Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1651. doi: 10.1107/S1600536809022375

(S)-(+)-1-(1-Naphth­yl)-1-(2-thienylmethyl­ene)ethyl­amine

Armando Espinosa Leija a, Guadalupe Hernández b, Roberto Portillo b, René Gutiérrez b, Sylvain Bernès c,*
PMCID: PMC2969493  PMID: 21582915

Abstract

The title chiral imine, C17H15NS, has been obtained via a direct synthesis route. The imine group displays the common E configuration, and is almost coplanar with the thio­phene heterocycle; the dihedral angle between the C=N—C group and the thio­phene ring is 5.1 (8)°. In contrast, the naphthyl group makes an angle of 83.79 (13)° with the thio­phene ring. The observed solid-state mol­ecular conformation is suitable for the use of this mol­ecule as an N,S-bidentate Schiff base ligand. The mol­ecular packing features double C—H⋯π inter­actions between naphthyl groups of neighboring mol­ecules, which form chains in the [100] direction. The crystal structure is further stabilized by a short C—H⋯π contact involving the methyl group and one ring of a naphthyl group. The resulting two-dimensional network is completed by a weak inter­molecular C—H(imine)⋯π(thio­phene) inter­action.

Related literature

For background to direct synthesis, see: Tanaka & Toda (2000); Jeon et al. (2005); Tovar et al. (2007). For the configuration and conformation of imines derived from thio­phene, see: Arjona et al. (1986).graphic file with name e-65-o1651-scheme1.jpg

Experimental

Crystal data

  • C17H15NS

  • M r = 265.36

  • Orthorhombic, Inline graphic

  • a = 5.5274 (14) Å

  • b = 7.990 (2) Å

  • c = 31.517 (8) Å

  • V = 1392.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.50 × 0.36 × 0.04 mm

Data collection

  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996) T min = 0.802, T max = 0.991

  • 4462 measured reflections

  • 2446 independent reflections

  • 1280 reflections with I > 2σ(I)

  • R int = 0.045

  • 2 standard reflections every 48 reflections intensity decay: 1.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.174

  • S = 1.56

  • 2446 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983), 946 Friedel pairs

  • Flack parameter: 0.2 (2)

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022375/wn2331sup1.cif

e-65-o1651-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022375/wn2331Isup2.hkl

e-65-o1651-Isup2.hkl (120.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯CgAi 0.96 2.85 3.682 (6) 145
C6—H6A⋯CgBii 0.93 3.03 3.891 (5) 155
C13—H13A⋯CgCiii 0.93 3.54 4.399 (6) 155
C15—H15A⋯CgAiii 0.93 3.22 4.030 (6) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. CgA is the centroid of ring C10–C14/C19, CgB is the centroid of the thio­phene ring and CgC is the centroid of ring C14–C19.

Acknowledgments

Partial support from VIEP-UAP (GUPJ-NAT08-G) is acknowledged.

supplementary crystallographic information

Comment

Nowadays, there is an increasing interest in the use of environmentally benign reagents and conditions, leading particularly to solvent-free procedures. Avoiding organic solvents during the reactions in organic synthesis affords clean, efficient and economical features: safety is largely increased, working is considerably simplified, cost is reduced, increased amounts of reactants can be used, etc. (Tanaka & Toda, 2000; Jeon et al., 2005).

On the other hand, imines continue to attract much attention, mainly due to their versatile coordination behavior and the interesting properties of their metal complexes. Continuing our work on the synthesis of chiral imines (Tovar et al., 2007), we synthesized the title compound under solvent-free conditions (see Experimental) and report here its X-ray crystal structure.

The molecule is stabilized in the solid state as an E-trans aldimine (Fig. 1), which has been shown to be the preferred configuration for imine systems derived from thiophene (Arjona et al., 1986). By conjugation, the imine group C6/N7/C8 is almost coplanar with the thiophene ring S1/C2/C3/C4/C5, with a dihedral angle of 5.1 (8)°. In contrast, the naphthyl group is almost normal to the thiophene ring, at 83.79 (13)°. The crystal packing features a number of intermolecular C—H···π contacts (Fig. 2), the strongest involving the methyl group and a naphthyl group of a symmetry-related molecule. Naphthyl systems aggregate through double C—H···π interactions, forming chains along the [100] direction. The set of contacts results in a two-dimensional framework of efficiently stacked molecules.

Experimental

Under solvent-free conditions, (S)-(-)-(1-naphthyl)ethylamine (213 mg, 1.24 mmol) and 2-thiophenecarboxaldehyde (139 mg, 1.24 mmol) were mixed at 298 K, giving a white solid. The crude product was recrystallized from CH2Cl2, affording colorless crystals of the title compound. Yield 87%; m.p. 345 K. Analytical data are in agreement with the structure determined by X-ray diffraction (see archived CIF).

Refinement

The title molecule crystallizes as thin plates, and the selected crystal was a poorly diffracting sample, limiting data resolution. All H atoms were placed in idealized positions and refined as riding on their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), and 0.98 Å (methine CH). Isotropic displacement parameters were calculated as Uiso(H) = 1.5Ueq(carrier atom) for the methyl group and Uiso(H) = 1.2Ueq(carrier atom) otherwise. The absolute configuration was assigned by refinement of a Flack parameter, and agrees with the chirality expected from the synthetic route.

Figures

Fig. 1.

Fig. 1.

The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A part of the crystal structure of the title compound, viewed down [010]. The color scheme is used for the sake of clarity. Dashed lines represent C—H···π interactions in the crystal structure, and the centroids of involved π systems have been represented by red spheres. H atoms not involved in the network of intermolecular contacts have been omitted.

Crystal data

C17H15NS Dx = 1.266 Mg m3
Mr = 265.36 Melting point: 345 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 68 reflections
a = 5.5274 (14) Å θ = 4.9–11.5°
b = 7.990 (2) Å µ = 0.22 mm1
c = 31.517 (8) Å T = 298 K
V = 1392.0 (6) Å3 Plate, colourless
Z = 4 0.50 × 0.36 × 0.04 mm
F(000) = 560

Data collection

Siemens P4 diffractometer 1280 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.045
graphite θmax = 25.0°, θmin = 2.6°
ω scans h = −6→6
Absorption correction: ψ scan (XSCANS; Siemens, 1996) k = −9→9
Tmin = 0.802, Tmax = 0.991 l = −37→37
4462 measured reflections 2 standard reflections every 48 reflections
2446 independent reflections intensity decay: 1.8%

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.05P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.174 (Δ/σ)max < 0.001
S = 1.56 Δρmax = 0.31 e Å3
2446 reflections Δρmin = −0.39 e Å3
174 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.046 (6)
0 constraints Absolute structure: Flack (1983), 946 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.2 (2)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.0890 (3) 0.77472 (18) 0.23563 (4) 0.0851 (5)
C2 0.0387 (11) 0.7930 (7) 0.28848 (16) 0.0838 (16)
H2A −0.0852 0.7377 0.3027 0.101*
C3 0.1958 (10) 0.8951 (7) 0.30739 (17) 0.0808 (16)
H3A 0.1920 0.9189 0.3363 0.097*
C4 0.3675 (11) 0.9631 (6) 0.27948 (16) 0.0765 (15)
H4A 0.4906 1.0359 0.2875 0.092*
C5 0.3292 (8) 0.9077 (6) 0.23880 (16) 0.0637 (12)
C6 0.4666 (10) 0.9518 (6) 0.20103 (16) 0.0709 (14)
H6A 0.5865 1.0331 0.2030 0.085*
N7 0.4278 (8) 0.8830 (5) 0.16565 (12) 0.0732 (11)
C8 0.5830 (11) 0.9318 (6) 0.12949 (14) 0.0743 (14)
H8A 0.6648 1.0374 0.1362 0.089*
C9 0.7706 (10) 0.7968 (8) 0.12312 (17) 0.0982 (19)
H9A 0.8835 0.7989 0.1462 0.147*
H9B 0.8550 0.8161 0.0970 0.147*
H9C 0.6924 0.6896 0.1221 0.147*
C10 0.4174 (10) 0.9587 (6) 0.09162 (14) 0.0679 (13)
C11 0.3745 (10) 0.8354 (6) 0.06322 (15) 0.0771 (14)
H11A 0.4564 0.7344 0.0662 0.093*
C12 0.2109 (10) 0.8542 (7) 0.02938 (16) 0.0837 (17)
H12A 0.1858 0.7662 0.0106 0.100*
C13 0.0910 (12) 0.9986 (7) 0.02414 (17) 0.0835 (16)
H13A −0.0180 1.0099 0.0019 0.100*
C14 0.1289 (10) 1.1329 (7) 0.05212 (16) 0.0757 (14)
C15 0.0159 (12) 1.2883 (8) 0.04640 (19) 0.101 (2)
H15A −0.0913 1.3014 0.0239 0.121*
C16 0.0570 (16) 1.4195 (9) 0.0723 (2) 0.110 (2)
H16A −0.0224 1.5205 0.0677 0.132*
C17 0.2162 (13) 1.4043 (8) 0.1058 (2) 0.0980 (19)
H17A 0.2446 1.4950 0.1236 0.118*
C18 0.3321 (11) 1.2564 (7) 0.11269 (16) 0.0850 (16)
H18A 0.4378 1.2477 0.1355 0.102*
C19 0.2965 (10) 1.1158 (6) 0.08620 (14) 0.0702 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0830 (9) 0.0941 (10) 0.0780 (9) −0.0071 (9) −0.0027 (8) −0.0051 (8)
C2 0.092 (4) 0.093 (4) 0.066 (3) 0.000 (4) 0.010 (3) 0.006 (3)
C3 0.093 (4) 0.083 (4) 0.067 (3) 0.008 (4) −0.008 (3) −0.003 (3)
C4 0.085 (4) 0.074 (3) 0.071 (3) −0.009 (3) −0.001 (3) −0.005 (3)
C5 0.058 (3) 0.063 (3) 0.070 (3) −0.006 (2) −0.003 (2) −0.002 (3)
C6 0.069 (4) 0.071 (3) 0.073 (3) −0.002 (3) −0.005 (3) 0.000 (3)
N7 0.075 (3) 0.082 (3) 0.062 (2) 0.001 (3) 0.003 (2) 0.001 (2)
C8 0.078 (3) 0.079 (3) 0.066 (3) 0.000 (3) 0.003 (3) 0.008 (3)
C9 0.086 (4) 0.119 (5) 0.090 (4) 0.029 (4) 0.004 (3) 0.007 (4)
C10 0.073 (3) 0.069 (3) 0.062 (3) 0.002 (3) 0.001 (3) 0.003 (3)
C11 0.089 (4) 0.073 (3) 0.070 (3) 0.004 (3) 0.001 (3) −0.001 (3)
C12 0.091 (4) 0.085 (4) 0.076 (4) −0.002 (4) −0.003 (3) −0.010 (3)
C13 0.088 (4) 0.093 (4) 0.070 (3) −0.002 (4) −0.007 (3) 0.003 (3)
C14 0.077 (4) 0.078 (3) 0.072 (3) 0.006 (3) 0.002 (3) 0.008 (3)
C15 0.117 (5) 0.096 (4) 0.090 (4) 0.026 (4) −0.006 (4) 0.018 (4)
C16 0.134 (6) 0.083 (4) 0.112 (5) 0.024 (5) 0.014 (5) 0.013 (4)
C17 0.117 (5) 0.078 (4) 0.099 (4) 0.007 (4) 0.017 (4) −0.005 (4)
C18 0.097 (4) 0.077 (4) 0.081 (3) −0.006 (4) 0.009 (3) −0.007 (3)
C19 0.077 (3) 0.072 (3) 0.062 (3) −0.001 (3) 0.006 (3) 0.003 (3)

Geometric parameters (Å, °)

S1—C2 1.695 (5) C10—C11 1.352 (6)
S1—C5 1.703 (5) C10—C19 1.432 (6)
C2—C3 1.332 (7) C11—C12 1.407 (7)
C2—H2A 0.9300 C11—H11A 0.9300
C3—C4 1.404 (7) C12—C13 1.341 (7)
C3—H3A 0.9300 C12—H12A 0.9300
C4—C5 1.373 (6) C13—C14 1.405 (7)
C4—H4A 0.9300 C13—H13A 0.9300
C5—C6 1.455 (6) C14—C15 1.401 (7)
C6—N7 1.261 (5) C14—C19 1.425 (7)
C6—H6A 0.9300 C15—C16 1.349 (7)
N7—C8 1.479 (6) C15—H15A 0.9300
C8—C9 1.509 (7) C16—C17 1.378 (9)
C8—C10 1.519 (7) C16—H16A 0.9300
C8—H8A 0.9800 C17—C18 1.361 (8)
C9—H9A 0.9600 C17—H17A 0.9300
C9—H9B 0.9600 C18—C19 1.414 (6)
C9—H9C 0.9600 C18—H18A 0.9300
C2—S1—C5 91.0 (3) C11—C10—C8 121.5 (5)
C3—C2—S1 112.7 (5) C19—C10—C8 119.9 (4)
C3—C2—H2A 123.7 C10—C11—C12 122.5 (5)
S1—C2—H2A 123.7 C10—C11—H11A 118.8
C2—C3—C4 113.4 (5) C12—C11—H11A 118.8
C2—C3—H3A 123.3 C13—C12—C11 120.2 (5)
C4—C3—H3A 123.3 C13—C12—H12A 119.9
C5—C4—C3 110.8 (5) C11—C12—H12A 119.9
C5—C4—H4A 124.6 C12—C13—C14 120.4 (6)
C3—C4—H4A 124.6 C12—C13—H13A 119.8
C4—C5—C6 127.2 (4) C14—C13—H13A 119.8
C4—C5—S1 112.1 (4) C15—C14—C13 122.0 (5)
C6—C5—S1 120.6 (4) C15—C14—C19 118.1 (5)
N7—C6—C5 121.9 (5) C13—C14—C19 119.8 (5)
N7—C6—H6A 119.0 C16—C15—C14 122.4 (6)
C5—C6—H6A 119.0 C16—C15—H15A 118.8
C6—N7—C8 117.9 (4) C14—C15—H15A 118.8
N7—C8—C9 108.2 (4) C15—C16—C17 120.1 (6)
N7—C8—C10 107.0 (4) C15—C16—H16A 119.9
C9—C8—C10 114.2 (4) C17—C16—H16A 119.9
N7—C8—H8A 109.1 C18—C17—C16 119.9 (6)
C9—C8—H8A 109.1 C18—C17—H17A 120.0
C10—C8—H8A 109.1 C16—C17—H17A 120.0
C8—C9—H9A 109.5 C17—C18—C19 122.0 (6)
C8—C9—H9B 109.5 C17—C18—H18A 119.0
H9A—C9—H9B 109.5 C19—C18—H18A 119.0
C8—C9—H9C 109.5 C18—C19—C14 117.3 (5)
H9A—C9—H9C 109.5 C18—C19—C10 124.1 (5)
H9B—C9—H9C 109.5 C14—C19—C10 118.5 (5)
C11—C10—C19 118.5 (5)
C5—S1—C2—C3 0.2 (4) C11—C12—C13—C14 0.6 (9)
S1—C2—C3—C4 −0.4 (6) C12—C13—C14—C15 176.8 (5)
C2—C3—C4—C5 0.5 (7) C12—C13—C14—C19 0.2 (9)
C3—C4—C5—C6 179.1 (5) C13—C14—C15—C16 −177.9 (6)
C3—C4—C5—S1 −0.4 (6) C19—C14—C15—C16 −1.3 (9)
C2—S1—C5—C4 0.1 (4) C14—C15—C16—C17 0.5 (11)
C2—S1—C5—C6 −179.4 (4) C15—C16—C17—C18 −0.1 (10)
C4—C5—C6—N7 174.2 (5) C16—C17—C18—C19 0.6 (9)
S1—C5—C6—N7 −6.4 (6) C17—C18—C19—C14 −1.4 (8)
C5—C6—N7—C8 −177.8 (4) C17—C18—C19—C10 178.7 (5)
C6—N7—C8—C9 101.4 (5) C15—C14—C19—C18 1.7 (7)
C6—N7—C8—C10 −135.0 (5) C13—C14—C19—C18 178.4 (5)
N7—C8—C10—C11 −94.5 (6) C15—C14—C19—C10 −178.5 (5)
C9—C8—C10—C11 25.3 (7) C13—C14—C19—C10 −1.7 (7)
N7—C8—C10—C19 83.5 (6) C11—C10—C19—C18 −177.6 (5)
C9—C8—C10—C19 −156.7 (5) C8—C10—C19—C18 4.3 (8)
C19—C10—C11—C12 −1.9 (8) C11—C10—C19—C14 2.5 (7)
C8—C10—C11—C12 176.1 (5) C8—C10—C19—C14 −175.5 (5)
C10—C11—C12—C13 0.3 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9B···CgAi 0.96 2.85 3.682 (6) 145
C6—H6A···CgBii 0.93 3.03 3.891 (5) 155
C13—H13A···CgCiii 0.93 3.54 4.399 (6) 155
C15—H15A···CgAiii 0.93 3.22 4.030 (6) 147

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x−1/2, −y+5/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2331).

References

  1. Arjona, O., Carreiro, C., Perez Ossorio, R., Plumet, J., Cativiela, C., Mayoral, J. A. & Melendez, E. (1986). An. Quim.82, 115–118.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc.127, 16416–16425. [DOI] [PubMed]
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  7. Tanaka, K. & Toda, F. (2000). Chem. Rev.100, 1025–1074. [DOI] [PubMed]
  8. Tovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22–24.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022375/wn2331sup1.cif

e-65-o1651-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022375/wn2331Isup2.hkl

e-65-o1651-Isup2.hkl (120.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES