O, is a mononuclear cobalt(III) complex. The Co(III) atom is hexa-coordinated by six ligating atoms (five N and one Cl) forming two chelating ethylenediamine ligands, leading to a slightly distorted octahedral configuration. The two chloride ions act as counter-ions. The average Co— N bond length is 1.963 (4) Å and agrees well with related literature (Ou et al., 2007).

The crystal structure is stabilized by intramolecular N—H···O and N—H···Cl interactions. The molecules are linked into three-dimensional framework by N—H···Cl and C—H···Cl intermolecular interactions (Fig. 2, Table 1).

Experimental

A modified method of synthesize of cis-[CoIII(en)2(nPentNH2)Cl]Cl2.H2O was developed by substituting chloride ligand with AnalaR n-pentyl amine in trans-[Co(en)2Cl2]Cl. AnalaR n-pentyl amine (2–3 ml) was added in drops to a paste of 2 g of the trans-dichlorobis(1,2-diamino ethane)cobalt(III) chloride suspended in 1 ml of water. The mixture was ground for an hour until the solid becomes rosy red, and allowed overnight. The complex was recrystallized from acidified water. Single crystal was grown by adding the metal complex in triply distilled water containing few drops of conc. HCl and kept at 0°C for 2–3 weeks.

Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.97Å and 0.96Å for methylene and methyl H respectively, and N—H = 0.86Å, and with Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C,N) for all other H atoms. The H atoms of the water molecule were located in a difference Fourier map and their positional parameters refined with Uiso(H) = 1.5Ueq(O), and with the O—H distances restrained to be 0.85 (1)Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

The packing of the molecules viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted.

Crystal data

[CoCl(C5H13N)(C2H8N2)2]Cl2·H2O F(000) = 824
Mr = 390.67 Dx = 1.452 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 8809 reflections
a = 10.5214 (3) Å θ = 2.9–30.6°
b = 7.2294 (2) Å µ = 1.41 mm1
c = 23.6225 (6) Å T = 293 K
β = 96.117 (2)° Prismatic, orange
V = 1786.58 (8) Å3 0.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker Kappa-APEX2 CCD diffractometer 5510 independent reflections
Radiation source: fine-focus sealed tube 4506 reflections with I > 2σ(I)
graphite Rint = 0.029
ω and φ scans θmax = 30.7°, θmin = 1.7°
Absorption correction: multi-scan (Blessing, 1995) h = −15→15
Tmin = 0.719, Tmax = 0.816 k = −8→10
23262 measured reflections l = −33→33

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.0821P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.006
5510 reflections Δρmax = 0.52 e Å3
181 parameters Δρmin = −0.35 e Å3
3 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0019 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6942 (2) 0.3891 (2) 0.95347 (8) 0.0391 (4)
H1A 0.6317 0.4750 0.9657 0.047*
H1B 0.7675 0.4592 0.9439 0.047*
C2 0.73406 (18) 0.2535 (2) 1.00007 (8) 0.0352 (4)
H2A 0.7846 0.3145 1.0314 0.042*
H2B 0.6597 0.1982 1.0143 0.042*
C3 0.95703 (17) 0.0374 (3) 0.84080 (8) 0.0387 (4)
H3A 1.0400 0.0913 0.8368 0.046*
H3B 0.9209 −0.0074 0.8038 0.046*
C4 0.96996 (17) −0.1182 (3) 0.88299 (8) 0.0364 (4)
H4A 1.0107 −0.2237 0.8670 0.044*
H4B 1.0220 −0.0798 0.9173 0.044*
C5 0.52205 (16) 0.0781 (2) 0.80180 (8) 0.0328 (4)
H5A 0.5349 0.2092 0.7957 0.039*
H5B 0.4656 0.0653 0.8315 0.039*
C6 0.45868 (16) −0.0068 (3) 0.74740 (7) 0.0337 (4)
H6A 0.4451 −0.1377 0.7535 0.040*
H6B 0.5152 0.0053 0.7177 0.040*
C7 0.33189 (17) 0.0838 (3) 0.72777 (8) 0.0384 (4)
H7A 0.3453 0.2155 0.7234 0.046*
H7B 0.2745 0.0673 0.7569 0.046*
C8 0.26886 (18) 0.0065 (3) 0.67194 (8) 0.0393 (4)
H8A 0.3279 0.0169 0.6433 0.047*
H8B 0.2510 −0.1238 0.6769 0.047*
C9 0.1464 (2) 0.1043 (4) 0.65112 (12) 0.0659 (7)
H9A 0.1108 0.0501 0.6158 0.099*
H9B 0.1636 0.2329 0.6453 0.099*
H9C 0.0867 0.0922 0.6789 0.099*
N1 0.63802 (13) 0.28252 (18) 0.90348 (6) 0.0277 (3)
H1C 0.6409 0.3501 0.8717 0.033*
H1D 0.5556 0.2567 0.9072 0.033*
N2 0.81072 (13) 0.11089 (18) 0.97448 (5) 0.0262 (3)
H2C 0.8144 0.0081 0.9961 0.031*
H2D 0.8910 0.1525 0.9731 0.031*
N3 0.87124 (13) 0.1775 (2) 0.86270 (6) 0.0304 (3)
H3C 0.8378 0.2501 0.8339 0.036*
H3D 0.9161 0.2495 0.8887 0.036*
N4 0.84066 (13) −0.16872 (19) 0.89632 (6) 0.0287 (3)
H4C 0.8457 −0.2249 0.9305 0.034*
H4D 0.8052 −0.2485 0.8700 0.034*
N5 0.64631 (13) −0.0082 (2) 0.82114 (6) 0.0280 (3)
H5C 0.7005 0.0201 0.7954 0.034*
H5D 0.6350 −0.1316 0.8197 0.034*
O1 0.3655 (2) 0.2049 (5) 0.92521 (12) 0.1255 (12)
Cl1 0.58524 (4) −0.11512 (6) 0.935779 (18) 0.03265 (10)
Cl2 1.09085 (4) 0.29130 (6) 0.96604 (2) 0.03712 (11)
Cl3 0.71601 (4) 0.54255 (6) 0.799916 (18) 0.03417 (10)
Co1 0.733516 (18) 0.05224 (3) 0.897435 (8) 0.02096 (7)
H1E 0.2883 (17) 0.237 (6) 0.9277 (18) 0.17 (2)*
H1F 0.394 (3) 0.137 (4) 0.9526 (11) 0.112 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0500 (11) 0.0276 (8) 0.0377 (10) 0.0041 (7) −0.0040 (8) −0.0063 (7)
C2 0.0430 (10) 0.0363 (9) 0.0258 (8) 0.0007 (7) 0.0007 (7) −0.0091 (7)
C3 0.0290 (8) 0.0591 (12) 0.0287 (9) 0.0046 (8) 0.0069 (7) −0.0004 (8)
C4 0.0280 (8) 0.0435 (10) 0.0368 (10) 0.0095 (7) −0.0005 (7) −0.0062 (8)
C5 0.0286 (8) 0.0373 (9) 0.0305 (9) 0.0047 (6) −0.0068 (6) −0.0044 (7)
C6 0.0306 (8) 0.0408 (9) 0.0279 (9) 0.0023 (7) −0.0056 (6) −0.0024 (7)
C7 0.0321 (9) 0.0480 (10) 0.0328 (10) 0.0057 (7) −0.0068 (7) −0.0062 (8)
C8 0.0350 (9) 0.0469 (10) 0.0331 (10) 0.0021 (8) −0.0097 (7) −0.0036 (8)
C9 0.0468 (13) 0.0812 (17) 0.0632 (16) 0.0152 (12) −0.0241 (11) −0.0116 (13)
N1 0.0287 (7) 0.0261 (6) 0.0278 (7) 0.0018 (5) 0.0005 (5) 0.0014 (5)
N2 0.0274 (6) 0.0286 (6) 0.0218 (6) −0.0027 (5) −0.0017 (5) −0.0002 (5)
N3 0.0264 (6) 0.0369 (7) 0.0274 (7) −0.0017 (5) 0.0017 (5) 0.0070 (6)
N4 0.0313 (7) 0.0283 (6) 0.0250 (7) 0.0035 (5) −0.0037 (5) −0.0030 (5)
N5 0.0276 (6) 0.0345 (7) 0.0208 (6) 0.0030 (5) −0.0032 (5) −0.0009 (5)
O1 0.0775 (15) 0.188 (3) 0.121 (2) 0.0730 (17) 0.0573 (15) 0.104 (2)
Cl1 0.0302 (2) 0.0344 (2) 0.0332 (2) −0.00734 (15) 0.00280 (15) 0.00406 (16)
Cl2 0.0307 (2) 0.0406 (2) 0.0387 (2) −0.00616 (16) −0.00247 (16) 0.00198 (18)
Cl3 0.0438 (2) 0.0327 (2) 0.0259 (2) −0.00019 (16) 0.00328 (16) −0.00105 (15)
Co1 0.02095 (11) 0.02308 (11) 0.01830 (11) −0.00082 (7) −0.00051 (7) 0.00072 (7)

Geometric parameters (Å, °)

C1—N1 1.479 (2) C8—C9 1.505 (3)
C1—C2 1.501 (3) C8—H8A 0.9700
C1—H1A 0.9700 C8—H8B 0.9700
C1—H1B 0.9700 C9—H9A 0.9600
C2—N2 1.477 (2) C9—H9B 0.9600
C2—H2A 0.9700 C9—H9C 0.9600
C2—H2B 0.9700 N1—Co1 1.9575 (13)
C3—N3 1.485 (2) N1—H1C 0.9000
C3—C4 1.500 (3) N1—H1D 0.9000
C3—H3A 0.9700 N2—Co1 1.9588 (13)
C3—H3B 0.9700 N2—H2C 0.9000
C4—N4 1.475 (2) N2—H2D 0.9000
C4—H4A 0.9700 N3—Co1 1.9611 (13)
C4—H4B 0.9700 N3—H3C 0.9000
C5—N5 1.477 (2) N3—H3D 0.9000
C5—C6 1.513 (2) N4—Co1 1.9569 (13)
C5—H5A 0.9700 N4—H4C 0.9000
C5—H5B 0.9700 N4—H4D 0.9000
C6—C7 1.514 (2) N5—Co1 1.9822 (13)
C6—H6A 0.9700 N5—H5C 0.9000
C6—H6B 0.9700 N5—H5D 0.9000
C7—C8 1.518 (2) O1—H1E 0.852 (10)
C7—H7A 0.9700 O1—H1F 0.841 (10)
C7—H7B 0.9700 Cl1—Co1 2.2403 (4)
N1—C1—C2 107.56 (14) H9A—C9—H9B 109.5
N1—C1—H1A 110.2 C8—C9—H9C 109.5
C2—C1—H1A 110.2 H9A—C9—H9C 109.5
N1—C1—H1B 110.2 H9B—C9—H9C 109.5
C2—C1—H1B 110.2 C1—N1—Co1 109.70 (11)
H1A—C1—H1B 108.5 C1—N1—H1C 109.7
N2—C2—C1 106.15 (14) Co1—N1—H1C 109.7
N2—C2—H2A 110.5 C1—N1—H1D 109.7
C1—C2—H2A 110.5 Co1—N1—H1D 109.7
N2—C2—H2B 110.5 H1C—N1—H1D 108.2
C1—C2—H2B 110.5 C2—N2—Co1 109.93 (10)
H2A—C2—H2B 108.7 C2—N2—H2C 109.7
N3—C3—C4 107.18 (14) Co1—N2—H2C 109.7
N3—C3—H3A 110.3 C2—N2—H2D 109.7
C4—C3—H3A 110.3 Co1—N2—H2D 109.7
N3—C3—H3B 110.3 H2C—N2—H2D 108.2
C4—C3—H3B 110.3 C3—N3—Co1 109.55 (11)
H3A—C3—H3B 108.5 C3—N3—H3C 109.8
N4—C4—C3 107.89 (14) Co1—N3—H3C 109.8
N4—C4—H4A 110.1 C3—N3—H3D 109.8
C3—C4—H4A 110.1 Co1—N3—H3D 109.8
N4—C4—H4B 110.1 H3C—N3—H3D 108.2
C3—C4—H4B 110.1 C4—N4—Co1 110.28 (11)
H4A—C4—H4B 108.4 C4—N4—H4C 109.6
N5—C5—C6 112.74 (14) Co1—N4—H4C 109.6
N5—C5—H5A 109.0 C4—N4—H4D 109.6
C6—C5—H5A 109.0 Co1—N4—H4D 109.6
N5—C5—H5B 109.0 H4C—N4—H4D 108.1
C6—C5—H5B 109.0 C5—N5—Co1 119.79 (10)
H5A—C5—H5B 107.8 C5—N5—H5C 107.4
C5—C6—C7 112.26 (15) Co1—N5—H5C 107.4
C5—C6—H6A 109.2 C5—N5—H5D 107.4
C7—C6—H6A 109.2 Co1—N5—H5D 107.4
C5—C6—H6B 109.2 H5C—N5—H5D 106.9
C7—C6—H6B 109.2 H1E—O1—H1F 111.3 (17)
H6A—C6—H6B 107.9 N4—Co1—N1 174.92 (6)
C6—C7—C8 113.34 (15) N4—Co1—N2 90.39 (6)
C6—C7—H7A 108.9 N1—Co1—N2 85.03 (6)
C8—C7—H7A 108.9 N4—Co1—N3 85.34 (6)
C6—C7—H7B 108.9 N1—Co1—N3 92.63 (6)
C8—C7—H7B 108.9 N2—Co1—N3 92.13 (6)
H7A—C7—H7B 107.7 N4—Co1—N5 91.10 (6)
C9—C8—C7 112.99 (18) N1—Co1—N5 93.59 (6)
C9—C8—H8A 109.0 N2—Co1—N5 176.89 (6)
C7—C8—H8A 109.0 N3—Co1—N5 90.71 (6)
C9—C8—H8B 109.0 N4—Co1—Cl1 89.52 (4)
C7—C8—H8B 109.0 N1—Co1—Cl1 92.57 (4)
H8A—C8—H8B 107.8 N2—Co1—Cl1 88.79 (4)
C8—C9—H9A 109.5 N3—Co1—Cl1 174.78 (4)
C8—C9—H9B 109.5 N5—Co1—Cl1 88.49 (4)
N1—C1—C2—N2 50.28 (19) C1—N1—Co1—N3 −79.47 (12)
N3—C3—C4—N4 48.28 (19) C1—N1—Co1—N5 −170.35 (12)
N5—C5—C6—C7 −179.58 (16) C1—N1—Co1—Cl1 101.00 (11)
C5—C6—C7—C8 177.60 (17) C2—N2—Co1—N4 −166.25 (11)
C6—C7—C8—C9 −176.9 (2) C2—N2—Co1—N1 15.94 (11)
C2—C1—N1—Co1 −37.75 (17) C2—N2—Co1—N3 108.40 (11)
C1—C2—N2—Co1 −40.09 (16) C2—N2—Co1—Cl1 −76.74 (10)
C4—C3—N3—Co1 −38.51 (17) C3—N3—Co1—N4 15.27 (11)
C3—C4—N4—Co1 −36.06 (16) C3—N3—Co1—N1 −169.40 (11)
C6—C5—N5—Co1 −170.27 (12) C3—N3—Co1—N2 105.48 (11)
C4—N4—Co1—N2 −80.28 (11) C3—N3—Co1—N5 −75.78 (12)
C4—N4—Co1—N3 11.82 (11) C5—N5—Co1—N4 161.69 (13)
C4—N4—Co1—N5 102.45 (11) C5—N5—Co1—N1 −20.28 (13)
C4—N4—Co1—Cl1 −169.07 (11) C5—N5—Co1—N3 −112.95 (13)
C1—N1—Co1—N2 12.44 (12) C5—N5—Co1—Cl1 72.21 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1C···Cl3 0.90 2.39 3.2589 (14) 162
N1—H1D···O1 0.90 2.12 3.018 (3) 174
N3—H3C···Cl3 0.90 2.56 3.3641 (14) 150
N4—H4D···Cl3i 0.90 2.36 3.2597 (14) 179
N4—H4C···Cl2ii 0.90 2.51 3.3731 (15) 161
N5—H5C···Cl3iii 0.90 2.51 3.3605 (15) 158
N5—H5D···Cl3i 0.90 2.56 3.3784 (15) 151
C3—H3B···Cl3iii 0.97 2.73 3.616 (2) 152

Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y, −z+2; (iii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2142).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Bailer, J. C. & Clapp, L. B. (1945). J. Am. Chem. Soc 67, 171–175.
  3. Bailer, J. C. & Rollinson, C. L. (1946). Inorg. Synth 22, 222–223.
  4. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  5. Bruker (2004). APEX2 SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Kralova, K., Kissova, K., Svajlenova, O. & Vanco, J. (2004). Chem. Pap 58, 357–361.
  8. Ou, G.-C., Chen, H.-Y., Zhang, M. & Yuan, X.-Y. (2007). Acta Cryst. E63, m36–m38.
  9. Parekh, J., Inamdhar, P., Nair, R., Baluja, S. & Chanda, S. (2005). J. Serb. Chem. Soc 70, 1155–1161.
  10. Rajevel, R., Senthil Vadivu, M. & Anitha, C. (2008). Eur. J. Chem 5, 620.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Tweedy, B. G. (1964). Phytopathology, 55, 910–914.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022764/bq2142sup1.cif

e-65-0m836-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022764/bq2142Isup2.hkl

e-65-0m836-Isup2.hkl (264.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES