Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 17;65(Pt 7):o1588. doi: 10.1107/S1600536809022004

4,4′-Di-4-pyridyl-2,2′-dithio­dipyrimidine

Hai-Bin Zhu a,*, Hai Wang a, Lei Li a
PMCID: PMC2969497  PMID: 21582863

Abstract

In the title mol­ecule, C18H12N6S2, the C—S—S—C torsion angle is 96.12 (9)°. The dihedral angles between the pyridyl and pyrimidinyl rings are 16.7 (1) and 1.27 (9)°. In the crystal, inter­molecular π–π inter­actions between the aromatic rings [centroid–centroid distances = 3.888 (2) and 3.572 (1) Å] link mol­ecules into chains propagating in [011].

Related literature

For related crystal structures, see: Ji et al. (2009); Higashi et al. (1978); Tabellion et al. (2001). For general background to heterocyclic disulfides, see: Horikoshi & Mochida (2006).graphic file with name e-65-o1588-scheme1.jpg

Experimental

Crystal data

  • C18H12N6S2

  • M r = 376.48

  • Triclinic, Inline graphic

  • a = 9.1060 (8) Å

  • b = 9.3861 (9) Å

  • c = 10.9176 (10) Å

  • α = 84.228 (1)°

  • β = 74.926 (1)°

  • γ = 72.983 (1)°

  • V = 861.27 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.14 × 0.12 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.884, T max = 0.920 (expected range = 0.930–0.968)

  • 5665 measured reflections

  • 3982 independent reflections

  • 3283 reflections with I > 2σ(I)

  • R int = 0.093

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.158

  • S = 1.12

  • 3982 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022004/cv2571sup1.cif

e-65-o1588-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022004/cv2571Isup2.hkl

e-65-o1588-Isup2.hkl (195.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of China (grant No. 20801011).

supplementary crystallographic information

Comment

Heterocylic disulfide ligands have been considerably studied in the field of supramolecular chemistry over past years (Horikoshi & Mochida, 2006). Herein, we report the molecular structure of the title compound (I) - the newly synthesized disulfide ligand.

In (I) (Fig. 1), the C—S—S—C torsion angle of 96.12 (9)° is much larger than that in its analogue, namely 2,2'-dithiobis(4-pyridin-3-yl-pyrimidine) (Ji et al., 2009).The S—S bond length of 2.0239 (8) Å in (I) is within the normal range (Higashi et al., 1978; Tabellion et al., 2001). In the crystal, molecules are linked into chains through intermolecular aromatic π-π interactions (Table 1) .

Experimental

A solution of SO2Cl2 (0.5 ml) in CH2Cl2 (20 ml) was added dropwise into the suspension containing 4-(pyridin-4-yl)pyrimidine-2-thiol (1.89 g) and 30 ml of CH2Cl2. Upon addition, the mixture was stirred at room temperature for 30 min. The solid was collected by filtration and dissolved into 30 ml of H2O. The solution PH was adjusted into the range of 8–9 to give white precipitates. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the CH2Cl2 solution of the title compound.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.

Crystal data

C18H12N6S2 Z = 2
Mr = 376.48 F(000) = 388
Triclinic, P1 Dx = 1.452 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1060 (8) Å Cell parameters from 3982 reflections
b = 9.3861 (9) Å θ = 2.3–25.5°
c = 10.9176 (10) Å µ = 0.32 mm1
α = 84.228 (1)° T = 298 K
β = 74.926 (1)° Block, yellow
γ = 72.983 (1)° 0.14 × 0.12 × 0.10 mm
V = 861.27 (14) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 3982 independent reflections
Radiation source: fine-focus sealed tube 3283 reflections with I > 2σ(I)
graphite Rint = 0.093
φ and ω scans θmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −11→12
Tmin = 0.884, Tmax = 0.920 k = −10→11
5665 measured reflections l = −14→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.092P)2] where P = (Fo2 + 2Fc2)/3
3982 reflections (Δ/σ)max = 0.026
235 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.17317 (7) 0.15307 (5) 0.45673 (4) 0.04865 (18)
S2 0.04746 (6) 0.10746 (6) 0.34511 (5) 0.05008 (19)
N5 0.33888 (18) −0.04716 (16) 0.21420 (13) 0.0350 (3)
N3 0.23093 (18) 0.39811 (16) 0.49060 (14) 0.0390 (3)
C13 0.4305 (2) −0.12822 (18) 0.11230 (16) 0.0350 (4)
C10 0.1865 (2) 0.00258 (19) 0.21737 (17) 0.0372 (4)
C14 0.6028 (2) −0.18393 (19) 0.10565 (16) 0.0359 (4)
N4 0.1100 (2) −0.01902 (19) 0.13474 (17) 0.0465 (4)
N2 0.1638 (2) 0.39133 (19) 0.29373 (16) 0.0488 (4)
C18 0.7094 (2) −0.2658 (2) 0.00391 (19) 0.0450 (4)
H18A 0.6733 −0.2889 −0.0618 0.054*
C9 0.1901 (2) 0.3355 (2) 0.40474 (17) 0.0391 (4)
C15 0.6663 (2) −0.1528 (2) 0.19982 (18) 0.0445 (4)
H15A 0.6009 −0.0976 0.2695 0.053*
C6 0.2505 (2) 0.53454 (19) 0.45950 (17) 0.0382 (4)
C5 0.2986 (2) 0.6052 (2) 0.55342 (17) 0.0398 (4)
N6 0.9295 (2) −0.2845 (2) 0.09198 (18) 0.0547 (5)
C1 0.3575 (2) 0.7282 (2) 0.5210 (2) 0.0477 (5)
H1A 0.3689 0.7692 0.4391 0.057*
C17 0.8683 (3) −0.3123 (3) 0.0009 (2) 0.0537 (5)
H17A 0.9372 −0.3662 −0.0684 0.064*
C11 0.2021 (2) −0.0998 (2) 0.03537 (19) 0.0481 (5)
H11A 0.1556 −0.1189 −0.0254 0.058*
C7 0.2231 (3) 0.6050 (2) 0.3465 (2) 0.0510 (5)
H7A 0.2337 0.7005 0.3253 0.061*
C12 0.3641 (2) −0.1563 (2) 0.01909 (19) 0.0445 (4)
H12A 0.4265 −0.2112 −0.0517 0.053*
C16 0.8274 (3) −0.2050 (3) 0.1883 (2) 0.0525 (5)
H16A 0.8673 −0.1831 0.2522 0.063*
C4 0.2837 (3) 0.5510 (3) 0.6763 (2) 0.0586 (6)
H4B 0.2450 0.4686 0.7018 0.070*
N1 0.3860 (3) 0.7375 (2) 0.7322 (2) 0.0695 (6)
C8 0.1796 (3) 0.5286 (2) 0.2664 (2) 0.0546 (5)
H8A 0.1605 0.5747 0.1904 0.066*
C2 0.3989 (3) 0.7884 (3) 0.6135 (2) 0.0584 (6)
H2B 0.4387 0.8704 0.5905 0.070*
C3 0.3270 (4) 0.6206 (3) 0.7623 (2) 0.0737 (8)
H3B 0.3142 0.5837 0.8455 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0729 (4) 0.0372 (3) 0.0380 (3) −0.0224 (2) −0.0072 (2) −0.0058 (2)
S2 0.0442 (3) 0.0486 (3) 0.0559 (3) −0.0174 (2) 0.0021 (2) −0.0188 (2)
N5 0.0447 (8) 0.0311 (7) 0.0309 (7) −0.0148 (6) −0.0068 (6) −0.0009 (6)
N3 0.0498 (9) 0.0321 (7) 0.0342 (7) −0.0121 (6) −0.0061 (6) −0.0053 (6)
C13 0.0472 (9) 0.0291 (8) 0.0291 (8) −0.0153 (7) −0.0047 (7) −0.0005 (6)
C10 0.0462 (10) 0.0306 (8) 0.0372 (9) −0.0179 (7) −0.0061 (7) −0.0008 (7)
C14 0.0467 (10) 0.0302 (8) 0.0311 (8) −0.0141 (7) −0.0065 (7) 0.0013 (6)
N4 0.0465 (9) 0.0481 (9) 0.0506 (9) −0.0194 (7) −0.0123 (7) −0.0064 (7)
N2 0.0622 (11) 0.0463 (9) 0.0425 (9) −0.0183 (8) −0.0164 (8) −0.0035 (7)
C18 0.0487 (11) 0.0450 (10) 0.0391 (9) −0.0091 (8) −0.0082 (8) −0.0087 (8)
C9 0.0438 (9) 0.0359 (9) 0.0345 (8) −0.0099 (7) −0.0032 (7) −0.0071 (7)
C15 0.0516 (11) 0.0480 (11) 0.0344 (9) −0.0162 (8) −0.0078 (8) −0.0036 (8)
C6 0.0430 (9) 0.0324 (8) 0.0372 (9) −0.0090 (7) −0.0062 (7) −0.0047 (7)
C5 0.0448 (10) 0.0307 (8) 0.0414 (9) −0.0081 (7) −0.0061 (8) −0.0084 (7)
N6 0.0498 (10) 0.0580 (11) 0.0529 (10) −0.0117 (8) −0.0121 (8) 0.0037 (8)
C1 0.0515 (11) 0.0438 (10) 0.0470 (11) −0.0161 (8) −0.0045 (8) −0.0085 (8)
C17 0.0528 (12) 0.0509 (12) 0.0489 (11) −0.0052 (9) −0.0055 (9) −0.0087 (9)
C11 0.0554 (11) 0.0548 (12) 0.0429 (10) −0.0236 (9) −0.0148 (9) −0.0085 (9)
C7 0.0694 (13) 0.0378 (10) 0.0502 (11) −0.0189 (9) −0.0198 (10) 0.0054 (8)
C12 0.0541 (11) 0.0462 (11) 0.0367 (9) −0.0179 (8) −0.0092 (8) −0.0101 (8)
C16 0.0558 (12) 0.0634 (13) 0.0444 (11) −0.0225 (10) −0.0180 (9) 0.0042 (9)
C4 0.0924 (17) 0.0458 (12) 0.0475 (12) −0.0306 (11) −0.0207 (11) −0.0032 (9)
N1 0.0925 (16) 0.0651 (13) 0.0639 (13) −0.0318 (11) −0.0235 (12) −0.0193 (10)
C8 0.0737 (14) 0.0501 (12) 0.0465 (11) −0.0202 (10) −0.0255 (11) 0.0069 (9)
C2 0.0635 (14) 0.0516 (13) 0.0656 (15) −0.0244 (10) −0.0103 (11) −0.0161 (11)
C3 0.120 (2) 0.0663 (16) 0.0496 (13) −0.0387 (16) −0.0302 (15) −0.0036 (11)

Geometric parameters (Å, °)

S1—C9 1.7867 (19) C5—C4 1.374 (3)
S1—S2 2.0238 (7) C5—C1 1.388 (3)
S2—C10 1.7734 (19) N6—C17 1.339 (3)
N5—C10 1.321 (2) N6—C16 1.331 (3)
N5—C13 1.352 (2) C1—C2 1.385 (3)
N3—C9 1.335 (2) C1—H1A 0.9300
N3—C6 1.342 (2) C17—H17A 0.9300
C13—C12 1.392 (2) C11—C12 1.384 (3)
C13—C14 1.486 (3) C11—H11A 0.9300
C10—N4 1.336 (2) C7—C8 1.382 (3)
C14—C18 1.393 (3) C7—H7A 0.9300
C14—C15 1.395 (3) C12—H12A 0.9300
N4—C11 1.332 (3) C16—H16A 0.9300
N2—C8 1.333 (3) C4—C3 1.389 (3)
N2—C9 1.323 (2) C4—H4B 0.9300
C18—C17 1.377 (3) N1—C2 1.323 (3)
C18—H18A 0.9300 N1—C3 1.335 (3)
C15—C16 1.380 (3) C8—H8A 0.9300
C15—H15A 0.9300 C2—H2B 0.9300
C6—C7 1.386 (3) C3—H3B 0.9300
C6—C5 1.491 (2)
Cg1···Cg2i 3.888 (2) Cg3···Cg4ii 3.572 (1)
C9—S1—S2 104.02 (6) C2—C1—C5 118.5 (2)
C10—S2—S1 106.81 (6) C2—C1—H1A 120.8
C10—N5—C13 115.68 (14) C5—C1—H1A 120.8
C9—N3—C6 115.86 (16) N6—C17—C18 123.76 (19)
N5—C13—C12 120.70 (17) N6—C17—H17A 118.1
N5—C13—C14 116.75 (15) C18—C17—H17A 118.1
C12—C13—C14 122.55 (16) N4—C11—C12 122.50 (16)
N5—C10—N4 128.71 (17) N4—C11—H11A 118.8
N5—C10—S2 122.14 (13) C12—C11—H11A 118.7
N4—C10—S2 109.10 (13) C8—C7—C6 117.84 (19)
C18—C14—C15 116.68 (17) C8—C7—H7A 121.1
C18—C14—C13 121.97 (16) C6—C7—H7A 121.1
C15—C14—C13 121.33 (16) C11—C12—C13 117.66 (17)
C10—N4—C11 114.73 (16) C11—C12—H12A 121.2
C8—N2—C9 114.58 (16) C13—C12—H12A 121.2
C17—C18—C14 119.77 (18) N6—C16—C15 124.43 (18)
C17—C18—H18A 120.1 N6—C16—H16A 117.8
C14—C18—H18A 120.1 C15—C16—H16A 117.8
N3—C9—N2 128.50 (18) C5—C4—C3 119.3 (2)
N3—C9—S1 111.00 (14) C5—C4—H4B 120.4
N2—C9—S1 120.50 (14) C3—C4—H4B 120.4
C16—C15—C14 119.14 (18) C2—N1—C3 116.0 (2)
C16—C15—H15A 120.4 N2—C8—C7 122.63 (19)
C14—C15—H15A 120.4 N2—C8—H8A 118.7
N3—C6—C7 120.54 (17) C7—C8—H8A 118.7
N3—C6—C5 116.60 (16) N1—C2—C1 124.7 (2)
C7—C6—C5 122.84 (17) N1—C2—H2B 117.6
C4—C5—C1 117.73 (18) C1—C2—H2B 117.6
C4—C5—C6 120.55 (18) N1—C3—C4 123.8 (2)
C1—C5—C6 121.71 (18) N1—C3—H3B 118.1
C17—N6—C16 116.21 (18) C4—C3—H3B 118.1

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2571).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Higashi, L. S., Lundeen, M. & Seff, J. (1978). J. Am. Chem. Soc.100, 8101–8106.
  4. Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev.250, 2595–2609.
  5. Ji, J.-F., Li, L. & Zhu, H.-B. (2009). Acta Cryst. E65, o1253. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tabellion, F. M., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). J. Am Chem. Soc.123, 7740–7741. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022004/cv2571sup1.cif

e-65-o1588-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022004/cv2571Isup2.hkl

e-65-o1588-Isup2.hkl (195.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES